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Abstract— Spike sorting is the process of assigning neural
spikes in an extracellular brain recording to their putative
neurons. Optimal pre-whitened template matching filters that
are used in spike sorting typically suffer from ill-conditioning.
In this paper, we investigate the origin of this ill-conditioning
and the way in which it influences the resulting filters. Two
data-driven subspace regularization approaches are proposed,
and those are shown to outperform a regularization approach
used in recent literature. The comparison of the methods is
based on ground truth data that are recorded in-vivo.

I. INTRODUCTION
Extracellular microelectrodes are often used for studying

brain dynamics at the level of individual neurons. Such
microelectrodes can measure, among other signals, the ex-
tracellular potential changes caused by action potentials, also
known as spikes, from nearby neurons. Typically, multiple
electrodes are used for a given experiment and their mutual
spatial organisation is matched to the targeted brain region. A
popular electrode configuration used in hippocampal studies
is the wire tetrode [1], reflecting the region’s shallow cell
layer. When studying cortical areas, probes [2] are more
popular because they allow to measure along the entire
cortical multilayer cell structure.

Single electrodes tend to pick up spikes from multiple
neurons, while multiple electrodes pick up the spikes from
a specific neuron. On top of that, multiple neurons can
be simultaneously active. To study the dynamics of the
individual neuron, one has to solve this neuronal cocktail
party problem, i.e., unmixing the recorded spiking activity of
the individual neurons that are embedded in the recording.
A multitude of algorithmic pipelines have been proposed
to achieve such unmixing. These pipelines are commonly
referred to as spike sorting [3] algorithms.

A typical spike sorting algorithm consists of the following
steps [4]: after preprocessing the recorded data a spike
detection is performed, then features are extracted from those
detected spikes, a clustering algorithm is applied to the
extracted features, and finally a template matching phase
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is conducted for classifying the spikes according to their
putative neurons.

Template matching is used here for classification [5]
because it has the ability to resolve overlapping spikes.
Template matching is also interesting for real-time spike
sorting, e.g., for a neural prosthesis based on single-cell
activity [6]. Although template matching is the final step
in the algorithmic pipeline, the template matching filters
are applied to the preprocessed data directly. As such they
are suitable for streaming data applications after an initial
training phase.

In this paper we will study a failure mechanism in the
template matching filter design, namely that of the ill-
conditioned noise covariance matrix. Most spike sorting al-
gorithms propose pragmatic solutions that seem to ignore the
source of the ill-conditioning. The template matching filters
obtained through such pragmatic approaches are suboptimal.
We will propose a meaningful regularization approach, which
is in line with the underlying failure mechanism.

The remainder of this paper is organized as follows: in
Section II template matching is formally presented and the
ill-conditioning failure mechanism is studied. Section III
proposes two data-driven regularization approaches that can
overcome the ill-conditioning. In Section IV the proposed
methods are validated. Finally Section V concludes this paper
with a brief discussion.

II. TEMPLATE MATCHING
Consider xi [k] ∈ RN to be a selection of N channels

of the high-pass filtered extracellular recording sampled
at discrete time k, where typically only the channels are
included that are relevant to isolate the spikes of a specific
target neuron i. To represent the spatio-temporal L-tap delay
line at time k the following stacked vector x̄i [k] ∈ RNL is
constructed:

x̄i [k] =
[
xi [k]

T
xi [k − 1]

T
. . . xi [k − L+ 1]

T
]T
, (1)

where L should be at least as long as the spike length of the
target neuron.

In this paper we focus only on the template matching
filter design for spike sorting. Therefore, we assume that for
every sortable neuron i we have some example spike times Ti
available. In practice these example spike times are obtained
from the spike sorting clustering phase.

Without loss of generality, in the remainder of this paper
we will focus on a single neuron, hence the neuron-related
subscript is dropped. The spike template τττ for the neuron of
interest can be calculated as follows:



τττ = median
l∈T

x̄ [l] , (2)

where the median is applied in an element-wise fashion. The
median operator was chosen because it provides robustness
against outliers in the training data. The classical optimal
template matching filter [7], [8] that can be used for the
classification of spikes is the solution to the following
optimization problem:

max
f

fTττττττT f

fTRnnf
, (3)

with Rnn ∈ RNL×NL the spatio-temporal noise-only co-
variance matrix, i.e.,

∑
k∈N x̄ [k] x̄ [k]

T with N containing
all the sample times in which there is no spiking activity.
The closed-form solution to (3) is given by [7], [8]:

f = R−1nnτττ . (4)

The actual spike classification is based on the filter output
fT x̄ [k]. This corresponds to a matched filter which also
performs an implicit pre-whitening, thereby maximizing the
signal-to-noise ratio at the target neuron spikes. Within the
scope of this paper we will classify the spikes based on
thresholding the squared template matching filter output.
This approach is most in line with the objective function
(3), and it gives a good indication about the quality of
the obtained filters for use in spike sorting. However, in
practice more advanced classification schemes based on, e.g.,
multiple thresholds and iterative filtering exist [9].

The filter given by (4) only exists if the spatio-temporal
covariance matrix is invertible. The matrix is invertible if
and only if it’s null space is trivial, i.e., Null (Rnn) = {0}
[10]. If the covariance matrix is non-invertible, then it has a
null space different from the zero-vector in which case, the
denominator in (3) can be made arbitrarily small by choosing
f “close” to that null space. Assuming that the template is not
perfectly orthogonal to that null space, the objective function
can be made arbitrarily large, without taking into account the
template itself.

In practice most covariance matrices will be numerically
invertible, if sufficient data are used for their estimation. This
can be explained by the fact that the signals under investiga-
tion originate from experimental recordings. The recording
electronics will typically introduce low power white noise
which will lead to matrices that are full rank, therefore invert-
ible. However, the power dominant spatio-temporal neural
data typically have a low rank structure, especially when
using modern high-density probes with spatial oversampling.
Under the low power white noise assumptions, those matrices
will often be ill-conditioned, i.e., they contain an eigenspace
with corresponding eigenvalues that are several orders of
magnitude smaller than the eigenvalues related to the neural
data. As such the denominator in (3) can be made very small
by pushing f towards this eigenspace (not arbitrarily small as
was the case for the non-invertible case), thereby maximizing
the objective function. Here, again there is a high probability
that the significance of the filter response to the template is
not considered. Such a filter cannot emphasize the spiking

activity of its target neuron, hence it is useless in a spike
sorting context.

III. REGULARIZATION
Fig. 1 shows the eigenvalues of Rnn, i.e., the signal power

across the different principal components in a principal com-
ponent analysis (PCA), from two of the spatio-temporally
expanded in-vivo recordings used in Section IV. Most signal
power is restricted to a few PCA components, indicating that
the data are ill-conditioned. As explained in the previous sec-
tion, applying (4) without proper regularization will lead to
filters that are practically useless for spike sorting purposes.
Another need for regularization arises when only a limited
number of samples are used for estimating the covariance
matrix. In the remainder of this work we will expand on
the topic of regularization within the context of template
matching-based spike sorting.

Principal component ID
0 100 200 300 400 0 200 400 600 800 1000

E
ig

en
va

lu
e

[a
rb

.u
ni

t]

C
um

ul
at

iv
e

no
rm

al
iz

ed
po

w
er

12

0 0

20
1.0
0.9

0.5

0.3

1.0
0.9

0.5

0.3

β = 0.95β = 0.95

Recording 1 Recording 2

Power
Cumulative power

Fig. 1. Power along every principal component (red) for the spatio-
temporally expanded recording data of neuron 1 and neuron 2. The cu-
mulative normalized power (dashed blue) is also shown and the β-fraction
point (see Section III-B) is indicated by the black arrow.

In recent spike sorting literature [9], the ill-conditioning is
practically tackled by only considering the spatial covariance
for the design of the spatio-temporal matched filter. On
top of that a diagonal loading of the covariance matrix is
performed to further improve the condition. This approach
can be summarized by the following optimization problem
which has the same form as (3):

max
f

fTττττττT f

fT




Rnn 0 . . . 0

0 Rnn

...
...

. . . 0
0 . . . 0 Rnn

+ cI

 f

, (5)

where Rnn ∈ RN×N is the spatial noise-only covariance
matrix (based on x [k] instead of x̄ [k]) and c is the diagonal
loading constant which is a fixed parameter and data inde-
pendent. By using this practically regularized filter design
formulation the existing temporal covariance in the signal
is ignored. The filters that result from this approach are
suboptimal detectors from a spatio-temporal point of view.
We will use this spatial-only regularization approach for
benchmarking our proposed methods.
A. Use the signal+noise covariance matrix

From a matched filtering point of view there is no reason
to exclude spiking activity samples from the noise covariance
matrix estimate. One can show that including the template



from the neuron of interest in the noise covariance does not
change the optimal filter [8]:

arg max
f

fTττττττT f

fT (Rnn + αττττττT ) f
= arg max

f

fTττττττT f

fTRnnf
, (6)

where α is an arbitrary weight factor. Therefore, we pro-
pose to use the signal+noise covariance matrix instead of
the noise-only covariance matrix, i.e., we replace Rnn

with Rxx =
∑
k x̄ [k] x̄ [k]

T . This effectively increases the
number of available samples used for the estimation of
the covariance matrix, thereby making it invertible without
regularization. This choice of covariance matrix also better
describes the true underlying noise structure, which does
include spikes from other (interfering) neurons1. The optimal
filter design objective function we will consider is then:

max
f

fTττττττT f

fTRxxf
. (7)

The objective function in (7) still suffers from ill-
conditioning due to the low rank structure of the neural
signal. To solve for this we propose a regularization approach
that involves the design of the filter in a lower dimensional
subspace.

B. Filter design in PCA subspace

We define a PCA subspace that accounts for a β-fraction
of the total energy in the recorded (preprocessed) signal. A
typical value would be β = 0.95. The subspace is readily
available through the eigendecomposition of the covariance
matrix:

Rxx = UΛUT , (8)

where U contains the eigenvectors in its columns. Without
loss of generality, we assume that the diagonal matrix Λ
has all of its diagonal elements λi arranged in a descending
order. The subspace is spanned by the columns of Uβ :

Uβ = [u1 . . .uk] with k = max

{
l

∣∣∣∣ ∑l
i=1 λi

tr (Λ)
< β

}
, (9)

where uj denotes the jth column of U. Note that the
dimensionality of the subspace is defined by the underlying
data, hence the term data-driven regularization. The template
matching filter fβ operating in this reduced subspace is the
solution to the following optimization problem:

max
fβ

fTβ U
T
β ττττττ

TUβfβ

fTβ U
T
βRxxUβfβ

. (10)

Transforming this optimal filter back to the original space
results in the first subspace regularized filter:

f1 = Uβ

(
UT
βRxxUβ

)−1
UT
β τττ . (11)

1Recently, it has been shown that a more discriminative filter is obtained
if Rnn is replaced with an interference covariance matrix that is only built
from segments containing interfering spikes [8]. In this case, the matrix
may again become non-invertible, which is resolved by using the PCA
preprocessing as explained in Sections III-B and III-C.

C. Filter design in template & PCA subspace
The above method assumes that the template is well-

approximated in the filter design subspace. For β = 0.95 it
is very likely that the template is indeed well-approximated
in the PCA subspace, but there is no absolute guarantee.
To ensure that the template is well-approximated within
the subspace we propose to use a subspace spanned by
the template itself, which is then extended with orthogonal
basis vectors until a β-fraction of the variance is captured.
Consider the template data direction:

uτττ = τττ/ ‖τττ‖2 . (12)

The power that is associated with this direction is:
λτττ = uTτττ Rxxuτττ . (13)

Let Projuτττ
x̄ [k] = uτττu

T
τττ x̄ [k] be the projection of x̄ [k] onto

the direction uτττ . We define the new data vector x̄−τττ [k] =
x̄ [k]−Projuτττ

x̄ [k] =
(
I− uτττu

T
τττ

)
x̄ [k] which is by definition

orthogonal to uτττ , i.e., it does not contain any variance in the
template direction. The covariance matrix associated with
x̄−τττ [k] is then given by:

R−τττ =
(
I− uτττu

T
τττ

)
Rxx

(
I− uτττu

T
τττ

)T
. (14)

From the eigendecomposition (again assuming that the di-
agonal matrix Λ−τττ has all of its diagonal elements λ−τττ i
arranged in a descending order) of this covariance matrix:

R−τττ = U−τττΛ−τττU−τττ
T , (15)

we can extract an orthogonal basis for the subspace that
captures the most variance, while it is also guaranteed to
contain the template:

Tβ =
[
uτττ u−τττ 1 . . .u−τττ j

]
. (16)

The subspace dimensionality of j + 1 is then defined in a
data-driven fashion by the following expression:

j = max

{
l

∣∣∣∣ λτττ +
∑l
i=1 λ−τττ i

tr (Λ)
< β

}
. (17)

The second subspace regularized filter is then given by:

f2 = Tβ

(
TT
βRxxTβ

)−1
TT
β τττ . (18)

IV. EXPERIMENTS
We validate the two proposed regularization methods on

28 ground truth neurons. These ground truth neurons are
sourced from publicly available paired recordings [11] and
hybrid recordings [12]. The preprocessing consists only of a
high-pass filtering with a cutoff frequency fc = 300 Hz (note
that no explicit prewhitening is performed here). For every
neuron a spatial region with size N was chosen such that all
electrodes within a 100 μm radius from the electrode with
the maximum template signal deflection for that neuron are
included in that spatial region. The discrete temporal spike
window length is set to L = 30, which is equivalent to a 1
ms window. From every recording the first 3 min of data are
used for the analysis. The training data T include the ground
truth spike times from the first 90 s. Validation is done on
the remaining 90 s.



The filters that are used for benchmarking our two pro-
posed regularized filter design methods are the solutions to
the optimization problem given by (5). The free parameter
was chosen to be c = 10−18 as given by [9]. For our data
this parameter was of very little use, because the spatial-
only regularization was always dominant over the diagonal
loading. As suggested before β = 0.95 was chosen for both
our proposed regularized filter design methods given by (11)
and (18), such that the low rank approximated recording does
not deviate too much from the original recording.
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Fig. 2. The F1 score is shown as a measure of spike sorting performance for
every ground truth neuron used. Three different regularization methods for
calculating the template matching filters are compared: template & PCA
subspace regularization (green), PCA subspace regularization (red), and
spatial-only regularization (blue).

The three different regularized filter design methods are
validated through their spike sorting capability, that is ob-
tained from thresholding their respective squared filter out-
puts. For every combination of neuron and regularized filter
design, the spike sorting capability is summarized by the
maximal F1 score across all thresholds. This score reflects
the ability of a filter to extract only the activity of the
neuron of interest and is depicted in Fig. 2. These results
show an increased spike sorting performance in favour of
both the proposed methods when compared to the spatial-
only regularization. The subspace regularization that includes
the template seems to slightly outperform the subspace
regularization without explicit use of the template.

Using a Friedman test with α = 0.05, there is a statisti-
cally significant difference in F1 score between the different
studied methods, X2 (2) = 24.768, p � 0.05. Post hoc

analysis with Wilcoxon signed-rank tests was conducted with
a Bonferroni correction applied, resulting in a significance
level set at p < α

m = 0.017, with m = 3 indicating the
number of comparisons. There are statistically significant
differences in F1 score between the spatial-only regulariza-
tion and the PCA subspace regularization (Z = −4.0145,
p � 0.017), and between the spatial-only and the template
& PCA subspace regularization (Z = -4.0145, p � 0.017).
However, there is no significant difference between the PCA
subspace regularization and the template & PCA subspace
regularization (Z = −2.3541, p = 0.018), despite a per-
ceived superiority of the template & PCA subspace method.
However, this may be due to the overly conservative choice
for Bonferroni correction, as the p-value almost reaches the
significance level of α = 0.017.

V. DISCUSSION
A data-driven regularization approach for template match-

ing filter design in spike sorting is proposed. The approach
consists of designing the actual filter in a subspace for
which the dimensionality is derived from the data. Subspace
regularization can be interpreted as data denoising combined
with a diagonal loading. This approach is shown to signif-
icantly outperform the spatial-only regularization approach
in our simplified spike sorting framework based on a single
thresholding. More spike sorting regularization approaches
exist in literature, but all of them are based on prior fixed
parameters, e.g., a fixed diagonal loading parameter, or a
fixed size subspace. The integration of our new approach
in a fully-featured spike sorting framework might lead to a
better spike discrimination and therefore less time spent on
manual curation.
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