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Abstract—Objective: The process of grouping neuronal spikes

in an extracellular recording according to their neuronal sources,

is generally referred to as spike sorting. Currently, the use

of spike sorting is mainly limited to an offline usage, where

spikes are sorted after the data acquisition has been completed.

In this paper, we propose a discriminative template matching

algorithm for threshold-based spike sorting on high-density

extracellular data. Such threshold-based spike sorting has a low

and deterministic algorithmic delay, allowing for fast online spike

sorting.

Approach: At its core, threshold-based spike sorting is driven

by linear filters. The proposed discriminative template match-

ing filter design algorithm optimizes the output signal-to-peak-

interference ratio in a data-driven fashion, assuming the template

of the target spike is available. The latter allows the filter to

suppress the spikes of interfering neurons and to resolve spike

overlap. The data-driven filter design algorithm requires only

templates of the target neurons of interest, which can be retrieved,

e.g., through a prior clustering on an initial recording.

This work was carried out at the ESAT Laboratory of KU Leuven, in the

frame of KU Leuven Special Research Fund projects C14/16/057 and CoE

PFV/10/002 (OPTEC), and the Research Foundation Flanders (FWO) project

FWO G0D7516N (Distributed signal processing algorithms for spike sorting

in next-generation high-density neuroprobes). The scientific responsibility is

assumed by its authors. A conference precursor of this research has been

published in [Wouters et al., 2018].

Main results: The proposed discriminative template matching

filters are validated on in-vivo ground truth data and are shown

to provide single-unit activity with good accuracy using a simple

thresholding operation on the filter outputs.

Significance: The low algorithmic complexity allows for com-

putationally cheap and fast spike sorting. Also the proposed filters

are guaranteed to be stable and have a deterministic delay. These

characteristics make the proposed filter design method a valuable

building block for online spike sorting, thereby enabling unit

activity-based real-time and closed-loop experiments for high-

density neural recordings.

I. INTRODUCTION

Neurons communicate with each other through all-or-

nothing action potentials, also known as spikes, which can be

recorded with an extracellular electrode placed in the vicinity

of the neurons. An electrode will generally pick up spikes

from several neurons near the electrode. Therefore, to decode

brain processes, neuroscientists have to identify and sort these

spikes according to their underlying neuronal origins, a source

separation process which is often referred to as spike sorting

[Lewicki, 1998].

Currently, spike sorting is often performed as a post-

processing step once a complete extracellular recording is
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available. This allows only correlative conclusions to be drawn

from the spike sorting results and behavioural data. When per-

forming online spike sorting [Aksenova et al., 2003] [Knieling

et al., 2016] as part of a closed-loop experiment in which

neural processes can be altered through stimulation, causal

relationships could be discovered between spiking patterns

and behavioural outcomes. The wide availability of such an

algorithm would be a game changer for experimental neuros-

cientists.

Recently, on the hardware side, there has been a shift

from conventional extracellular recording devices with a few

electrodes to high-density (HD) neuroprobes with more than

thousand electrodes and electrode pitches of around 20µm

[Lopez et al., 2016] [Raducanu et al., 2016] [Jun et al., 2017b].

Such HD probes enable recording from the entire depth of

a rodent brain. For these new probes, conventional spike

sorting algorithms [Shoham et al., 2003] [Quiroga et al., 2004]

[Kadir et al., 2014] [Rossant et al., 2015] fail, because the

computational complexity scales supralinear with the number

of electrodes. On top of that, the cluster analysis will suffer

from the “curse of dimensionality” [Steinbach et al., 2004],

a general phenomenon that occurs when clustering in high

dimensional spaces.

To overcome these computational problems, a number of

new spike sorting algorithms have been developed [Pachitariu

et al., 2016] [Jun et al., 2017a] [Chung et al., 2017] [Yger

et al., 2018] for sorting HD probe data. All of these algorithms

are developed to perform real-time spike sorting on HD

extracellular data. Important to note however, is that they are

real-time with respect to the offline processing time, meaning

that they can process a finished recording in approximately the

same time as the duration of the recording. For closed-loop

stimulation experiments in which the stimulation depends on

the outcome of the spike sorting process, an online real-time

deadline has to be met which is dependent on the specific pro-

cess under investigation [Ciliberti and Kloosterman, 2017]. For

instance an experimental study of synaptic plasticity requires

stimulation to occur within 2ms, the synaptic integration time

scale, after a target neuron generated an action potential [Jun

et al., 2017a].

Many conventional spike sorting algorithms also struggle

with handling overlapping spikes. The reason for their failure

is that spikes are classified based on features used during the

clustering analysis [Gibson et al., 2012]. When features are

extracted from a segment containing, e.g., two overlapping

spikes from different neurons, the features are unlikely to be

related to the features extracted from single spike segments

from either neuron, leading to spurious clusters. To solve this

problem, recent algorithm pipelines have been augmented with

a final template matching [Abeles and Goldstein, 1977] [Marre

et al., 2012] [Pillow et al., 2013] [Ekanadham et al., 2014]

[Franke et al., 2015] phase. Prototypical spike templates are

in practice extracted from an initial spike sorting, where only

non-overlapping spikes are taken as the input. Each extracted

spike template is then applied to the data as a linear matched

filter. The outputs of these matched filters are then used

to decide on the final cluster assignment for spikes in the

recording.

Such linear filtering-based template matching is a particu-

larly interesting approach for online spike sorting. For each

sortable unit in the extracellular recording, a linear filter is

trained which responds to the spatio-temporal spike footprint

of that unit [Franke et al., 2012]. Such filters can be applied to

the data in a streaming fashion. This implies that a spike can be

sorted before its contribution in the extracellular recording has

faded away. Classification is then done by thresholding the dif-

ferent filter outputs. Another advantage of using linear filters

is their low computational complexity. The only computations

involved in applying such filters are scalar multiplications of

recording samples in a finite shift register and a summation

over the different products. This makes linear filters extremely

fit for fast (hardware) implementation and online real-time

application.

Recent work on template matching-based spike sorting

[Franke et al., 2015] [Yger et al., 2018] uses only information

from target spikes in training the template matching filters.

This leads to the problem of multiple filters responding to

a single spike, when their target spike pattern shows some
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similarity with the spike pattern of the active neuron. This

makes it difficult to determine whether these simultaneous

responses are caused by a single spike triggering multiple filter

responses, or by multiple overlapping spikes each triggering

a single filter response. To solve this problem, both methods

apply an iterative scheme where they assign the spike to the

neuron of which the corresponding filter response is maximal

and then subtract the spatio-temporal template of this neuron

from the data. The data from which the template is subtracted

is iteratively filtered again (each time followed by another

spike template subtraction) until all filter responses on this part

of the data are below the detection threshold. A consequence

of such an iterative scheme is that it takes multiple iterations

over the same data. This causes an unpredictable delay in the

processing, which might lead to missing real-time deadlines.

Even if there is just one spike active, a second pass over the

data is necessary to confirm that the exceeded thresholds in

other filter outputs are not caused by overlapping spikes.

Another potential issue arises directly from relying on the

identification of the maximal filter response for assigning a

spike to its putative neuron. Since the filters are subjected to

noise, the filter outputs might be distorted and as such the

filter with the maximal response is not always the one that

corresponds to the firing neuron, leading to a misclassification

of that spike.

To overcome the aforementioned issues related to iterative

subtraction schemes, linear filters can be designed which sim-

ultaneously maximize the response to the target neuron, while

suppressing interfering spikes from neighboring neuron cells,

as well as general background noise [Roberts and Hartline,

1975] [Vollgraf and Obermayer, 2006] [Franke et al., 2010].

The method proposed in this work is in line with the design

goal of the cited methods. However, the previous algorithms

were presented prior to the availability of HD probe data, and

were shown to be unable to sufficiently differentiate between

the neurons using non-HD data and a simple threshold. [Franke

et al., 2012].

So we will investigate the use of discriminative template

matching filters for HD extracellular recordings, which are

strongly tuned towards a single unit, such that a significant

filter response is generated only when the corresponding

neuron is active. Such an approach removes the necessity

of iterative filtering schemes, it enables threshold-based spike

sorting, and it allows for a controllable processing delay.

The optimal filter design will be based on the Generalized

Eigenvalue Decomposition [Golub and Van Loan, 1996] of

pairs of estimated signal and interference covariance matrices.

Furthermore a practical offline scheme for estimating these

covariance matrices will also be proposed, such that the

optimality of the filters is aligned with the ultimate goal:

maximizing spike sorting accuracy. Basically this comes down

to an implicit optimal weighting of the different interfering

sources in the interference covariance matrix to maximize

the signal-to-peak-interference ratio (SPIR). We also show

that discriminative template matching filters are robust against

target leakage, i.e., the target spike structure is present in the

interference covariance matrix.

Our work differs from other discriminative template match-

ing design algorithms as follows: 1. From an optimization

point of view, our filter design method is based on maximizing

the signal-to-peak-interference ratio (SPIR) objective function

as opposed to signal-to-interference-plus-noise ratio (SINR) or

signal-to-noise ratio (SNR) optimal filters. 2. The interference

covariance is estimated in a data-driven way as opposed to

template-based approaches, reducing the dependence on the

initial clustering stage and the availability of templates of non-

target spikes or other transient noise sources. 3. The algorithm

presented in this work is validated on in-vivo recorded HD

probe data, which are rich in spatial information, such that

multi-channel filtering approaches become more powerful.

The remainder of this paper is built up as follows. In

Section II a model for online spike sorting, namely threshold-

based spike sorting, used throughout this paper is presented

and matched filtering-based template matching is reviewed. In

section III our discriminative template matching filter design

method is derived. Next the proposed method is validated on

HD in-vivo recorded ground truth data in Section IV. Finally

the results are interpreted and conclusions are drawn in Section
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V.

II. THRESHOLD-BASED SPIKE SORTING PIPELINE

This section will first conceptually introduce the threshold-

based spike sorting pipeline, followed by the derivation of a

matched filter that can be used as the pipeline’s core template

matching filter. Mathematical notation: Scalars are repres-

ented by non-bold letters a or A, vectors by bold lowercase

letters b and matrices by bold uppercase letters C. CT denotes

the matrix transpose of C and C−1 denotes the matrix inverse

of C.

A. Threshold-based spike sorting

Consider a HD extracellular neural probe with N electrodes,

or channels, as shown in Figure 1. Such a probe is lowered

into the brain so that it can record spikes from neurons in

the vicinity of the electrodes. Spikes from a specific neuron

will typically be picked up by multiple electrodes close to that

neuron.

Consider y[t] to be an N -dimensional vector containing the

observations from the N -channel neural probe at sample time

t. To extract the activity of a neuron of interest n, usually

only a subset of the channels in y[t] is useful. Therefore,

we introduce for each neuron n the K(n)-channel signal

y(n)[t] consisting of K(n) channels of y[t] that contain useful

information for isolating the activity of neuron n. Selecting a

subset of channels is represented in Figure 1 by the channel

selector block. Some practical guidelines on how this subset

of channels can be selected will be given in Section IV.

Consider y
(n)
k [t] to be the observation of the kth chan-

nel of y(n)[t]. Without loss of generality, we assume

y
(n)
k [t] to be zero-mean for each k, which is gener-

ally achieved through a prior high-pass filtering on the

data. This high-pass filtering is schematically represen-

ted by the preprocessing blocks in Figure 1. Define

y
(n)
k [t] =

[
y
(n)
k [t] y

(n)
k [t− 1] . . . y

(n)
k [t− L+ 1]

]T
as

the L-dimensional time-lagged vector describing a delay

line containing the current and L − 1 previous samples

of y(n)k [t] at time t. By stacking all these delay lines for

every channel of y(n)[t], we obtain the vector y(n)[t] =[
y
(n)
1 [t]T . . . y

(n)

K(n) [t]
T
]T
∈ RLK(n)

.

The goal of this paper is to design a linear spatio-temporal

filter w(n) ∈ RLK(n)

for each detectable neuron n in the

recording, such that spike sorting can be done via a simple

thresholding operation on the individual filter outputs z(n)[t] =

w(n)Ty(n)[t], without using iterative schemes for handling

overlapping spikes. Note that w(n)Ty(n)[t] corresponds to

a filter-and-sum operation containing K(n) finite impulse

response (FIR) filters, each with L taps. Spike sorting based on

simple thresholding of z(n)[t] will be referred to as threshold-

based spike sorting. Each filter will work independent of one

another and all filters can be executed in parallel. The neuron

corresponding to a filter is also referred to as the target neuron

of that filter.

An FIR filter can be implemented with delay elements,

adders and multipliers as shown in the schematically detailed

bottom part of Figure 1. Such filters are guaranteed to be

stable, they have a predictable processing delay, and have a low

computational complexity allowing for fast online processing.

The actual filter design boils down to choosing the involved

channels (electrodes) and the number of delay elements, and

estimating the filter coefficients such that the filter has the

desired behaviour. Section II-B and III will focus on designing

template matching filters for threshold-based spike sorting.

The presented filter design algorithms are meant for offline

use, meaning that these algorithms estimate the filter coeffi-

cients from initially available recording data, after which the

online filter can be applied to streaming data. However, these

algorithms are candidates for adaptive implementations, such

that the filter coefficients can be corrected for varying signal

statistics in an online fashion.

B. Matched filtering-based template matching

In the remainder of this paper it is assumed that at least the

templates of the neurons of interest (i.e. the neurons for which

we want to retrieve the single unit spike times) are known. In

practice this prior knowledge can be extracted directly from

the recording using a clustering-based initial spike sorter to
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Figure 1: A schematic representation of the threshold-based spike sorting paradigm. For every sortable neuron, a separate

processing pipeline needs to be implemented. Every pipeline includes preprocessing, template matching and thresholding, and

generates single-unit activity at its output. A detailed view of such a pipeline (bottom) reveals the finite impulse response (FIR)

template matching filters that are considered in this paper.
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perform an initial coarse clustering, possibly on only a subset

of data. Such an initial spike sorter will also give access to a

set of example spike times (used to estimate the template) for

each neuron of interest.

Because all filters operate in parallel and independently

from one another, as can be seen from Figure 1, the math-

ematics will be derived for a single neuron of interest n.

As the signal-to-noise ratio (SNR) at the output of the

filter has a direct impact on the classification accuracy in

a threshold-based spike sorting paradigm, it is important to

properly design the filter in order to maximize its overall

output SNR. In standard matched filtering-based template

matching [Kaneko et al., 1999], the filter coefficients w(n)

are chosen to be the spatio-temporal template of neuron n,

yielding a so-called matched filter design. This template τττ (n)

is a
(
K(n)L

)
-dimensional vector and can be estimated by

averaging over multiple aligned example spikes generated by

neuron n:

w
(n)
match = τττ (n) =

1

S(n)

S(n)∑
j=1

y(n)[t
(n)
j ], (1)

where S(n) is the number of spike waveforms used for

estimating the template of neuron n and all t(n)j are chosen

such that all example spikes of neuron n are mutually tem-

porally aligned. Alternatively, a median operator can be used

to estimate a template, which is less sensitive to outliers

compared to averaging. The output z(n)match[t] of the matched

filter w
(n)
match will have a large response when a spike of

neuron n is presented at its input at time t.

It is noted that a matched filter only optimizes the output

SNR if the background noise is uncorrelated both in space

and time. Therefore, a pre-whitening operation [Pouzat et al.,

2002] [Franke et al., 2015] is performed on the signals in

order to obtain a white background noise without spatio-

temporal structure. The zero-phase component analysis (ZCA)

whitening matrix [Kessy et al., 2017] is given by the square

root of the inverse of the spatio-temporal covariance matrix of

the background noise:

W(n) = R
(n)

bb

− 1
2
= E

{
b
(n)

[t] · b(n)
[t]T
}− 1

2

, (2)

with b
(n)

[t] the additive background noise. Since b
(n)

[t] is

unknown, in practice R
(n)

bb
is estimated from y(n)[t] at times

t when no spikes are detected, i.e., where only baseline noise

is observed. The square root can be computed using, e.g.,

a Cholesky factorization or an eigenvalue decomposition on

R
(n)

bb

−1
.

Applying the whitening matrix to the data will reduce the

spatio-temporal structure of the background noise, but it will

also alter the spike waveform, and as such the template.

Therefore matched filtering-based template matching using

whitened data can be written as:

z(n)[t] =
(
W(n)τττ (n)

)T (
W(n)y(n)[t]

)
=
(
R

(n)

bb

−1
τττ (n)

)T
y(n)[t].

(3)

From the above equation it can be seen that the whitening can

be combined with template matching using a single FIR filter

w
(n)
match = R

(n)

bb

−1
τττ (n).

The noise covariance matrix will likely be dominated by

the baseline noise from far-away neurons in which case

a pre-whitening in combination with a matched filter will

obtain its optimal SNR by reducing the baseline noise. This

improvement in SNR is unlikely to influence the threshold-

based spike sorting accuracy, because false detections mainly

arise from sparse transient noise events and spikes from close-

by neurons. Therefore, the matched filter as described in this

section, and as used in many spike sorting algorithms, is often

not optimal for threshold-based spike sorting. The problem

with the matched filter used for threshold-based spike sorting

is that the spatio-temporal structure of a spike template might

not be sufficiently discriminative to generate a high output

variance only when neuron n is firing.

III. DISCRIMINATIVE TEMPLATE MATCHING

A. Filter design for SPIR maximization

Consider again the goal of this paper: the design of a linear

FIR template matching filter for each detectable neuron in
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a HD probe recording, such that single-unit activity can be

obtained by a simple thresholding operation on the individual

template matching filter outputs.

Conceptually the optimal filter for threshold-based spike

sorting, would be the filter where spurious input peaks are

suppressed towards the same level as the filter’s response to

background noise, while peaks resulting from activity of the

target neuron are still significantly higher. Such a filter design

should not focus on optimizing overall output SNR, but on

maximizing signal-to-peak-interference ratio (SPIR) instead.

A filter optimizing the SPIR can be thought of as a pre-

whitening with a matched filter, which is designed using a

weighted noise covariance estimate.

To increase the threshold-based spike sorting accuracy we

have to extend the definition of noise: noise should also

include spikes from other neurons, as is done in [Roberts

and Hartline, 1975] [Vollgraf and Obermayer, 2006] [Franke

et al., 2010]. Furthermore, some noise sources are more

severely affecting spike sorting accuracy than others, and

as such should be treated differently. The optimal filter for

threshold-based spike sorting should have a maximal response

to the target neuron, while having a minimal response to the

most important interfering sources (e.g. spikes from nearby

neurons). Mathematically speaking, this means that the ratio

between the output signal powers in both of these cases should

be maximized, i.e.,

w
(n)
disc = argmax

w

(
wTτττ (n)

)2
∑
k pkE

{(
wT i

(n)

k [t]
)2} , (4)

where pk ∈ R are weights that denote the importance of each

interfering source k, and where i
(n)

k [t] is the signal generated

by the interfering source k (e.g., sharing significant spatio-

temporal structure with the spikes generated by the target

neuron), also referred to as peak interferer k. As such these

peak interferers might influence the threshold-based spike

sorting accuracy. The filter given by (4) thus maximizes the

filter response to the spike template, while maintaining a

minimal response to the interfering sources.

We define the weighted interference covariance matrix as

R
(n)

ii
=
∑
k pkE

{
i
(n)

k [t]i
(n)

k [t]
T
}

, describing the spatio-

temporal structure of the interfering sources. (4) can then be

rewritten as:

w
(n)
disc = argmax

w

wTτττ (n)τττ (n)
T
w

wTR
(n)

ii
w

. (5)

It is noted that the solution of (4) and (5) is only defined up

to a scaling.

Assume for now that we have such an interference cov-

ariance estimate R
(n)

ii
available which leads to a filter output

with optimal SPIR. A direct-form solution for the optimization

problem in (5) is:

w
(n)
disc = R

(n)−1

ii
τττ (n). (6)

For a proof of (6) see Appendix A. A key ingredient in the

above filter design is the interference covariance matrix. The

estimation of the interference covariance matrix is the subject

of Section III-C.

The type of filter discussed in this section will be referred

to as a discriminative template matching filter. The filter

design method allows for optimally discriminating between

two different spatio-temporal structures as described by a pair

of covariance matrices. In the context of this work the pair of

covariance matrices will consist of the target spike covariance

matrix (here replaced by a rank-1 matrix based on the template

τττ (n)) and the estimated covariance matrix of signal segments

who otherwise cause spurious peaks on the filter output.

B. Illustrative example

A small neural ensemble containing three cells [Hay et al.,

2011] was simulated using LFPy [Lindén et al., 2014] and the

results are shown in Figure 2. It is noted that this is purely

for illustrative purposes, and this example should not be seen

as a realistic case or validation of our method (we refer to

Section IV for a quantitative validation). For each neuron n

the matched filter coefficients wmatch are calculated according

to (1). The matched filter outputs z
(n)
match[t] = wT

matchy
(n)[t]
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Figure 2: a Drawing of the simulated setup. The setup contains

three neocortical layer 5b morphologically detailed pyramidal

cells (cell 1: blue, cell 2: green, cell 3: red) and a 128-channel

high density probe of which only the electrode locations are

shown by black dots. b 35ms of simulated data for 20 out of

128 channels. Times at which the simulated neurons generate

spikes are highlighted by the active cell’s corresponding color.

From this it can be seen that each individual neuron is active

three times in the given data slice. c Matched filter-based

template matching output of the three filters trained on the

individual templates which were extracted using the ground

truth spike times. d Ground truth spike times for each cell.

e Discriminative template matching output of the three filters

each trained using all three templates.

are shown in Figure 2c and are color coded according to the

template’s putative neuron.

One can observe from Figure 2c that the filter outputs of

all three matched filtering-based template matching filters are

very similar. This is due to the fact that all three templates

have a similar spatial distribution. These filter outputs are not

suitable for spike sorting. Even a greedy iterative approach will

fail, because cell 1 has a significantly lower spike energy in

the extracellular recording. In iterative schemes for resolving

overlap each filter output is normalized with respect to its

corresponding template energy. This will relatively boost the

response of cell 2 and cell 3 on the filter output of cell 1,

leading to all spikes being classified as belonging to cell 1.

In Figure 2e the color coded filter outputs of the pro-

posed discriminative template matching filters are shown. The

filter coefficients w
(n)
disc are calculated by setting R̂

(n)

ii
=∑

j 6=n R̂
(j)
ττττττ +αI in (6) with j ∈ {1, 2, 3}, i.e., the interference

covariance matrix is built from the templates of the two non-

target spikes. A scaled version of the identity matrix I is

added to each interference covariance matrix to make sure all

interference covariance matrices are invertible. Thresholding

the discriminative template matching outputs directly solves

the spike sorting problem.

The threshold-based spike sorting capability of the discrim-

inative template matching might seem to come at a cost.

Comparing the filter outputs in Figure 2c with the filter outputs

in Figure 2e, it can be seen that the filter outputs in Figure 2e

are more noisy. The increased output response to background

noise is acceptable here, because the background baseline

noise will not cause the detection of false positives in the

low noise case simulated here. We argue that the optimal

spike sorting filter must focus on attenuating non-target spikes

and other interfering transients while maintaining a decent

response to the target spike. A quantitative validation of the

proposed filter design method will be given in Section IV,

where we will also investigate the influence of adverse noise

conditions on the spike sorting performance.
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C. Estimation of the interference covariance matrix

In this section a method will be proposed for estimating

an interference covariance matrix R
(n)

ii
, which will capture

the most harmful interfering sources, and hence put a larger

emphasis on these in the optimization of (5). This matrix can

then be used to design the optimal filter coefficients given by

(6) to isolate the spikes of a single neuron while suppressing

interfering spikes of other neurons or interfering transients

which might cause false positives otherwise.

The interference covariance matrix estimation algorithm

consists of six steps, as visualized in Figure 3, which have

to be performed for each detectable neuron separately. This

algorithm is operated a-priori on a representative subset of the

data, which we refer to as the training set (it is noted that – for

offline spike sorting – the training set can in principle contain

the complete data set). It uses classic template matching to

compute reasonable estimates of the interference covariance

matrices, which at their turn will then be used to design (better)

discriminative template matching filters:

1) Required prior knowledge: it is assumed that a repres-

entative spike template for the target neuron is available.

In practice this template is estimated by using a clus-

tering based spike sorting algorithm which can identify

a subset of the spikes of the target neuron contained

in the training set. The template is then estimated by

averaging over this subset of target spikes (see (1)). This

interference covariance estimation algorithm will also

use the a priori known spike times of the target neuron.

2) Matched filtering: The available target spike template

is then used for a matched filtering-based template

matching pass over the training set data.

3) Target safe zone: We assume that it is possible that

several of the target spikes in the training set have not

been identified in the prior clustering phase of step 1.

Therefore, to avoid a too strong leakage of the spatio-

temporal structure of the target spike covariance into the

interference covariance estimate, a target safe zone is

defined. This target safe zone determines the amplitude

template training spike times + raw data =

spatio-temporal template
...

...

Required prior knowledge

Template matching
safe zone

Noise floor

Interference threshold

Interference segments
...

... time

Target

1.

2.
3.

4.

5.

6.

Figure 3: Graphical representation of the proposed algorithm

for estimating the interference covariance matrix needed for

the discriminative template matching filter design. 1. The

prior knowledge required for the algorithm exists of a set

of example spike times for the target neuron. 2. A matched

filter is computed and applied to the recording, using the spike

template as filter coefficients. The effect of background noise

on the filter output is depicted by bold signal segments. 3.

In order to prevent leakage of spikes from the target neuron

into the interference covariance matrix estimate, a target safe

zone is determined. Each peak that falls within this target

safe zone is excluded for the estimation of the interference

covariance matrix. 4. Based on the filter output statistics the

noise floor is estimated. 5. By combining both the target

safe zone and the noise floor, the interference threshold is

calculated. 6. All peaks that have their maximum above the

interference threshold and outside the target safe zone are

used for estimating the interference covariance matrix. The

signal segments involved in the estimation of the interference

covariance matrix are shaded.
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range within which the output signal of the matched

filter in step 2 can be considered to be a target spike with

sufficient confidence. The target safe zone is calculated

from the known spike times in step 1. Using the available

target neuron spike times, the maximum output response

of the matched filter is determined in a finite window

around each available spike time. Next the maximum

pmax and minimum pmin over all these output response

maxima are computed. The target safe zone is defined

as the interval ((1 − α)pmin, (1 + α)pmax) with e.g.

α = 0.1.

4) Noise floor: The following step consists of estimating

the amplitude of the baseline noise nest in the output

response of the matched filter over the training set data.

This is done by calculating the median of the absolute

value of the output response where all 2ms windows

around known spike times are ignored in the calculation

to further reduce the estimation bias.

5) Interference threshold: The interference threshold Ti

is then calculated as Ti = βpmin + (1 − β)nest with

e.g. β = 0.5. Data segments corresponding to time

instants tj where the matched filter response crosses the

interference threshold and where the maximum filter re-

sponse of the crossing event does not fall into the target

safe zone, are classified as interference data segments.

Cases exist where no interference is detected and the

matched filter-based template matching is sufficiently

discriminative already.

6) Interference covariance: With the interference data

segments i
(n)

[tj ] = y(n) [tj ] at time tj available, one

can estimate the covariance matrix R̂
(n)

ii
characterizing

the spatiotemporal coherence of the interfering events:

R̂
(n)

ii
=
∑
j

i
(n)

[tj ]i
(n)

[tj ]
T

. (7)

This interference covariance matrix can together with the

target spike template be used in (6) to find the filter coefficients

for discriminative template matching. Due to the use of an

interference threshold, only data segments with the most

relevant interference activity are included, allowing the filter

design to mainly focus on the cancellation of these harmful

sources. This interference threshold thus implicitly determines

the weights pk in (4). If all data segments without target spike

would be used to estimate the interference covariance matrix,

the filter design would ’waste’ its degrees of freedom on the

cancellation of noise that is not harmful anyway. In that case,

it would optimize the average SNR, but not the SPIR.

We assume that the interference covariance estimation al-

gorithm is not perfect, and that some target spike information

might be included in the interference covariance matrix es-

timate. However, in Appendix B it is shown that the filter

design method can cope with such target spike leakage, and

as such that imperfect interference covariance estimates are

not necessarily a big concern.

If interference is sufficiently attenuated in the discriminat-

ive template matching filter output, one can recalculate the

interference threshold as explained in step 5 (possibly with a

different value for β) on the discriminative matching output

and use that threshold as a spike detection threshold.

IV. VALIDATION

Discriminative template matching with an interference co-

variance matrix computed using the algorithm from Section

III-C is compared to matched filtering-based template match-

ing (with pre-whitening) as in Section II-B and Bayes op-

timal template matching (BOTM) with an iterative subtraction

scheme (SIC) [Franke et al., 2015], which is a recent ad-

vanced template matching algorithm. The above three template

matching methods are also compared to Spyking Circus [Yger

et al., 2018], a full-blown spike sorting package with a greedy

iterative final template matching stage. This final comparison

allows us to contrast the template matching results with spike

sorting results that are closer to what one would obtain in

practice. Note that both [Franke et al., 2015] and [Yger et al.,

2018] are non-single-shot methods, and as such have a non-

deterministic processing delay.

A. Description of validation data set

The algorithms under examination are assessed on in-vivo
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extracellular ground truth data. Two different types of ground

truth data are used for validation:

1) Paired recordings [Neto et al., 2016] are obtained

by closely positioning an extracellular silicon probe to

a neuron which is targeted by a juxtacellular micro-

pipette. The signal measured by the micro-pipette can

be used to extract ground truth spike times, because it

contains high SNR peaks at times when the targeted

neuron fires an action potential. For a spike of the

targeted neuron to be visible on the extracellular probe,

the distance between the micro-pipette and the silicon

probe should be less than 50µm.

2) Hybrid data [Rossant et al., 2015] is obtained from in-

vivo HD recordings. Each recording is spike sorted using

some available spike sorting algorithm. An operator

then manually selects the spike clusters which consist

of single unit activity only. The spikes belonging to

some verified single unit cluster are then subtracted from

the original recording and migrated to another spatial

region resulting in a so-called hybrid recording. Since

the timestamps of the newly injected spikes are known

in the hybrid recording, these recordings can be used as

ground truth data sets.

The specific datasets used for this work are available online
1,2.

Fifteen neurons were selected from this data for further

analysis. The selection criteria used are: the existence of in-

terfering sources for the considered neuron and a lower bound

on the number of spikes (> 50 spikes) for that neuron. The

spike count lower bound was chosen such that sufficient spikes

are available for the estimation of templates. All templates are

calculated according to (1), where all t(n)j are obtained from

ground truth spike time information. From all recordings the

first five minutes of data are analyzed.

The channel selector for each neuron passes only data

from electrodes within a circular region with a radius of

100µm around the electrode which shows the highest voltage

1Paired recording data: http://www.kampff-lab.org/validating-electrodes/
2Hybrid data: http://phy.cortexlab.net/data/sortingComparison/datasets/

deflection for spikes of that neuron. The exact number of

electrodes involved in calculating a covariance matrix is ul-

timately determined by the probe layout used to make the

recording containing the neuron under investigation. The delay

line length for all filters is chosen such that samples from the

last 1ms can be stored, which is usually sufficient to capture

a spike waveform.

Prior to the filter design as well as the actual filtering,

the data is minimally preprocessed. Preprocessing of the raw

extracellular data is kept limited because online algorithms

require a limited processing delay. Each channel is separately

bandpass filtered between 300 and 10000Hz using a linear

phase finite impulse response filter. This filter operation ex-

tracts the multi-unit activity from the raw data and suppresses

low-frequency signal content and high-frequency measurement

noise.

B. Validation parameters

We examined spike sorting sensitivity and precision for each

combination of validation neuron and algorithm. Sensitivity

is defined as the number of recovered target spikes (true

positives) over the total number of ground truth spikes for that

target neuron. A related measure that is even more important

in spike sorting is precision. Precision is defined as the number

of recovered target spikes (true positives) over all recovered

events, including false detection. The importance of precision

comes directly from the definition of spike sorting: unraveling

multi-unit spike activity into single unit spike activity. A

precision lower than 1 indicates the presence of non-target

spikes/events in the spike sorting output.

For threshold-based spike sorting, sensitivity and precision

depend on the value of the threshold applied at the filter

output. To make it possible to compare different methods,

an optimal threshold is defined for each filter output. The

optimal threshold is chosen by sweeping the threshold and

calculating the sensitivity and precision for each position of

the threshold. Because precision is more valuable for spike

sorting than sensitivity, the optimal threshold is chosen from

all thresholds with a precision > 0.9 that maximizes the sum of
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the sensitivity and precision. When no thresholds are available

that give a precision > 0.9, the optimal threshold is chosen as

the threshold that maximizes only the precision. BOTM comes

with an integrated optimal threshold. In the context of BOTM

we will use this dedicated threshold, unless stated otherwise.

C. Signal-to-peak-interference maximization

Before showing quantitative results, the key mechanism of

the discriminative template matching filter, namely maximiz-

ing the SPIR at its output, is graphically validated for in-vivo

recorded data. For this purpose a segment of both a matched

filter output and a discriminative template matching output is

shown in Figure 4. The target neuron spiked once over the

duration of the depicted segment, this spike time is indicated

by the red asterisk.

For this segment the matched filter output (blue) has a

clear peak when the target neuron is active. Besides the peak

coinciding with the neuron being active, two more minor peaks

can be found in the matched filter output later in time. The

discriminative template matching filter output (green) also has

a significant peak when the target neuron spikes. Apart from

this activity-related peak, there are no other clear peaks in the

filter output. This observation is also reflected by the increase

in SPIR for the depicted segment between the matched filtering

output and the discriminative template matching output. This

increase in SPIR is beneficial for the accuracy and robustness

of the threshold-based spike sorting scheme.

From Figure 4 it can also be seen that the increase in SPIR

comes at a cost. This cost is an increase of the baseline noise

output response (as was already pointed out in Section III-B).

Up to some extent this increase of the baseline noise output

response will not harm the threshold-based spike sorting

performance.

D. Spike sorting performance

Figure 5a shows the spike sorting sensitivity and accuracy

for each validation neuron for the four different methods

under investigation. First threshold-based spike sorting using

matched filters (blue) is compared to threshold-based spike

2ms

ground truth spike time
SPIRSPIR

Arb.
Unit

matched filtering-based TM

discriminative TM

Figure 4: The output of both the matched-filtering based tem-

plate matching (blue) and the discriminative template matching

with interference suppression (green) filter applied to in-vivo

recorded data is shown. Both filter outputs are normalized with

respect to their standard deviation. The ground truth spike

time of the target neuron in this segment, is indicated by a

red asterisk. The double arrows indicate the signal-to-peak-

interference ratio for both outputs.

sorting using discriminative template matching (green). It can

be observed that the use of discriminative template matching

filters generally outperforms the use of matched filter in terms

of the sum of sensitivity and precision. In terms of sensitivity

and precision separately the use of discriminative template

matching outperforms matched filtering, with the exception

of neuron 12 which has a notably higher precision. However

this precision is only reached at an almost zero sensitivity,

making this matched filter practically useless. This initial

comparison confirms that a combination of matched filtering-

based template matching and a simple threshold in the context

of spike sorting is of no practical value.

Next, discriminative template matching is compared to

BOTM. BOTM (red) slightly outperforms discriminative tem-

plate matching in terms of sensitivity (Figure 5b), but its

precision is considerably lower than discriminative template

matching. Two mechanisms are responsible for the difference

in performance between these two algorithms: the fact that

different thresholds are selected and the way interference is

handled, which will be further discussed below.

As mentioned before, discriminative template matching em-

ploys a threshold focused on optimizing the precision, whereas
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Figure 5: a The spike sorting sensitivity and precision for all analyzed ground truth neurons are shown. For each neuron four

different algorithms were tested: template matching threshold-based (blue), discriminative template matching with interference

suppression threshold-based (green), Bayes optimal template matching [Franke et al., 2015] (red), and Spyking Circus [Yger

et al., 2018] (yellow). b Summary of precision (blue) and sensitivity (green) over all neurons for the four methods. The error

bars indicate a 95 percent confidence interval.
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the BOTM threshold seems to favor sensitivity maximization.

This difference in threshold makes it difficult to draw strong

conclusion from this comparison. Therefore, the performance

of a modified version of BOTM is determined. This modified

version uses detection thresholds which are calculated in the

same way as the thresholds used for discriminative template

matching. This experiment results in an average sensitivity

of 53.3% and a precision of 71.8%. Although the precision

increases substantially (cf. Figure 5b), it is still low compared

to the discriminative template matching results. Also, BOTM’s

sensitivity with this new threshold is roughly half compared

to the original BOTM algorithm. This result indicates that an-

other mechanism is responsible for the performance difference

found on our dataset.

A more relevant mechanism to discuss is the way in which

both algorithms handle interference. BOTM assumes that the

templates of all spiking neurons in the recording are known.

From these known templates it either builds compound tem-

plates (which is computationally expensive) or makes use of an

iterative subtraction scheme to resolve spike overlap. However,

in practice it often happens that not all spiking neurons’

templates are known, e.g., multi-unit activity clusters do not

result in useful templates. As such, when the wave shape of

an interfering neuron is not known, the template matching

procedure will likely assign spikes of such unaccounted for

neurons to faulty neuronal sources. BOTM also does not

take into account impulsive noise events which are likely

to be missed while calculating the interference covariance

matrix and as such can also trigger false detections. Since our

experiments are conducted on in-vivo data, we don’t have full

knowledge about all active neurons and their corresponding

templates. Our proposed algorithm has the practical advantage

that it only assumes partial knowledge about the activity of the

neurons for which single unit spike times have to be retrieved,

because the interference is handled in a data-driven way. This

fundamental difference is also an explaining factor for the

difference in precision between BOTM and discriminative

template matching.

Next, threshold-based spike sorting using discriminative

template matching is compared to Spyking Circus (yellow).

Spyking Circus is a state-of-the-art spike sorting pipeline,

which employs a greedy template matching algorithm (with it-

erative template subtraction) for resolving overlapping spikes.

To allow for a fair comparison between both methods, the

manual curation phase of Spyking Circus is replaced by

ground truth assisted cluster merging. From Figure 5a it can

be seen that our discriminative template matching algorithm

performs very similar to Spyking Circus in terms of both

sensitivity and precision, except for neuron 11.

The reason for the failure of threshold-based spike sorting

using discriminative template matching on neuron 11 comes

from the fact that the response of the interfering neurons

to the initial matched filter (see step 2 of the interference

covariance matrix estimation algorithm in Subsection III-C)

by accident falls within the target spike safe zone. This leads

to a discriminative template matching filter which does not

put any effort in minimizing this specific peak interferer.

This problem can be alleviated during the filter design phase

by re-estimating the interference covariance matrix on the

intermediate discriminative template matching outputs in the

training set. As the initial discriminative template matching

filter alters the response to the interfering neuron compared

to the original matching filter (as both are based on different

filter design paradigms), it will not fall in the spike safe zone

anymore with a high probability. As a result, the interfering

neuron will now be included in the interference covariance

matrix for the re-estimation of the discriminative template

matching filter. Such an approach leads for neuron 11 to

a spike sorting sensitivity and precision above 95 percent.

For the other neurons, applying the interference covariance

estimation on the initial matched filter output proved sufficient.

The Spyking Circus performance results also require us to

reflect on the BOTM performance. The Spyking Circus results

indicate that more prior clustering information is potentially

available within the data, than the prior clustering information

(i.e., available ground truth spike times) we used to estimate

templates of the interfering neurons for BOTM. However,

curating all prior clustering information is labour intensive in
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practice and as such not desirable. Also, there is no guarantee

that the prior clustering stage can resolve all interference as

single-unit clusters, which are required to estimate interfering

templates.

E. Robustness to noise

In this section the effect of noise on both discriminative

template matching and BOTM is investigated. In this section

we will focus on data from ground truth neuron 3. This neuron

is chosen for two reasons. The first reason is because both

algorithms perform equally well on the original data (Figure

5), indicating sufficient prior knowledge was available for

BOTM to assign non-target spikes to their non-target neuronal

sources. As such we can fairly compare the performance of

both algorithms for different noise levels. The second reason

is that the original data from ground truth neuron 3 has a low

noise level, such that we have a lot of flexibility to artificially

control the noise conditions (to control SNR, we can only add

noise, but not remove existing noise).

For this experiment we added noise of different peak-signal-

to-noise ratios (PSNR) to the original data before training the

different template matching filters. The PSNR (not to be con-

fused with SPIR) is defined as the peak power of the template

divided by the noise power. The noise that we added was

spatially correlated pink noise. The spatial correlation matrix

and the frequency domain slope were extracted from an in-vivo

probe recording. The spatial correlation matrix was obtained

by calculating the sample correlation matrix of noise-only

data segments between the desired number of neighbouring

electrodes. The temporal correlation was modeled by fitting

a high-pass filtered f−γ curve to the frequency spectrum of

single probe electrode recordings. This procedure resulted in

γ = 6
5 . The phases of the different frequency components

were randomly generated by sampling a uniform distribution.

As such, the synthetically generated noise was similar to

experimental noise. Before adding the synthetic noise to the

data it was scaled w.r.t. the template peak power of the original

data to obtain the desired PSNR. As shown in Figure 6, the

PSNR of the synthetic noise ranges from -20dB to 5dB.
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Figure 6: Sensitivity and precision for discriminative template

matching and Bayes optimal template matching under adverse

noise conditions. If no spikes are detected, the precision metric

is undefined. By convention we depict an undefined precision

by a cross marker located at zero.

The performance differences between discriminative tem-

plate matching and BOTM in this experiment (Figure 6),

are likely due to different thresholds being used. When the

template estimate energy is dominated by noise (-20 to -

10dB), BOTM will subtract this energy from the filter output,

making it nearly impossible to detect spikes. On the other hand

the result obtained with the discriminative template matching

should be interpreted with care. The threshold applied to

the filter output relies on prior information. Although both

template matching algorithms use this prior information to

estimate relevant templates, discriminative template matching

also uses this information to determine the threshold. In

practice this prior information will not be available at very

high noise levels.

The message we want to convey here is that the interference

covariance estimation algorithm is capable of also catching the

noise covariance. This is due to the fact that the interference

covariance matrix is estimated on data instead of templates.

The interference segments thus contain the sum of interference

and background noise. As such, at very high noise levels

the interference covariance matrix will be dominated by the
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Figure 7: Sensitivity and precision for discriminative template

matching under adverse noise conditions using only one dis-

criminative template matching filter and threshold trained on

5dB PSNR data.

background noise.

We conducted another experiment where we trained a

discriminative template matching filter on data with a 5dB

PSNR. We then applied this filter to data with a lower PSNR (4

to -20dB). This resulted in a sensitivity and precision as shown

in Figure 7. The sensitivity and precision for this experiment

were obtained using a constant threshold. The fixed threshold

was determined on the 5dB PSNR training data. Again, this

indicates that our filter design method is capable of extracting

the background noise covariance and that the filter is also

robust to changes in background noise levels.

V. DISCUSSION AND CONCLUSION

This work focused on a data-driven discriminative template

matching filter design method for the threshold-based spike

sorting pipeline, which is promising for online spike sorting

and closed-loop neuroscience. The idea behind threshold-

based spike sorting is that single-unit activity can be ob-

tained from a simple thresholding operation on the output

of each template matching filter. Such a pipeline has a low

computational complexity and a predictable delay. However,

the template matching filters have to sufficiently discriminate

between the target neuron and interfering neurons for the

threshold-based spike sorting to work.

It was demonstrated that a matched filtering-based tem-

plate matching approach is not suitable for use in threshold-

based spike sorting. Matched filtering methods have to rely

on iterative schemes to extract single-unit activity from the

template matching filter outputs. Therefore, the discriminative

template matching method was introduced which was shown

to outperform the matched filtering approach in terms of

threshold-based spike sorting performance.

We also compared the performance of our data-driven

discriminative template matching procedure to Bayes optimal

template matching with an iterative subtraction scheme. It

was demonstrated that discriminative template matching out-

performs Bayes optimal template matching on the analyzed

dataset, because discriminative template matching can handle

incomplete prior clustering information. We’ve also shown

that our method can handle different background noise levels,

because the interference covariance is estimated in a data-

driven way. Although good spike sorting results were obtained

at high noise levels in our experiments, it should be noted that

it is unlikely that one can create template matching filters for

such low SNR spikes in the first place, due to the difficulty of

extracting the necessary prior clustering information for high

noise levels.

A limitation of most template matching algorithms is that in

case of consistent spike overlap between spikes from different

neurons, the initial clustering phase will not be able to retrieve

the required prior information for our filter design method. In

this case our method is deemed to fail in retrieving the spike

times of those specific neurons.

Another potential source of failure are neurons with spike

templates that are equal up to a scaling factor. In such a case

the discriminative template matching filter will not be able to

suppress the interference generated by a neuron with similar

template. A possible solution to this problem is to integrate an

upper and lower threshold for detection on the filter output.

For bursting neurons, our filtering approach is straightfor-

wardly applicable, if the bursting neuron is correctly identified

during the initial clustering stage. Depending on the specific

bursting variability between spikes of the target neuron, one
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can estimate a single template or use higher-rank templates

(Appendix A). If the bursting neuron is split during the initial

clustering phase, one has to rely on additional post-processing

to merge the detection outputs of all filters related to that

neuron.

When comparing the single-shot threshold-based spike sort-

ing performance with the performance of a widespread spike

sorting package like Spyking Circus [Yger et al., 2018], it

was shown that both approaches have a similar spike sorting

performance. These results indicate that discriminative tem-

plate matching is a viable building block for threshold-based

spike sorting packages. Such threshold-based spike sorting

algorithms have the advantage of algorithmic simplicity and a

low (and deterministic) input-output delay, making it suitable

for online closed-loop neuroscience experiments.

The power of discriminative template matching lies in the

way of estimating the so-called interference covariance matrix,

which is an important ingredient of the filter design method.

The interference covariance matrix estimation algorithm im-

plicitly weights the different interfering sources, taking into

account whether or not the segments cause spurious peaks

on a matched filtering template matching output, and as such

are classified as peak interferers. The discriminative template

matching filter can be thought of as optimizing the SPIR,

instead of the SNR as is the case for a matched filter.

An approach also trying to suppress interfering spikes was

already proposed in [Roberts and Hartline, 1975] [Vollgraf

and Obermayer, 2006] [Franke et al., 2010]. However, this

template matching technique did not make it into today’s

spike sorting packages. One possible reason for this is given

by [Franke et al., 2012], where the filters are argued to

be less robust to noise, because they are designed under

stronger constraints. We believe that the advent of HD probes

results in increased spatial information and as such brings new

opportunities for template matching filters with an extra con-

straint on suppression of interference. Discriminative template

matching differs from approaches like [Roberts and Hartline,

1975] mainly in the way the interference is estimated. Instead

of a template-based approach, the interference in our filter

design method is estimated in a data-driven way. Such a data-

driven approach removes the necessity of a complete prior

spike sorting, i.e., only example spike times of target neurons

of interest are required as an input. Another advantage of

our approach over template-based approaches is that different

interfering sources are automatically weighted based on their

harmfulness.

Another advantage of threshold-based spike sorting is that it

could be a candidate for on-probe spike sorting. The need for

on-probe sorting might arise from an ever increasing channel

count on HD probes together with a limited data transfer

bandwidth, making it a challenging task to transfer raw data

from a probe to, e.g., a computer. The simple architecture of

a finite impulse response filter and the low complexity of a

single thresholding operation, can be cheaply implemented in

hardware. Recently, active CMOS probes [Raducanu et al.,

2016] have been developed, already having integrated elec-

tronics on probe. On-probe sorting also eliminates the transfer

delay, which is beneficial for use in closed-loop experiments.

APPENDIX

A. Derivation of the optimal filter

The proposed filter w
(n)
disc for threshold-based single-unit

activity detection of neuron n is the solution to the optimiza-

tion problem defined below:

max
w

wTR
(n)
ττττττ w

wTR
(n)

ii
w
, (8)

where

R(n)
ττττττ = τττ (n)τττ (n)

T
(9)

is the positive semidefinite spatio-temporal covariance matrix

of the deterministic spike template waveform and R
(n)

ii
is the

positive definite spatio-temporal peak interference covariance

matrix for neuron n. The filter satisfying (8) thus optimizes

the signal-to-peak-interference ratio at its output. To derive a

closed-form solution, (8) is rewritten as:

max
w

wTR(n)
ττττττ w s.t. wTR

(n)

ii
w = C, (10)
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with C ∈ R a constant. One can easily see that maximizing a

fraction is equal to maximizing the numerator while keeping

the denominator constant. To solve this constrained optim-

ization problem, the method of Lagrange multipliers [Boyd

and Vandenberghe, 2004] is used. The Lagrangian of this

optimization problem is given by:

L (w, λ) = wTR(n)
ττττττ w − λ

(
wTR

(n)

ii
w − C

)
. (11)

The solution to the optimization problem is then found by

setting the partial derivative w.r.t. w equal to zero and solving

it for w.

∂L
∂w

= 2
(
R(n)
ττττττ − λR

(n)

ii

)
w = 0. (12)

Rearranging (12) reveals that (8) reduces to a generalized

eigenvalue problem [Golub and Van Loan, 1996], where the

optimal filter coefficients correspond to a generalized eigen-

vector:

R(n)
ττττττ w = λR

(n)

ii
w. (13)

By combining (10) and (13), we get

wTR(n)
ττττττ w = λwTR

(n)

ii
w = λC. (14)

This shows that (10) is maximized if λ is maximal, i.e., if w

is chosen equal to the generalized eigenvector corresponding

to the maximal generalized eigenvalue λ, i.e., the solution of

(13) for maximal lambda.

In this work the template covariance matrix is a rank-1

matrix by definition as shown in (9). This rank-1 structure

makes that there is only one generalized eigenvector which

has a non-zero eigenvalue, which then also leads to a closed-

form solution. This can be seen from substituting (9) in the

generalized eigenvalue problem (13):

R
(n)

ii

−1
τττ (n)τττ (n)

T
w = λw. (15)

It is noted that the left-hand side of (15) consists of a scaled

version of the vector R(n)

ii

−1
τττ (n) scaled by the scalar τττ (n)

T
w.

As a result, the closed-form solution of (8) is:

w
(n)
disc = R

(n)

ii

−1
τττ (n). (16)

It is noted that the GEVD-based approach also allows for

the use of higher-rank template covariance matrices R(n)
ττττττ . The

optimal filter can then be found by solving (13) using a generic

generalized eigenvalue problem solver [Golub and Van Loan,

1996]. This might be beneficial in the case of neurons with

non-stationary spike waveforms, e.g. bursting neurons.

B. Robustness against target leakage

Assuming that the interference covariance estimation al-

gorithm is imperfect, at some point, target spike segments will

leak into the interference covariance matrix estimate. Such a

faulty interference covariance matrix R̂
(n)

ii
can be modeled as:

R̂
(n)

ii
= R

(n)

ii
+ c R(n)

ττττττ , (17)

with c ∈ R.

The discriminative template matching filter for the pair

of matrices
(
R

(n)
ττττττ , R̂

(n)

ii

)
is the solution to the following

optimization problem:

w
(n)
disc = argmax

w

wTR
(n)
ττττττ w

wT
(
R

(n)

ii
+ c R

(n)
ττττττ

)
w
. (18)

Through algebraic manipulation of (18), it is shown that

the discriminative template matching filter for
(
R

(n)
ττττττ , R̂

(n)

ii

)
is equal to the discriminative template matching filter for(
R

(n)
ττττττ ,R

(n)

ii

)
:
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argmax
w

wTR
(n)
ττττττ w

wT
(
R

(n)

ii
+ c R

(n)
ττττττ

)
w

=argmin
w

wT
(
R

(n)

ii
+ c R

(n)
ττττττ

)
w

wTR
(n)
ττττττ w

=argmin
w

(
wTR

(n)

ii
w

wTR
(n)
ττττττ w

+ c

)

=argmin
w

wTR
(n)

ii
w

wTR
(n)
ττττττ w

=argmax
w

wTR
(n)
ττττττ w

wTR
(n)

ii
w
.

(19)

We can conclude that target spike leakage into the interference

covariance matrix, as modeled by (17), has no influence

on the calculation of discriminative template matching filter

coefficients. In practice, the filter coefficients will slightly

differ because the leakage covariance will be calculated on a

per spike basis including the background noise. This additional

background noise will slightly change the relative weights

between the interfering spike covariance and the background

noise within R
(n)

ii
.
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Pettersen, K. H., and Einevoll, G. T. (2014). LFPy: a tool for biophysical



20

simulation of extracellular potentials generated by detailed model neurons.

Frontiers in Neuroinformatics, 7(January):41.

[Lopez et al., 2016] Lopez, C. M., Mitra, S., Putzeys, J., Raducanu, B.,

Ballini, M., Andrei, A., Severi, S., Welkenhuysen, M., Van Hoof, C.,

Musa, S., and Yazicioglu, R. F. (2016). A 966-electrode neural probe

with 384 configurable channels in 0.13m SOI CMOS. In 2016 IEEE

International Solid-State Circuits Conference (ISSCC), volume 59, pages

392–393. IEEE.

[Marre et al., 2012] Marre, O., Amodei, D., Deshmukh, N., Sadeghi, K., Soo,

F., Holy, T. E., and Berry, M. J. (2012). Mapping a Complete Neural

Population in the Retina. Journal of Neuroscience, 32(43):14859–14873.

[Neto et al., 2016] Neto, J. P., Lopes, G., Frazão, J., Nogueira, J., Lacerda,

P., Baião, P., Aarts, A., Andrei, A., Musa, S., Fortunato, E., Barquinha,

P., and Kampff, A. R. (2016). Validating silicon polytrodes with paired

juxtacellular recordings: method and dataset. Journal of Neurophysiology,

116(2):892–903.

[Pachitariu et al., 2016] Pachitariu, M., Steinmetz, N., Kadir, S., Carandini,

M., and Harris, K. D. (2016). Kilosort: realtime spike-sorting for extra-

cellular electrophysiology with hundreds of channels. bioRxiv.

[Pillow et al., 2013] Pillow, J. W., Shlens, J., Chichilnisky, E., and Simon-

celli, E. P. (2013). A model-based spike sorting algorithm for removing

correlation artifacts in multi-neuron recordings. PloS one, 8(5):e62123.

[Pouzat et al., 2002] Pouzat, C., Mazor, O., and Laurent, G. (2002). Using

noise signature to optimize spike-sorting and to assess neuronal classific-

ation quality. Journal of Neuroscience Methods, 122(1):43–57.

[Quiroga et al., 2004] Quiroga, R. Q., Nadasdy, Z., and Ben-Shaul, Y.

(2004). Unsupervised Spike Detection and Sorting with Wavelets and

Superparamagnetic Clustering. Neural Computation, 16(8):1661–1687.

[Raducanu et al., 2016] Raducanu, B. C., Yazicioglu, R. F., Lopez, C. M.,

Ballini, M., Putzeys, J., Wang, S., Andrei, A., Welkenhuysen, M., van

Helleputte, N., Musa, S., Puers, R., Kloosterman, F., van Hoof, C., and

Mitra, S. (2016). Time multiplexed active neural probe with 678 parallel

recording sites. In 2016 46th European Solid-State Device Research

Conference (ESSDERC), volume 2016-Octob, pages 385–388. IEEE.

[Roberts and Hartline, 1975] Roberts, W. M. and Hartline, D. K. (1975).

Separation of multi-unit nerve impulse trains by a multi-channel linear

filter algorithm. Brain Research, 94(1):141–149.

[Rossant et al., 2015] Rossant, C., Kadir, S. N., Goodman, D. F. M., Schul-

man, J., Belluscio, M., Buzsaki, G., and Harris, K. D. (2015). Spike sorting

for large, dense electrode arrays. bioRxiv, 19(4):015198.

[Shoham et al., 2003] Shoham, S., Fellows, M. R., and Normann, R. A.

(2003). Robust, automatic spike sorting using mixtures of multivariate

t-distributions. Journal of Neuroscience Methods, 127(2):111–122.

[Steinbach et al., 2004] Steinbach, M., Ertöz, L., and Kumar, V. (2004). The
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