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Abstract— An innovative filter design method is proposed for
threshold-based spike sorting of high-density neural recordings.
Threshold-based spike sorting is the process of assigning each
detected spike in an extracellular recording to its putative
neuron, using only linear filters and simple thresholding oper-
ations. The low computational complexity of threshold-based
spike sorting makes it interesting for real-time (hardware)
implementations with potential applications in the field of brain-
machine interfaces. The proposed method extends our earlier
work on discriminative template matching and avoids the need
for a prior heuristic definition of an interference covariance
matrix. A new optimal filter design objective function is
proposed, which automatically selects interference-dominated
signal segments based on the output signal of the filter under
design. This new method leads to filters that are signal-to-peak-
interference ratio (SPIR) optimal. The method is validated on
ground truth data recorded in-vivo.

I. INTRODUCTION
The spiking activity of a population of neurons is widely

believed to reflect inter-neuronal communication. This spik-
ing activity can be measured and recorded using extracellular
electrodes placed in close proximity to those neurons. The
spikes measured on a certain electrode typically originate
from multiple neurons, and the spikes from a specific neu-
ron are often picked up by multiple electrodes. Resolving
such a multi-electrode recording into the spike times of its
individual contributing neurons is known as spike sorting [1].

A multitude of methods have been proposed to solve
the problem of spike sorting [2], [3], [4]. The development
of spike sorting methods has been an ongoing process of
exploiting progress in both measurement devices and compu-
tational techniques. Recently, the availability of high-density
neural probes [5] has resulted in several new algorithms
capable of processing the high-dimensional data collected
by such probes [6], [7].

Many spike sorting algorithms contain the following steps
in their algorithm pipeline: 1.) a spike detection step is per-
formed, followed by 2.) a feature extraction phase, then those
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extracted features are 3.) clustered, and finally 4.) template
matching is performed to resolve overlapping spikes. The
first three steps lead to the identification of the different
recorded neurons that are active, also referred to as the
recorded units. Unfortunately, the recording device also picks
up spatio-temporally overlapping spikes from different neu-
rons. Detected waveforms consisting of overlapping spikes
can not be classified in the feature space [2], preventing a
reliable determination of the single-unit activity.

To resolve those overlapping spikes, the algorithmic
pipeline is augmented with the template matching phase. For
every found cluster a template can be estimated. Care must
be taken not to use non-unit clusters, e.g., clusters originating
from correlated firing of multiple neurons. The templates are
used to construct matched filters. Those matched filters are
then used to determine the activity of the individual units
[8].

Once the matched filters have been derived from training
data, they can be applied to new data in a streaming
fashion. Hence, template matching is also useful for real-
time spike sorting. However, obtaining single-unit activity
from the matched filter outputs requires iterative template
subtraction to reliably sort the data [7], [8]. Such subtractive
iteration increases the algorithmic complexity and introduces
an additional undeterministic delay, which is undesirable for
real-time applications.

To avoid the use of iterative template subtraction, discrimi-
native template matching filters were proposed [9], [10], [11],
[12]. The idea behind such discriminative filters is that they
only have a high output variance when the corresponding
neuron, also referred to as their target neuron, is active while
suppressing interfering spikes from other neurons. As such
the filter outputs can be converted into single-unit activity
by the use of a simple thresholding operation. Because of
the computational simplicity of performing threshold-based
spike sorting, it is an interesting technique for real-time spike
sorting applications. One possible application is a single-unit
activity controlled brain-machine interface (BMI). Although
the use of single-unit activity in BMIs have been questioned
[13], recent work on BMIs still involve single-unit activity
[14], [15]. Moreover, other recent work [16] suggests that
single-unit activity can lead to insights that are beneficial
for the long-term stability of BMIs.

However, such discriminative template matching filters
were shown to be difficult to construct, when using conven-
tional recording devices with low electrode densities [17].



Recently, discriminative template matching was applied to
high-density neural probe data, and was shown to enable
threshold-based spike sorting [12]. Also, a novel data-driven
filter design method was proposed in [12] based on signal-
to-peak-interference (SPIR) optimality. The data-drivenness
removes the necessity of knowing all the templates of the
interfering neurons compared to the earlier discriminative
template matching filter design methods [9], [10], [11].

The filter design method in [12] made use of a prior heuris-
tic procedure to define the interference-dominated segments
in the data, leading to filter outputs that were not always
truly SPIR-optimal. In some cases that filter design method
(not the actual filtering) had to be re-applied several times
in an iterative fashion to result in useful filters. Moreover,
there was no clear convergence criterion available using the
heuristic approach. In this work a formal approach on data-
driven discriminative template matching filter design is pre-
sented, which optimizes the SPIR of the actual filter output.
The proposed method includes an automatic interference
weighting to avoid the need for a heuristic approach to define
the interference covariance matrix.

The outline of this paper is as follows. In Section II the
SPIR-optimal filter design method is derived. In Section III
the method is validated on in-vivo recorded data. Finally,
conclusions are drawn in Section IV.

II. METHOD

The method is derived here for a single target neuron. In
practice, this method has to be applied in parallel (both filter
design and actual filtering) for each neuron from which the
single-unit activity needs to be determined.

A high-density probe recording is represented by x [k] ∈
RN with N the number of relevant electrodes on the
probe from which a sample is observed at every discrete
time point k. Only a local neighbourhood of N electrodes
is considered around a center electrode which has the
highest absolute voltage deflection for target spikes. This
local neighbourhood is described by a radius R around
that center electrode. All other channels are omitted from
x [k]. It is assumed that x [k] = sT [k] + sNT [k] + n [k],
where sT [k] and sNT [k] are the spiking activity of the
target neuron and non-target neurons respectively, and n [k]
contains both physiological and electrical noise. Consider

x̄ [k] =
[
x [k]

T
. . . x [k − L+ 1]

T
]T
∈ RNL containing an

L-taps delay line for each electrode signal. The application of
a linear spatio-temporal finite impulse response (FIR) filter
with its coefficients described by f , can then be written as
y [k] = fT x̄ [k], with y [k] the corresponding filter output.
In this work we will focus on the design of such a spatio-
temporal FIR filter f , such that a simple thresholding oper-
ation Thr on the filter output power can be used to retrieve
the single-unit activity spike train u [k] of the target neuron:

u [k] =

{
1 (target spike) if y [k]

2
> Thr

0 (no target spike) otherwise.
(1)

Spike sorting is based on the assumption that neuronal
spikes originating from the same neuron are measured as
similar spatio-temporal voltage deflections on the probe.
Clustering all detected spikes typically reveals different ac-
tive units in the recording. As discussed in the introduction,
to resolve overlapping spikes a template matching step can
be performed. A template τττ is usually estimated by taking
the median across the spike waveform instances x̄ [k] that
belong to the cluster corresponding to the target neuron after
proper temporal alignment [8].

Here, the goal is to design an optimal filter for threshold-
based spike sorting. The filter design is powered by the
following regularized SPIR optimization problem (note that
the SPIR maximization is reformulated here as a constrained
minimization problem):

min
f

1

|T |
∑
k∈T

w (f , x̄ [k])
(
fT x̄ [k]

)2
+ λfT f

s.t.
(
fTτττ

)2
= K,

(2)

with T a set containing some training data x̄, w (f , x̄) the
activation weighting function which selects interfering data
samples, λ is a regularization constant, and K is an arbitrary
positive constant that determines the filter’s output power
in response to a target spike instance. For conciseness the
time indices in the mathematical notation will be omitted
from here on. The activation weighting function is a shifted
sigmoid as a function of the filter output power, described
by:

w (f , x̄) =
1

1 + e−((fT x̄)2−βK)
, (3)

where β is used for setting the interference threshold. Here,
a sigmoid was chosen as the activation weighting function,
since the sigmoid is a differentiable approximation of a step
function (at least when K is chosen sufficiently large, see
also Section III). The activation weighting function is shown
in Figure 1, where it is plotted as a function of the filter
output power

(
fT x̄

)2
.

1

0
βK
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w
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Fig. 1. Shifted sigmoid activation weighting function.

The solution of (2) thus tries to minimize the filter’s output
power for training data samples x̄ that generate a filter output
power that is bigger than a β-fraction of the template’s
filter output power, while maintaining a fixed filter output
power for that template. The regularization term was added to



prevent overfitting. In [12] the activation weighting function
was implicitly defined a-priori using a heuristic method on
the input data. The filter design method presented here uses
an activation weighting function which depends on the actual
filter output and which automatically activates relevant signal
segments.

To solve the constrained non-linear non-convex optimiza-
tion problem (2), SLSQP [18] is used, which is a gradient
descent-based solver. Because the numerical evaluation of
the objective function gradient is computationally intensive,
the gradient is analytically derived and passed to the solver.
The gradient of the objective function is given below for
completeness:

1

|T |
∑
T

(
∇fw (f , x̄)

(
fT x̄

)2
+ 2w (f , x̄) fT x̄x̄

)
+2λf , (4)

with

∇fw (f , x̄) = −
e
−
(
(fT x̄)

2−βK
) (
−2fT x̄x̄ + 2βfTττττττ

)(
1 + e−((fT x̄)2−βK)

)2 .

(5)

III. EXPERIMENTS

The proposed filter design method is validated on three
ground truth datasets. Two in-vivo recorded ground truth
datasets [19] and one hybrid dataset [4] are used. The per-
formance of our algorithm is compared to the performance
of the previously proposed discriminative template matching
filter design method [12], which will be referred to as the
heuristic method from here on.

From each dataset the first five minutes of data are used.
The first 150 s of data are used for training the filters,
whereas the last 150 s are used for testing. Prior to the
filter design, the data is high-pass filtered with a cut-off
frequency of 300 Hz. The radius describing a target spike
neighbourhood is set to R = 100 μm.

The weighting function parameter β in (3) is chosen to be
0.1, as to try to attenuate the interfering peaks in the output
to a SPIR of at least 10 dB. The desired template filter output
power K should be chosen sufficiently high for the sigmoid
to properly suppress interference. Assume we would choose
K = 1, the value of the weighting function for data with
a zero power output response would still be weighted by a
factor 0.475. Therefore, we choose K = 1000, which allows
for a wide range of output powers which are weighted by
a factor close to 0, such that unimportant samples can be
ignored during the filter design. The regularization parameter
λ in (2) is chosen for every dataset separately in a grid-
search fashion. The regularization parameter that maximizes
the threshold-based spike sorting performance on the training
data is retained. The values for λ are shown in Table I.

The template τττ is estimated using the ground truth timing
information from the training data. In practice, this timing
information can be obtained from clustering the training data,
as explained in the introduction. It is also this template that

is used to initialise the numerical optimization solver with
f init = ατττ , where α is chosen such that the constraint in (2)
is satisified.

The hybrid dataset (dataset 3) is a well-chosen dataset
for which the heuristic method [12] does not result in a
filter which is useable for threshold-based spike sorting in a
straightforward way. The heuristic method has to be applied
in an iterative fashion to resolve this problem, but because
of its heuristic nature, no clear convergence criterion is
available. In the heuristic case the goodness of the filter
depends on an expert, who manually has to stop the iteration.
Although the heuristic method was shown to perform well
most of the time, two mechanisms could lead to suboptimal
filters: firstly, if the interfering peaks fall into the so called
target safe zone [12], they are ignored in the estimation
of the interference covariance in which case they won’t
be suppressed in the output. Secondly, the heuristic filter
projects the data onto a subspace in which there is no
guarantee that new interferers are amplified which were not
visible in the original input data. The newly proposed method
does not have those problems.

Figure 2A shows that using the SPIR-optimal method
vs. the heuristic without expert leads to different solutions.
As can be seen from Figure 2B, the SPIR-optimal filter
output response to a non-target spike (left) is largely reduced
with respect to the target spike output response (right). This
difference in response was not present in the heuristic design
case. Such a difference in filter output response enables
threshold-based spike sorting.
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Fig. 2. A Color map representation of the filter coefficients in f designed
using the proposed method (left) and the heuristic method (right). B Squared
filter output for a non-target spike (left) and target spike (right) using both
the SPIR-optimal (solid blue) and heuristic (dashed orange) filter.

To quantify the threshold-based spike sorting performance
of both filter design methods, the sensitivity and precision
are calculated. The sensitivity (sens) and precision (prec) are
defined as follows:



sens =
TP
P

and prec =
TP

TP + FP
, (6)

where the ground truth labels can be used to determine
the true positives (TP), false positives (FP) and all ground
truth occurences (P). These performance metrics are defined
for a fixed optimal threshold Thr, which is determined
making use of the the ground truth labels (again, in practice
clustering information can be used). The optimal threshold is
determined by swiping the threshold over the filter output and
retaining the threshold that optimizes the sum of sensitivity
and precision. In case the resulting precision is lower than
0.9 the threshold which maximizes the precision is retained
instead.

TABLE I
THRESHOLD-BASED SPIKE SORTING SENSITIVITY (SENS) AND

PRECISION (PREC) FOR BOTH THE PROPOSED SPIR-OPTIMAL FILTER

DESIGN METHOD AND THE HEURISTIC FILTER DESIGN METHOD IN [12].
THE LAST COLUMN CONTAINS THE DATASET SPECIFIC VALUE FOR λ AS

USED IN (2).

dataset SPIR sens/prec heuristic sens/prec λ
1 1.0/0.982 1.0/1.0 10
2 0.955/0.901 0.921/0.911 100
3 0.990/0.990 0.912/0.263 10

The quantitative threshold-based spike sorting results can
be found in Table I. The in-vivo recorded datasets 1 and 2
on which the heuristic method performed fine, were used
to compare the performance of the newly proposed method.
For dataset 1 and 2 the performance using either the newly
proposed method and the heuristic method is on par. For
dataset 1 the difference in precision is due to two false
positive detections. For dataset 2 the SPIR-optimal filter has
a higher sensitivity, but a slightly lower precision. For dataset
3 there is a clear increase in both the precision and sensitivity
using the newly proposed method.

IV. DISCUSSION AND CONCLUSION
A new filter design method is proposed for the use in

threshold-based spike sorting. The filters are (local) minima
of the proposed SPIR objective functions. It was shown
that the filter design method outperforms a heuristic design
method proposed earlier. Although the actual spike sorting
is fast and computationally lightweight, the filter design can
be computationally heavy. Other numerical solvers might be
considered to speed up the filter design process. Of potential
interest are stochastic gradient descent based methods, which
take into account only a random subset of samples at every
iteration step. Another possible improvement, which might
potentially speed up the filter design process, is the use
of another informed initialisation point, e.g., based on the
heuristic method. Since the objective function is non-convex,
it is possible that a sub-optimal local minima is given as
a solution. Therefore, it is important to always check the
threshold-based spike sorting performance on the training
set. For all experimental data used in this work, the filter
solutions were practically useable.
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