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Abstract—Unlike traditional homogeneous single-task wireless
sensor networks (WSNs), heterogeneous and multi-task WSNs
allow the cooperation among multiple heterogeneous devices
dedicated to solving different signal processing tasks. Despite
their heterogenous nature and the fact that each device may solve
a different task, the devices could still benefit from a collaboration
between them to achieve a superior performance. However, the
design of such heterogeneous WSNs is very challenging and
requires the design of scalable algorithms that maximize the
performance of the devices without transmitting their raw sensor
signals in an uncontrolled fashion. Towards this goal, novel
techniques are needed both on the signal processing level and
on the network-communication level. In this paper, we give
an overview of applications in the field of heterogeneous and
multi-task WSNs with special focus on the signal processing
aspects. Moreover, we provide a general overview of the existing
algorithms for distributed node-specific estimation. Finally, we
discuss the main challenges that have to be tackled for the design
of heterogeneous multi-task WSNs.

Index Terms—Heterogeneous and multi-task networks, wire-
less sensor networks, node-specific estimation, detection, labeling.

I. INTRODUCTION

IN today’s digital age, we are surrounded by portable
devices, many of which are able to sense and/or act on the

environment and are equipped with computing and wireless
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communication capabilities. Some examples are smartphones,
hands-free telephony kits, tablets, laptops, hearing aids, hand-
held cameras or even more futuristic devices such as head-
mounted displays. Usually, all these devices operate on their
own to perform a specific signal processing task (’single device
for a single task’ or SDST system), or to perform multiple
tasks (’single device for multiple tasks’ or SDMT system). Al-
ternatively, the spatial diversity of the sensor signals acquired
by different devices can be leveraged to achieve superior
performance. However, due to the sheer volume of data,
centralizing these signals would require a large communication
bandwidth and computing power, which is often unavailable.
To avoid the need for a dedicated and power-hungry central
processing device and still achieve superior performance as
compared to the non-cooperative approach, distributed and
cooperative processing of the signals with multiple devices in a
wireless sensor networks (WSN)-like architecture is preferred.
However, traditional WSNs typically assume a homogeneous
setting in which all the devices, also referred to as nodes, are
of the same type and cooperate to solve a single network-wide
signal processing task (’multiple devices for a single task’ or
MDST).

Motivated by the heterogeneity of the devices in the emerg-
ing field of Internet-of-Things (IoT), there is currently a
growing interest in more general systems that overcome the
limitations of the aforementioned SDST, SDMT or MDST
system configurations. These general systems are referred
to as heterogeneous multi-task WSNs (’multiple devices for
multiple tasks’ or MDMT systems). These WSNs are formed
by heterogeneous devices that cooperate with each other
although their sensor signals arise from different models as
a result of observing different but overlapping phenomena.
Furthermore, the devices of these WSNs can exploit the spatial
diversity of the sensor signals by cooperating with each other
although they are interested in solving different but related
signal processing (SP) tasks. Hence, the usage of each device
in a heterogeneous multi-task WSN is not constrained to its
own task or a single and common network-wide task. Instead,
the usage of each device goes beyond its own task and interest
by cooperating with multiple devices in order to solve multiple
SP tasks simultaneously and achieve a superior performance.

Due to its heterogeneous and multi-task nature, the de-
sign of MDMT systems is very challenging and requires
novel techniques both on the signal processing and network-
communication level. In this paper, we provide an overview
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of the state of the art, the current trends and future directions
in SP algorithms for heterogeneous and multi-task WSNs. We
focus on describing some relevant applications and providing
a high level overview of the SP techniques employed in
the design of distributed algorithms for multi-task estimation.
Finally, we discuss the main challenges and open problems.

The paper is organized as follows. In Section II, we describe
a few applications which can benefit from heterogeneous and
multi-task WSNs. Section III provides a high-level overview
of the existing frameworks for the design of distributed node-
specific estimation algorithms over heterogeneous and multi-
task networks. In Section IV, we examine the main design
challenges and open problems related to heterogeneous and
multi-task WSNs. Finally, conclusions are drawn in Section V.

II. EXAMPLE APPLICATIONS

Although the appearance of heterogeneous and multi-task
WSNs is very recent, there are many emerging applications
that indeed take advantage of the cooperation of multiple
heterogeneous devices in multiple SP tasks. Some examples of
such MDMT-based applications are provided in the following.

A. Distributed node-specific speech enhancement
Enhancement of speech or audio signals is a crucial pro-

cessing block in various (multi-)microphone-equipped devices.
Currently, in the emerging IoT, this SP task is present in many
heterogeneous devices, each interested in different speech
sources. Fig. 1 considers a scenario, e.g., in an airport or
a conference venue, where many people are present using
different microphone-equipped devices. In Fig. 1, one person
(Source S1) is using a laptop (Device k) for a video call.
At the same time, a nearby person wearing a hearing aid
(Device `) is listening to a public announcement played by
a Public Address (PA) system (Source S2). Since the acoustic
background noise from the many other sound sources severely
affects the intelligibility of the recorded speech signals in the
laptop as well as in the hearing aid, each individual device
traditionally runs a separate speech enhancement algorithm,
which processes the signals recorded by its own on-board
microphones [1]. Typically, there are two or three on-board
microphones in each device, which can only sample the
audio field locally and therefore limit the performance of
the speech enhancement algorithm operated at each device.
In contrast with this traditional SDST approach, by using
the wireless capabilities of today’s digital devices, the laptop
and the hearing aid could exchange their microphone signals
and exploit the spatial coherence of their signals1 [2]. The
extensions of this line of thought to ad-hoc architectures,
such as the emerging IoT, has been the building principle of
several distributed speech enhancement algorithms [3]- [8].
In these algorithms, many (e.g., tens or hundreds) randomly
deployed devices (e.g., hearing aids, smartphones, laptops,

1To properly exploit the spatial coherence between microphone signals in a
setting with different communication delays, it should be noted that the signal
components resulting from the same source in the different microphone signals
need to be aligned [2]. Furthermore, any sampling rate offset between them
should be estimated and compensated for.
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Fig. 1. Distributed node-specific speech enhancement system with K devices,
N localized noise sources and Q desired sources, one of them, i.e., S2,
associated with a Public Address system. Solid lines denote the wireless
cooperation links among the devices, while the dashed arrows plot which
sources are within the interest of each device. Noise sources are plotted as
red triangles.

etc.) cooperate with each other despite the fact that they
are interested in enhancing different speech sources [3]- [7],
their microphone signals may arise from different observation
models [8] (i.e., are influenced by different phenomena), and
they may record with a different sampling rate. Note that each
device may have different and possibly conflicting interests,
i.e., a source may be desired for one device, but at the
same time an interferer for another device. Nevertheless, by
allowing cooperation between these devices, they are able to
simultaneously tackle their node-specific speech enhancement
tasks and achieve superior performance. A wireless network of
microphone-equipped devices as in the above example is often
referred to as a multi-task wireless acoustic sensor network
(WASN).

B. Distributed node-specific image/video enhancement

An image/video counterpart of the node-specific speech
enhancement problem can be found in wireless camera net-
works, in which case overlapping images or video streams
of multiple cameras with different resolutions can be fused
to improve the image resolution, guarantee line of sight, etc.
in each individual device [9], [10]. By leveraging the local
processing power of the cameras and letting them exchange
different features of their low-resolution images/videos [11],
the resulting image fusion algorithms allow each device to
generate super-resolution images or videos of their region of
interest. Consider a scenario where several people are watching
the same scene (e.g., during a concert or a sports event),
and are wearing, e.g., smart glasses equipped with cameras
synthesizing the intended view onto the glass. By fusing
the vast visual and highly unstructured information available,
everyone’s view can be enhanced or a camera can zoom in on a
specific far-away object in the scene, where the low-resolution
zoom is enhanced. As in the distributed node-specific speech
enhancement algorithms, it is noted that, although there is a
common scene, different devices are interested in enhancing
different regions of interests.
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Fig. 2. Distributed ANC system with K devices. A link between the devices
indicates that they are acoustically coupled.

C. Distributed node-specific active noise control
The main idea of classical Active Noise Control (ANC) [12]

consists in adaptively estimating unknown filters that -when
applied to a set of reference signals- let an actuator or loud-
speaker generate a secondary signal canceling a primary noise
signal. Currently, there is an increasing interest in distributed
solutions for ANC over WASNs. As shown in Fig. 2, a
distributed ANC system [13]- [15] consists of a multitude
of devices, each typically equipped with a loudspeaker and
a microphone (referred to as the error microphone). The error
microphone records the primary noise source whereas the
loudspeaker acts on the environment by emitting a signal
to cancel the noise signal impinging on the error micro-
phone (i.e., minimizing the power of the error microphone
signal). This loudspeaker signal consists of a noise reference
which is filtered by a node-specific acoustic transfer function
to destructively interfere with the noise signal at the error
microphone. To better exploit the spatial diversity of the
acoustic field and hence obtain a better cancellation, the
cooperation among the devices has shown to be very use-
ful [13]- [15]. However, the signals emitted by the loudspeaker
of one device can be received by the error microphone of
other neighboring devices. Since each device has different
neighbors, the previous acoustical coupling varies from device
to device (see Fig. 2). Moreover, notice that there exists a
different acoustic transfer function between the primary noise
source and each microphone of each device. As a result, in
a distributed ANC system, the devices have different tasks,
i.e., tackle different but inter-related ANC problems. In this
context, the derivation of novel node-specific adaptive filtering
techniques has been shown to be of paramount importance
when providing distributed and cooperative algorithms where
the per-device communication cost and the computational
complexity is independent of the network size [16]. Indeed,
further research efforts in this direction are expected to be the
key elements for the development of next-generation ANC
systems highly demanded by, e.g., the car and aeronautic
industry.

D. Distributed node-specific cooperative spectrum sensing
Cognitive Radio (CR) networks are considered to be essen-

tial to satisfy the increasing demand for high data rate commu-
nication. In order to opportunistically employ scarce spectrum
resources, secondary users (SUs) have to sense the spectrum
in order to employ unoccupied spectral bands without creating
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Fig. 3. Cellular network with macro, femto and pico tiers. Illustrating
the problem of node-specific cooperative spectrum sensing, pico cells are
considered to be SUs, while the femto cells and the macro cells are the PUs.
Each of the SUs aims at estimating the aggregated spectrum of the PUs that
belong to upper tiers.

excessive interference to licensed primary users (PUs). For
instance, the deployment of small cells, which correspond to
the SUs in this case, is considered to be a key element to
increase the spectral efficiency of modern cellular networks.
However, since the small cells usually have an unpredictable
deployment, they may cause intolerable interference to users
of upper tiers or PUs (see Fig. 3). Therefore, the allocation of
communication resources to the users at these small cells needs
to be done through CR-based spectrum sensing techniques.

The spectrum sensing step can be done independently by
each SU. However, such a non-cooperative strategy can be
impaired by shadowing effects under which the spectrum
sensing problem is ill-posed. Overcoming the non-cooperative
strategies, the aggregated spectrum of the PUs can be esti-
mated by all the SUs in a cooperative and distributed fashion.
Most existing solutions (e.g., [17]- [20]) have assumed that
the SUs sense the aggregated spectrum of the same set of
PUs. However, due to attenuation properties of the medium
and the different positions of the SUs, the SUs can sense the
aggregated spectrum of different but possibly overlapping sets
of PUs (e.g., see Fig. 3). To outperform the non-cooperative
strategies with a complexity that is scalable with the network
size, cooperation among the SUs is relevant even though they
have to sense the aggregated spectrum of different PUs, which
again corresponds to an MDMT system.

E. Distributed multi-area power system state estimation
Toward the modernization of the electrical grid, system

operators require new algorithms for power system state esti-
mation (PSSE). PSSE consists in estimating the network-wide
state x of the grid, i.e., the voltage phasors at all buses of the
network, from voltage and current measurements performed
by different kinds of sensors or devices (see Fig. 4).

Within the category of distributed PSSE methods, early
works, e.g., [21]- [25], have relied on hierarchical coordinators
that estimate the state xk of different network partitions, which
are referred to as areas [26] as shown in Fig. 4. Nonetheless,
these methods require full local observability in each area,
which is not necessarily verified, especially if malicious data
is injected in the measurements [27] such as, e.g., intentional
metering faults. To provide more robust and reliable solutions
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Fig. 4. Smart grid partitioned in several areas illustrating the node-specific
PSSE problem. Dotted lassos show the set of buses that influence a specific
area state vector. Tie lines are depicted in red, while bus voltage and
line current measurements are plotted by red circles and by black squares,
respectively.

without hierarchical coordinators and/or full local observabil-
ity in each area, several distributed algorithms have been
proposed by relying on an iterative exchange of information
between neighboring areas. However, the computational and
communication complexity of many of these algorithms are
not scalable with the network size since they ignore that the
coupling between the measurements of different areas takes
place due to the current measurements over lines spanning
several control areas, referred to as tie lines. For instance, due
to current measurements performed over tie lines, in Fig. 4
the state vector of area S1 depends on the voltage phasor of a
boundary bus of area Sk and a bus of area S`. Similarly, due
to the current measurement performed by area Sk over the tie
line interconnecting areas Sk and S`, the state vector of area
Sk depends on a boundary bus of area S`. In contrast, since
area S` does not perform any measurement over tie lines, its
state vector does not depend on the variables associated with
buses belonging to other areas.

Due to the deregulation of energy markets, large amounts of
power are currently transferred over the tie lines. As a result,
tie lines, originally added to handle emergency situations, are
now fully operational [28] and must be monitored, which
yields an unavoidable overlapping between the state vector of
different inter-connected areas. In this setting, node-specific
PSSE algorithms provide solutions for the PSSE problem
that are scalable with the number of buses in the network
and that are still robust to lack of full observability at the
control areas. Similarly to MDMT-based algorithms for other
multi-task applications, the node-specific PSSE algorithms
let the different control areas cooperate even though they
aim at estimating different but overlapping state vectors. In
this cooperation, adhering to privacy policies that could be
established by the energy market, the different control areas
only need to share bus estimates associated with tie lines.

MWF-based 
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MVDR-beamformer 

MVDR-beamformer 
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S2 

Fig. 5. Multi-task WASN for node-specific speech enhancement and DOA
estimation. Solid black lines denote the wireless cooperation links among the
devices, while the dashed arrows plot which sources are within the interest
of each device. Localized noise sources, i.e., sources that are not within the
interest of any device, are plotted as red triangles.

Despite this limited cooperation subject to privacy policies, the
different control areas can simultaneously estimate their local
state vectors although there is no full observability. Moreover,
they can achieve superior performance as compared to the
case where each control area solves its local PSSE problem
independently. Some node-specific PSSE algorithms have been
proposed based on extensions of different inference methods
such as the alternating direction method of multipliers [28] or
the gossip-based Gauss-Newton method [29]. However, novel
MDMT-based algorithms for PSSE are still needed to stir up
the current smart grids. Among them, due to its robustness
to link and device failures and its enhanced estimation per-
formance, research efforts are needed to design MDMT-based
algorithms for PSSE that rely on adaptive diffusion techniques.
Furthermore, future research efforts are expected to undertake
the design of MDMT-based algorithms for other monitoring
and control tasks in the current smart grid. For instance,
especial attention is needed on the design of MDMT-based
algorithms for the identification of malicious data injections
such as intentional metering faults [27].

F. Heterogeneous WSNs operating multiple algorithms
All previous applications consider an MDMT system where

all devices cooperate to obtain node-specific solutions, but
where all of them are locally undertaking similar SP tasks
(e.g., speech enhancement, ANC, spectrum estimation, etc.,).
Moreover, to obtain the node-specific solutions, all the devices
of the network employ the same (type of) estimation algorithm,
e.g., a particular adaptive filter or a beamformer. However, in
the emerging IoT, the devices may be interested in tackling
very different SP tasks. Furthermore, depending on the perfor-
mance required by their corresponding application layer, two
devices may tackle the same SP task by applying different
algorithms, e.g., filters or beamformers. In many of these
situations, although the SP tasks or the applied algorithms
are different, the corresponding solutions may be correlated
or inter-related. For instance, in the scenario given in Fig. 5,
some of the devices of the network are interested in estimating
the node-specific directions of arrivals (DOAs) of some of
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Fig. 6. High-level block scheme of a generic algorithm for distributed node-
specific signal estimation over a fully-connected network with K nodes.

the desired sources, while, at the same time, other devices
may aim to enhance different desired source signals by using
different beamformers. In this setting, the devices can indeed
assist each other to simultaneously solve their SP tasks. As
shown in [30] and [31], by following properly designed in-
network processing rules under which all the sensor signals
do not need to be communicated to all the devices, in the
network of Fig. 5 each device can tackle its SP task as if it
had access to all sensor signals of the network and without
knowing the SP tasks undertaken by the other devices in the
network.

Similarly to the MDMT system shown in Fig. 5, many other
examples can be envisaged for networks where the devices are
used for different applications (e.g., tracking of objects through
DoA estimation, node-specific ANC of primary noise sources,
VoIP acoustic echo cancellation, 3D or super-resolution video
recording, etc.). In all these examples, the wireless connectiv-
ity can be leveraged through an algorithmic framework that
establishes an ad-hoc SP cooperation among heterogeneous
devices even though they are tackling different SP tasks.
Motivated by this fact, as described in IV-A, future research
efforts now need to determine how this SP cooperation needs
to be carried out so that the in-network processing rules are
scalable with the network size and the performance of the
devices in their corresponding SP tasks is maximized.

III. DISTRIBUTED NODE-SPECIFIC ESTIMATION IN
MULTI-TASK WSNS

Most of the available algorithms for multi-task WSNs have
been derived to solve distributed estimation problems. Some
of these distributed algorithms are listed in Table I, where we
make a distinction between signal estimation (i.e., estimating
the samples of a desired signal by linearly combining the
different sensor signals across the nodes using spatio-temporal
filters) and parameter estimation (i.e., estimating parameter
vectors extracted from the sensor signals). In this section, we
provide a high level overview of the problem statement and
the state-of-the-art with respect to such node-specific signal
and parameter estimation frameworks.

A. Distributed node-specific signal estimation
Several distributed algorithms have been proposed for node-

specific signal estimation (NSSE) over networks with either
a fully-connected topology [3], [4], [7], [8], a (possibly
time-varying) tree topologies [5], [35], or a combinations of
these [34]. These algorithms aim to cooperatively estimate
samples of different node-specific desired signals, while can-
celing node-specific interfering signals as well as background
noise. To this end, the sensor signals across the different nodes
are linearly combined using (distributed) spatio-temporal fil-
ters. Distributed NSSE algorithms are typically applied in the
context of signal denoising, e.g., for speech enhancement in
acoustic sensor networks [2], [6], [30]–[32], [60], for noise or
artifact removal in high-density wireless body area networks
[61], [62], etc.

For a network with K nodes, let uk 2 CMk⇥1 denote
the stochastic Mk-dimensional vector that represents the Mk-
channel2 sensor signal of node k, and let u 2 CM⇥1 denote
the M -channel signal in which the sensor signals {uk}Kk=1

of all nodes are stacked (with M =

PK
k=1 Mk). The goal

of node k is then to estimate the samples of a node-specific
Q-channel signal dk 2 CQ⇥1 by making an optimal linear
combination of the sensor signals in u. Depending on the
application, different optimality criteria can be defined. The
most common one is the linear minimum mean squared error
(LMMSE) criterion [3], [4], [7], [8], i.e.,

min

Wk

Jk(Wk) = min

Wk

E
�

�

dk �W

H
k u

�

�

2
(1)

where E denotes the expectation operator, and where the
superscript H denotes the conjugate transpose operator. The
solution of (1) is often referred to as the multi-channel Wiener
filter (MWF), and is equal to

ˆ

Wk = R

�1
u,uRu,dk (2)

where R

a,b = E{abH}. It is noted that the estimation of the
cross-correlation matrix R

u,dk may be non-trivial in practice,
as the desired signal dk is usually assumed to be unknown3.
There exist several methods to estimate this matrix, depending
on the application in which the algorithm is applied. If training
sequences are not available, the ON-OFF behaviour of the
desired signals can be exploited [2], [61], [62] (e.g., in the case
of speech enhancement). The latter will be briefly explained
at the end of this subsection (as we will first continue with
the distributed NSSE formulation).

The columns of the matrix ˆ

Wk describe node-specific spa-
tial filters or beamformers that estimate the different channels
of the node-specific desired signal dk, such that the Q-channel
beamformer output

ˆ

dk =

ˆ

W

H
k u (3)

will the closest to dk in LMMSE sense. Note that each node
k aims to find a different node-specific network-wide spatial

2We consider multi-channel sensor signals at each node, e.g., modelling the
case where each node is equipped with an array of sensors or where each node
acts as a master node that collects the sensor signals from nearby sensors.

3This is different than in the case of parameter estimation, where usually
both the regressors (u

k

) and the response (d
k

) are assumed to be known (see
also Subsection III-B).
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Application Type Reference

Signal estimation Fully connected [3]- [4], [6]- [8], [32]- [33]
Tree and mixed topologies [5], [34]- [35]

Parameter estimation

Incremental [16], [36], [37]
Consensus [28], [38]

Diffusion Supervised [39]- [47]
Unsupervised [48]- [59]

TABLE I
SOME ALGORITHMS FOR DISTRIBUTED ESTIMATION OVER MULTI-TASK NETWORKS

filter ˆ

Wk to be applied to the full set of sensor signals in u.
Therefore, to compute (1), node k would need access to all the
raw sensor signals of all other nodes, i.e., {uk}Kk=1. In the dis-
tributed NSSE setting, instead of transmitting or relaying raw
sensor signals, each node k transmits a linearly compressed
version of its Mk-channel sensor signal uk computed as

z

(i)
k = F

(i)
k uk (4)

with compression matrix F

(i)
k 2 CR⇥Mk , R  Mk and where

i is an iteration index, indicating that the compression matrix
F

(i)
k is updated over time with a data-driven update rule, which

has to be designed such that the other nodes can benefit the
most from the compressed signals (see below). The definition
of zk in (4) only holds for the case where the network is fully
connected, i.e., zk is received by all other nodes in the network
[3]. The case where the network is not fully connected is not
treated here for the sake of an easy exposition. However, it
follows similar principles [5], [34], [35].

As illustrated in Fig. 6, each node k computes a local
spatial filter or beamformer f

W

(i)
k where the input signals

consist of node k’s own Mk sensor signals, i.e., uk, com-
plemented with the compressed sensor signals of the other
nodes, i.e., {z(i)` }` 6=k. This results in the local estimate ˜

d

(i)
k =

⇥

f

W

(i)
k

⇤H
˜

u

(i)
k of the node-specific desired signal dk where

˜

u

(i)
k =



uk

col{z(i)` }` 6=k

�

. (5)

This local spatial filter f

W

(i)
k is (re-)computed by minimizing

the node-specific local cost function ˜J
(i)
k (

f

Wk), which is
defined as in (1) where u is replaced with ˜

u

(i)
k . Since ˜

u

(i)
k

depends on the compression matrices F(i)
q for q 6= k, the local

cost function ˜J
(i)
k (

f

Wk) will change if any node q 6= k changes
its compression matrix, and therefore has to be re-optimized
regularly. In most distributed NSSE algorithms (see [5] -
[7], [32]- [35], [60]), the update rule to adapt the compression
matrices F

(i)
k is closely intertwined with the minimization of

this local cost function ˜J
(i)
k (

f

Wk). In fact, most distributed
NSSE algorithms copy part of the optimized entries of f

W

(i)
k

in the compression matrix F

(i)
k (as denoted by the dashed line

in Fig. 6), which can be shown to lead to optimal results
under certain conditions (see below). Therefore, a change in
the compression matrix F

(i)
q at node q will induce a change in

the compression matrix F

(i)
k at node k through the dependence

of ˜J
(i)
k (

f

Wk) on F

(i)
q .

The main purpose of distributed NSSE algorithm design is

to adapt the compression matrices F(i)
k over time such that they

(a) converge to a stable equilibrium point, and (b) achieve a
minimal average estimation error with respect to the different
node-specific desired signals. Various distributed algorithms
have been proposed for various types of cost functions, many
of which can be proven to converge to an equilibrium point
in which the local node-specific estimates ˜

dk are equal to the
node-specific centralized (network-wide) estimates ˆ

dk defined
in (3) at all nodes k 2 {1, 2, . . . ,K}. This is remarkable,
given the fact that none of the nodes has access to the full set
of sensor signals in u. The key assumption to achieve such
optimality is that all the channels of the desired signals dk

(accross all nodes) together span a common R-dimensional
signal subspace, i.e., they are all mixtures of a joint set of R
underlying (source) signals. This is for example the case in
an acoustic sensor network, where each node aims to estimate
a node-specific mixture of the same R sound sources as they
are locally observed at the node’s microphone [2]. A similar
data model can be used to describe the node-specific artifact
components in the EEG signals collected by different nodes
of a wireless EEG sensor network [61], [62]. Note that R
determines the degree of compression achieved by (4) and
hence the communication bandwidth depends on the number
of latent desired sources (but independent of the number of
noise or interfering sources).

If the node-specific desired signals do not span a joint low-
dimensional signal subspace, approximations of the centralized
solutions can be found, as in [7] and [33]. In fact, [33] enforces
a low-dimensional desired signal subspace with a pre-defined
dimension R through the application of a distributed gener-
alized eigenvalue decomposition, to approximate the span of
{dk}Kk=1 with the R-dimensional signal subspace that captures
the highest signal-to-noise ratio.

Different optimization criteria and local cost functions
˜Jk(fWk) have been proposed to derive in-network compression
rules, each of which can be shown to converge to centralized
estimates of node-specific desired signals with respect to a
specific (centralized) optimization criterion. As an alternative
for the LMMSE or MWF beamformer, the Minimum Variance
Distortionless Response (MVDR) [30], [60] and the Linearly
Constrained Minimum Variance (LCMV) [6], [31], [32] crite-
rion have been proposed to design a distributed NSSE algo-
rithm. For the MVDR beamformer, the distributed algorithm
allows each node to minimize the output power of a multi-
channel spatial filter subject to a set of linear constraints that
preserve the desired signals observed at its local sensors [30],
[60]. The LCMV beamformer allows to add extra constraints
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to extract a node-specific selection of sources and nullify a
node-specific selection of interfering sources [6], [31], [32].

As mentioned earlier, the minimization of the centralized
cost function Jk(Wk) and the corresponding local cost func-
tion ˜J

(i)
k (

f

Wk) of node k requires the estimation of second
order statistics (see, e.g., (2) for the LMMSE case). Since the
node-specific desired signal dk is not explicitly available at
node k, it is often assumed that the desired signals have an
ON-OFF behaviour (as it is the case for, e.g. speech signals).
Under this assumption, as explained in [2] - [3], the estimation
of the second order statistics requires the implementation of
a multi-source detector to identify the time intervals in which
the desired sources in dk are active (non-zero), which also
corresponds to the main challenge that will be described in
Subsection IV-D.

To understand how this works, consider a fully connected
network where each node k is interested in estimating its node-
specific desired signal dk under the LMMSE criterion. In this
setting, the minimum of the local cost function ˜J

(i)
k (

f

Wk) is
given by (compare with (2))

f

W

(i)
k =

⇥

R

ũ

(i)
k ,ũ

(i)
k

⇤�1
R

ũk,dk . (6)

Consider the case where the sensor signals of each node k can
be decomposed as

uk = dk + nk (7)

where dk 2 CMk⇥1 denotes the desired signal component
that node k aims to estimate (we implicitely assumed here
that Q = Mk for the sake of an easy exposition), and where
nk 2 CMk⇥1 is the background noise which is assumed to
be uncorrelated to dk. Note that the specific data model (7)
yields the so-called sensor signal denoising problem, i.e., the
node-specific desired signals are defined as the (mixtures of)
desired sources as they are observed at the node’s local sensor
signals (excluding noise). Similarly to (7), we define

˜

u

(i)
k =

˜

x

(i)
k +

˜

n

(i)
k

(8)

where ˜

x

(i)
k denotes the signal component of ˜

u

(i)
k that is corre-

lated with dk, and ˜

n

(i)
k denotes the noise that is uncorrelated

to dk (note that the first Mk channels of ˜

x

(i)
k are equal to dk

according to (7) and (5)). From the independence between the
desired signal and the noise, we find that

R

ũ

(i)
k ,dk

= R

x̃

(i)
k ,dk

=

h

R

ũ

(i)
k ,ũ

(i)
k

�R

ñ

(i)
k ,ñ

(i)
k

i

EQ (9)

where EQ =

⇥

IQ 0

⇤T with 0 the zero-matrix. Assuming avail-
ability of an activity detector, node k can estimate R

ũ

(i)
k ,ũ

(i)
k

during segments in which the sources in dk are active (sig-
nal+noise segments) and R

ñ

(i)
k ,ñ

(i)
k

during segments in which
the sources in dk are not active (noise-only segments). As
a result, under short-term assumptions on the ergodicity and
stationarity of the involved signal components, node k can
estimate R

ũ

(i)
k ,dk

and update f

W

(i)
k (see (6)). As explained

in [3], a subset of the coefficients in f

W

(i)
k are copied to

the compressor matrix F

(i)
K at every iteration. Under some

technical conditions, the resulting distributed LMMSE- or
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Fig. 7. High-level block scheme of a generic algorithm for distributed
node-specific parameter estimation over a diffusion WSN. Solid black lines
denote the wireless cooperation links among nodes with different parameter
estimation interests {qo

t

}, each with a global (e.g., qo

T

), common (e.g., qo

t

)
or local (e.g., qo

1) area of influence.

MWF-based NSSE algorithm can then be shown to obtain
the centralized node-specific estimates ˆ

dk at each node [3].

B. Distributed node-specific parameter estimation

In the case of distributed node-specific parameter estimation
(NSPE), the goal is to extract different node-specific param-
eters {wo

k}Kk=1, such as the location of sources with respect
to each node, the state of buses in a power grid, etc. To do
so, each node k locally processes its sensor data {dk,i,Uk,i},
which is related to the unknown vector of parameters of node
k, i.e., wo

k, as follows:

dk,i = Uk,iw
o
k + vk,i (10)

where, for each time instant i,
- dk,i and Uk,i are zero-mean random variables with

dimensions Lk ⇥ 1 and Lk ⇥Mk, respectively,
- vk,i denotes the random noise vector with zero mean

and covariance matrix Rvk,i of dimensions Lk ⇥Lk, and
independent of Uk,i for all k and i.

Note that we use a slightly different notation compared to the
previous subsection to be consistent with the distributed NSPE
literature. As opposed to distributed NSSE algorithms, dis-
tributed NSPE algorithms usually do not have any constraints
on the network topology, except for the fact that the network
should be connected. In the sequel, the set of nodes that are
linked to node k is denoted as Nk, which includes node k
itself.

Unlike in traditional single-task WSNs (e.g., see [63] -
[69] and references therein), in multi-task WSNs the nodes
simultaneously estimate different but inter-related parameters
{wo

k}Kk=1. For instance, as considered in several works (see
e.g., [36], [39], and [57] - [59]) the node-specific parameter
vector of each node k is defined as

w

o
k = col{qo

t}t2Ik (11)

where the sets {Ik} are partially overlapping with each other
and where Ik denotes the subset of parameter vectors {qo

t}t2I
that are within the interest of node k with I denoting the sets
of all tasks of the network and with q

o
t equal to a parameter
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vector associated with the estimation task t. Due to the partial
overlapping among the sets {Ik}, notice the node-specific
parameter vectors {wo

k}Kk=1 are coupled through the parameter
vectors {qo

t}, each related to a phenomenon with a global,
common or local area of influence if it is present in all, some
or one node-specific vector of parameters, w

o
k, respectively.

Moreover, notice that the observation model of each node k
can be rewritten as follows

dk,i =

X

t2Ik

Ukt,iq
o
t + vk,i (12)

where Ukt,i, equals a matrix of dimensions Lk⇥Mt that con-
sists of the columns of Uk,i associated with q

o
t . Furthermore,

the aggregated estimation problem is usually defined as

argmin

{wk}K
k=1

(

K
X

k=1

Jk(wk)

)

(13)

where Jk(·) denotes the regressor-based cost function asso-
ciated with the estimation problem of node k. For instance,
Jk(·) can correspond to the minimum mean square error cost
function, i.e.,

Jk(wk) = Ekdk,i �Uk,iwkk2, (14)

which can be re-written as

Jk({qt}t2Ik) = Ekdk,i �
X

t2Ik

Ukt,iqtk2 (15)

based on (12). Unlike in the signal estimation problems in
Subsection III-A, in addition to the input local regressor Uk,i,
the system response dk,i is part of the local sensor data
from which node k extracts the desired regression parameter
vector wk. Moreover, as opposed to (3), note that wk only
operates on the local sensor data uk,i rather than on the
network-wide stacked input data vector across all nodes. As
a result, rather than exchanging compressed sensor signals to
perform in-network spatial filtering, each node k now only
exchanges local estimates of the parameter vectors qt that are
then combined and re-estimated after time-recursion i and that
vary at a slow time-scale as compared to the sampling rate of
the sensor signals.

Recent works on distributed NSPE can be classified into
three different categories (see Table I). The first category
consists of algorithms that adopt techniques following a con-
sensus approach. In brief, based on optimization techniques
such as the alternating-direction method of multipliers, these
consensus-based algorithms aim at forcing the nodes to reach
an agreement on the estimates associated with their shared
parameter estimation interests. Some interesting applications
of this kind of algorithms can be found in the context of
distributed PSSE [28], [38]. The second and third category
are composed of distributed parameter estimation algorithms
that rely on novel multi-task extensions of a particular adaptive
filtering technique under different modes of cooperation, i.e.,
incremental and diffusion, respectively. Under the so-called
incremental mode of cooperation, at each time instant i the
data {dk,i,Uk,i} are processed in a cyclic manner throughout
the network. By doing so, based on filtering techniques such as

multiple error filtered-x Least Mean Square (MEFxLMS) [16],
Least Mean Squares (LMS) [36] and Recursive Least Squares
(RLS) [37], the network can solve a NSPE problem where
the nodes have arbitrarily different but partially overlapping
parameter estimation interests.

As compared to the incremental mode, better reliability and
continuous learning can be achieved at the expense of an
increased energy consumption in the well-established diffusion
mode of cooperation. In this case, unlike the incremental algo-
rithms, under a diffusion mode of cooperation the estimation of
a vector of parameters is undertaken by minimizing bottom-up
definitions of optimality that approximate the solution of (13)
attained by a central unit processing all the sensor signals. In
particular, as shown in Fig. 7 for a setting with NSPE interests,
to estimate a vector belonging to Ik, each node k basically
performs two steps, i.e. the adaptation and the combination
step (see e.g., [39], [57], [58]).

In the adaptation step, at time instant i a node k obtains an
intermediate local estimate  (i)

k,t of a vector of parameters q

o
t

by processing the local data {dk,i,Uk,i} and taking a small
step in the direction of

\r
qtJk({�

(i�1)
k,t }t2Ik) (16)

where �(i�1)
k,t denotes the most recent local estimate of q

o
t

at time instant i � 1 and node k and where \r
qtJk(·) is

the stochastic approximation of the gradient of Jk(·) with
respect to qt with t 2 Ik. For instance, considering the LMS
approximation [39] of the gradient of Jk(·), the adaptation
step associated with the estimation of the parameter vector qo

t

is

 (i)
k,t = �

(i�1)
k,t + µk U

H
kt,i

2

4

dk,i �
X

p2Ik

Ukp,i�
(i�1)
k,p

3

5 (17)

with µk > 0 equal to a suitably chosen positive step-
size parameter4. In contrast to diffusion-based algorithms for
single-task WSNs [67], all the parameter estimation tasks at a
node k are coupled through the observation model (12). Due
to this coupling, the gradient of Jk({qp}p2Ik) with respect to
qt also depends on the parameter vectors {qp}p2Ik (see (15)).
As a result, the adaptation step associated with the estimation
of q

o
t is dependent on the local estimates of {qo

p}p2Ik at
node k and time instant i � 1, i.e., {�(i�1)

k,t }t2Ik . From this
dependency, it can be clearly noticed that the accuracy when
estimating one parameter vector qo

t can have an impact on the
accuracy attained when estimating another parameter vector
q

o
p with p 6= t [39].

After the adaptation step, to obtain a local estimate �(i)
k,t

of q

o
t at time instant i and task t 2 Ik, in the combination

step each node k linearly fuses  (i)
k,t and all the intermediate

estimates for estimation tasks p 2 I` at each neighboring node
` 2 Nk. In particular, for this step and each task t 2 Ik, as

4See [37] for details concerning the selection of the step-size µ
k
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shown in Fig. 7 each node k performs

�(i)
k,t =

X

`2Nk

X

p2I`

ak`,tp(i) 
(i)
`,p (18)

where
n

{ak`,tp(i)}p2I`

o

`2Nk

denote convex combination co-
efficients, i.e, ak`,tp(i) � 0 and

P

`2Nk

P

p2I`
ak`,tp(i) = 1.

Note that ak`,tp(i) is preferably equal to zero if t 6= p,
i.e., parameter vectors corresponding to different tasks should
not be fused. Depending on how much prior information is
available, two major sub-categories of diffusion-based NSPE
algorithms can be identified, i.e., supervised and unsupervised
diffusion-based NSPE algorithms.

Supervised diffusion-based NSPE algorithms consider that
each node k knows a priori the relationship between its
estimation tasks Ik and the estimation tasks of each of its
neighbors, I` with ` 2 Nk. For instance, in [39] this prior
information is leveraged to only combine local estimates of
the same task at neighboring nodes, i.e., to set ak`,tp(i) = 0 if
t 6= p, which yields asymptotically unbiased solutions.Similar
prior information is leveraged by different diffusion-based
algorithms that apply different spatial regularizers to let each
node solve its estimation task by using the local estimates of
neighboring nodes with numerically similar (not necessarily
the same) estimation interests [40]- [47].

In the ’blind’ case without such prior knowledge, combining
local estimates associated with different tasks usually intro-
duces a bias, which can result in a worse performance than
a non-cooperative approach (see [47], [49], [70]). To avoid
this, unsupervised diffusion-based NSPE algorithms integrate
adaptive clustering techniques into the inference process.
These clustering techniques allow the nodes to infer which of
their neighbors have the same interest and which parameters
have to be combined. Since some of these works [49] -
[53] assume that there is either complete or no overlap,
i.e., either Ik = I` or Ik \ I` = ;, the cooperation is
limited to nodes that have the same objectives. This will then
split the WSN in disconnected and independent sub-networks
once the nodes have inferred the relationship between their
estimation interests. To extend these results to a setting where
the nodes cooperate even when they have different interest,
recent works propose diffusion-based LMS algorithms that
solve an unsupervised version of the NSPE problem consid-
ered in [36] and [39]. Towards this goal, some algorithms
determine the convex coefficients of the combination step by
solving suitably defined hypothesis testing problems [57] or
by minimizing an instantaneous approximation of the mean-
square deviation (MSD) attained by each node for each of
its parameter estimation tasks [58]. Alternatively, assuming
that the NSPE interests share a large number of components,
the aforementioned NSPE problem is solved by relying on
appropriate sparsity-based co-regularizers [48], [59].

IV. MAIN CHALLENGES

Although most of the applications in Section II are covered
by either the distributed NSSE or NSPE frameworks in Section
III, each of these applications or problem statements has
different constraints/assumptions and requires the design of

specialized algorithm pipelines with unique properties, which
brings a wide range of challenges. In this section, we describe
the main challenges related to the design of such MDMT
algorithm pipelines.

A. Top-down vs. bottom-up in-network processing
In-network processing is usually envisaged such that the

sensor signals collected by the devices are jointly processed
by the devices (inside the network), rather than in a central
processing unit, which is often unfeasible due to the large
amount of generated data. Due to the nature of MDMT
systems, i.e., composed of several devices with different SP
tasks and different observation models, in most cases, there
exist no in-network fusion rules that are both scalable with
the network size and also let the devices attain the centralized
performance in their SP tasks. Indeed, as shown in [30]
and [31], this is highly dependent on how the solutions of
the different SP tasks are inter-related. As a result, the in-
network processing rules of MDMT-systems cannot usually be
designed by following a top-down approach, which consists in
distributing the processing of the different network-wide SP
tasks among a set of dedicated devices. Instead, the design
of the in-network processing rules needs to be based on a
bottom-up approach that determine how many and which
signals need to be exchanged among neighboring devices of an
MDMT system in order to maximize their performance in their
different SP tasks. In order to obtain in-network processing
rules that allow to solve all the node-specific SP tasks and
whose communication complexity is scalable with the network
size and meets the available communication resources, such a
bottom-up approach does not necessarily aims for centralized
optimality. However, it ensures that the devices attain better
performance as compared to the case where the devices
solve their SP tasks by exchanging the sensor signals in an
uncontrolled or suboptimal fashion, e.g., by sharing (a subset
of) their raw sensor signals or using generic compression algo-
rithms that are not taking the different SP tasks into account.
Such a (sub-optimal) generic approach would then constitute
a lower bound benchmark for such bottom-up algorithms, in
addition to the upper bound benchmark based on offline or
top-down coordinated algorithms that achieve Pareto-optimal
solutions over MDMT networks.

B. Heterogeneous observation models
Most of the existing algorithms for distributed NSSE as-

sume that all the devices both estimate and observe the
full R-dimensional latent desired signal subspace spanned by
{dk}Kk=1, i.e., the sensors of each individual device observes
all R underlying latent sources, and each individual node-
specific signal dk consists of a mixture in which all R latent
source signals appear with a non-zero weight. However, in
many heterogeneous and multi-task WSNs, these assumptions
are not satisfied. For instance, due to the attenuation of
an acoustic signal when it propagates through air, micro-
phones that are far away from the source may not observe
it, hence each device may observe different subsets of the
R underlying desired sources. In this setting, it has been
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shown that most of these NSSE algorithms cannot attain the
corresponding centralized solution [2], [7]. Motivated by this
fact, [2], [8] propose distributed NSSE algorithms to attain
the centralized performance over a setting where any of the
two aforementioned assumptions may not hold. Nonetheless,
these algorithms are suboptimal with respect to the number of
signals that each device has to broadcast to let all the devices
attain the centralized performance. As a result, extra research
efforts are needed to derive theoretical compression bounds
and to design distributed NSSE algorithms that achieve higher
compression rates, while still obtaining the centralized solution
of the NSSE problems.

Unlike the distributed algorithms for NSSE, there exist
several works addressing the design of distributed algorithms
for NSPE where the sensor signals may depend on different
overlapping sets of parameter vectors. However, there exist
very few results that study the convergence of the existing
NSPE algorithms when some of their working assumptions
are not met. Within this category, the authors in [54] charac-
terize the convergence point of the single-task diffusion LMS
algorithm [67] when it is applied in a multi-task environment.
In particular, it is shown that the diffusion LMS algorithm [67]
converges to a Pareto-optimal solution for the multi-objective
cost function corresponding to a distributed estimation prob-
lem where the local cost function of each device Jk(·) has
a different minimizer. Similarly to the previous result, it is
of great value to determine the convergence point of the
diffusion-based NSPE algorithm [39] when the devices inten-
tionally or erroneously fuse local estimates associated with
different vector of parameters. Furthermore, since many other
NSPE algorithms are applied in various applications such as,
e.g., distributed node-specific ANC and PSSE (see Section II),
similar convergence studies have to be undertaken to charac-
terize the performance limits of these MDMT applications.

C. Basic principles of cooperation in multi-task WSNs
Unlike in most systems, the devices in an MDMT system

may have competing interests. For instance, in the context
of distributed speech enhancement, a specific source may be
desired for one device, but at the same time an interferer
for another device. Other interesting example can be found
in the context of distributed cooperative spectrum sensing. In
this case, selfish SUs want to minimize their communication
cost and maximize their performance when estimating the
aggregated spectrum of PUs. As a result, selfish SUs are
not willing to share their local estimate of the aggregated
spectrum of PUs in order to minimize their communication
cost. At the same time, notice that selfish SUs would like
other SUs to share the local estimates of the aggregated
spectrum of PUs in order to maximize the quality of their
own estimates. In the same context, by exchanging noisy
local estimates of their aggregated spectrum, some malicious
SUs may want to mislead other SUs and prevent them from
correctly estimating their aggregated spectrum of the PUs. In
this way, malicious devices aim to have privileged access to
the available resources, i.e., the unoccupied frequency bands.

In the absence of incentives or a proper action detector, the
cooperation strategy adopted by the devices of the network

may correspond to an inefficient Nash equilibrium where self-
ish devices select non-cooperative actions and where malicious
devices take actions that aim to harm the performance of the
other devices in order to achieve some specific benefit (e.g.,
privileged access to some resource). This Pareto inefficiency
arises due to the fact that a device k does not have access to
past data to predict the future actions of the paired devices
and, therefore, know if its paired device will reciprocate its
honest actions. To avoid this inefficiency and stimulate honest
cooperation among devices with competing interests, game
theoretical tools need to be employed. Furthermore, since
some devices might be selfish and malicious, trust schemes
based on game theory should be implemented to disallow
selfish and malicious behaviour.

To stimulate the cooperation among devices of different
types, (i.e., honest, selfish or malicious), both coalitional and
non-cooperative game theory can be employed. Coalitional
game theory seeks for optimal coalition structures of devices
in order to optimize the utility of each coalition. Coalitional
game models have been employed in wireless networks, but in
most cases from a layered perspective. In particular, coalitional
games have been used to model MAC schemes in wireless
networks, to obtain solutions for resource allocation, power
control, and to stimulate cooperation amongst devices [71]-
[73]. In the context of distributed and adaptive in-network
processing, most studies have focused mainly, although not
exclusively, on non-cooperative game theory. In this case,
cooperation among single devices is stimulated by employing
reputation mechanisms where an device’s action history is
summarized into a single value, referred to as reputation [74]-
[76]. However, such studies have been carried out under major
restrictive assumptions. Some common assumptions are that
the network is slowly varying (or static), that perfect/complete
information is available about the actions of other devices and
that the devices are fully rational, show either honest or selfish
behaviour and are interested in the same SP task.

Due to these restrictive assumptions in the existing ap-
proaches, their applicability in MDMT systems is rather lim-
ited. Recently, for non-cooperative game theory, [77] has con-
sidered settings with imperfect information about the action
of the devices and where the devices can exhibit a malicious
behaviour. Furthermore, some other works have performed a
coalitional game analysis for distributed in-network processing
over adaptive and multi-task WSNs [78], [79]. In spite of these
recent and promising results, the application of game theory
in the context of MDMT systems is still in its infancy, and
many challenges need to be solved. In particular, to prevent
the MDMT systems from adopting cooperation strategies that
are Pareto inefficient, future research efforts should be focused
on the design of reputation scores that summarize the action
of the different devices in each one of the different SP tasks
of network. Since it is unrealistic to assume that the devices
of an MDMT system have perfect information about the
type and actions undertaken by their neighbors, the design of
the reputation scheme will need the development of efficient
detectors that let each device of the network determine the
type of action (honest, selfish or malicious) undertaken by
its neighboring devices. Notice that the development of these



PLATA-CHAVES ET AL.: MULTI-TASK WIRELESS SENSOR NETWORKS 11

detectors is highly challenging and it contrasts many works
in the trust literature that either assume observable actions or
that some monitoring mechanism exists allowing perfect action
detection [80].

D. Distributed multi-source detection and labeling
In multi-task WSNs, the sensor signals typically arise from

multi-source observation models. As a result, to let the devices
collaborate with each other and, e.g., improve the estimation
of their node-specific desired signals or parameters, distributed
labeling and detection algorithms should be developed in order
to detect and label the sources (signals or parameters) of inter-
est for the different devices. For instance, to exploit the ON-
OFF behavior of speech signals in a distributed NSSE setting,
a multi-source voice activity detection (VAD) algorithm is
needed to detect the activity pattern of the different speech
sources present in an acoustic scenario [2] - [3]. Furthermore,
the devices should agree on a specific label for each speech
source in order to communicate to each other which sources
they are (not) interested in.

By relying on the mature field of information theory and
pattern recognition, the design and analysis of distributed de-
tection schemes have been extensively undertaken for single-
task WSNs where all devices cooperate to detect one single
source (see e.g., [81] - [84]). However, very little is known
about their extension to multi-task WSNs. In this kind of
networks, note that the source to be detected by one device
can act as an interferer for the detection of another source in
another device. As a result, in a multi-task network the devices
have different but inter-related detection problems that need to
be simultaneously and cooperatively solved. Toward this goal,
the design of detection schemes for multi-task WSNs requires
a novel framework for multi-source detection. Unlike the bi-
nary nature of the distributed detection algorithms that operate
over single-task networks, this novel framework need to rely
on cooperative schemes that solve multiple hypothesis testing
problem where each hypothesis corresponds to the presence
of a specific subset of the sources coexisting in the network.
Notice that efficient but possibly suboptimal methods need to
be proposed to solve the aforementioned multiple hypothesis
testing problems, which become analytically intractable when
the number of hypothesis is big. Furthermore since it is
required to distinguish between two or more (possibly simul-
taneous) source detections, it is of paramount importance to
also design distributed labeling schemes that assign a network-
wide label to each source. One popular approach consist
in identifying the sources from low-complexity features. For
instance, based on diffusion-like classification techniques such
as K-means, expectation maximization etc., several distributed
algorithms [85] - [89] have been proposed to process source-
specific features and solve the multi-source labeling problem
in multi-task WSNs in an audio/video context. Nevertheless,
further studies are still required to obtain robust distributed
labeling algorithms that can operate in adverse scenarios. In
this context, the current and main challenge is to derive the
distributed labeling algorithms for MDMT systems where the
noise can deviate from a nominal environment or where the
noise statistics can be completely unknown.

E. Communication constraints

In an MDMT system, the most power-hungry aspect in the
cooperation among the devices is usually the data communi-
cation over wireless links. This is especially true if the devices
have to share multimedia signals, which typically have high
data rates. Hence, the cooperation among the devices is often
subject to some communication constraints. As a result, it is
of great value to design distributed schemes whose in-network
processing rules allow to reduce the communication, without
significantly compromising the benefits of cooperation.

Based on different techniques such as partial updating, dic-
tionary learning, censoring or quantization, some distributed
schemes have been designed to trade-off estimation accuracy
and energy consumption of the devices for single-task net-
works where all the devices are interested in the same SP
problem [90]- [96]. Furthermore, a few works have extended
the previous techniques to multi-task WSNs solving differ-
ent distributed node-specific signal and parameter estimation
problems [43], [97]- [99]. Nonetheless, further research is
required in this field. For instance, the existing distributed
node-specific estimation algorithms need to incorporate novel
mechanisms that let each device determine in which of its tasks
the communication cost or the cooperation with other devices
can be reduced with a minimal degradation of the estimation
accuracy.

F. Privacy constraints

Besides communication constraints, in the context of some
monitoring applications such as PSSE [28] or data mining
tasks over social networks [100], the cooperation among the
devices can also have some privacy constraints on the collected
and shared information. To ensure these privacy constraints,
each device will aim at protecting its private data so that other
devices cannot reconstruct it [101]. Currently, for both the
signal and parameter estimation case, there exist techniques
that can be integrated into the in-network processing rules
of different algorithms to let the devices cooperate with each
other while preserving the privacy in the exchanged data (e.g.,
see [102] - [105]). However, most of them assume a single-task
setting. In a multi-task WSN, one of the very few attempts pre-
serving some privacy can be found in the algorithms proposed
in [28] and [36] - [39]. These algorithms can achieve better
performance than the corresponding non-cooperative solutions
when solving the different parameter estimation tasks, which
can be of global, common or local interest depending on the
area of influence of the corresponding phenomena. However,
to do so, the proposed algorithms do not require the devices
to exchange the estimates associated with the vectors of local
parameters, which can be considered as private. Nevertheless,
in other multi-task WSNs, there can be privacy constraints
on the information that the devices need to share in order
to enhance or even solve their different signal or parameter
tasks. As a result, further studies need to be undertaken to
integrate some of the privacy preserving techniques into the
novel distributed algorithms for multi-task WSNs.
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G. Bayesian filtering techniques in multi-task networks
To solve distributed estimation problems over multi-task

WSNs, the design of the existing algorithms has mainly
relied on low-complexity linear estimation techniques (see
Table I). However, in many of the inference problems that
arise in these networks (e.g. tracking of multiple targets
from power measurements), the sensor signals of a device
are not linearly related to its signal or parameter estimation
interests. Additionally, as usually happens in the context of
big data, the relationship between the sensor signals and
the variables (signals or parameters) of interest cannot be
easily parametrized. In this setting, the distributed algorithms
based on linear estimation techniques or a parametric model
can experience a strong performance degradation. To avoid
this, the design of more general distributed algorithms is
needed. Bridging this gap, a diffusion-based Bayesian filtering
method [106] and a cooperative Markov chain Monte Carlo
(MCMC) algorithm [107] have been recently proposed to
solve a NSPE problem where each device is simultaneously
interested in estimating two parameter vectors, one of local
interest and another of global interest. Nonetheless, very little
is still known about the multi-task extension of the many
parallel MCMC, sequential Monte Carlo or variational filtering
methods (e.g., [108] - [113]) that were designed for single-task
WSNs where all the devices have the same estimation interest.
Nevertheless, taking into account that these novel algorithms
constitute one of the key elements for the future development
of multi-task SP, further research efforts are expected.

H. Other challenges
In addition to the previous challenges, the design of appli-

cations for heterogeneous and multi-task WSNs requires to
address some general problems that are also present in the
traditional single-task WSNs. Among them, possibly the three
most relevant problems are described in the following

1) Topology inference and control: Heterogeneous multi-
task WSNs generally consist of many heterogeneous devices
with an a priori unknown ad-hoc topology where the position
of the devices is not known. However, their performance is
highly dependent on the topology of the network [114], [115],
even more so than in traditional single-task networks. As a
result, distributed algorithms for topology inference and con-
trol are of paramount importance, e.g., to identify topological
opportunities that enhance the performance of the distributed
algorithms designed for MDMT systems. For example, in
[115], distributed topology inference algorithms are proposed
for node clustering, cluster head selection, network prun-
ing/growing, etc., based on a distributed computation of the
Fiedler vector [116] or eigenvector centrality measures.

2) Sampling rate offsets: In a heterogeneous ad-hoc WSN,
devices operate at different nominal sampling rates and have
local clocks. Even devices with the same nominal sampling
rate may sample at slightly different rates due to imperfections
in the local clocks. As a result, there will be sampling rate
mismatches between sensor and exchanged signals, which may
significantly affect the performance of coherent SP techniques
as used in many traditional distributed estimation and detection

algorithms. Although there already exist several compensation
algorithms (see e.g., [117], [118] and references therein),
further research is needed. In particular, the integration of
these algorithms into the different distributed node-specific
algorithms for signal or parameter estimation is still an open
problem.

3) Device/link failure: Most of the existing works address-
ing signal processing problems multi-task WSNs assume that
all devices cooperate with each other synchronously at peri-
odic time intervals. However, in many practical applications
the cooperation among the devices may be asynchronous
since their operation might be subject to different sources
of uncertainty. Some common examples of these sources of
uncertainty are changing topologies due to the mobility of
the devices, link failure due to errors in the communication
between (possibly moving) devices, and devices turning on
or off due to a malfunctioning at the device or the use of
probabilistic censoring schemes [119] - [123]. There are
also some insightful studies that analyze the performance of
distributed multi-task estimation algorithms in the presence
of these sources of uncertainty [4], [44], [45], although the
literature is much less extensive for the multi-task case, despite
the fact that these sources of uncertainty are expected to be
even more present in MDMT systems. In addition to analyzing
the performance of existing MDMT-based algorithms over
networks with the presence of the aforementioned sources of
uncertainty, it is even more important to address the design of
algorithms that are robust to them.

V. CONCLUSIONS

In this paper, we have described some applications that
can benefit significantly from using heterogeneous and multi-
task WSNs where multiple heterogeneous devices cooperate to
simultaneously solve different signal processing tasks. More-
over, we have given a general overview of the state-of-the-art
and discussed remaining open problems related to the design
of distributed signal processing techniques for node-specific
signal or parameter estimation. Finally, we have examined the
main challenges that need to be addressed when designing
heterogeneous and multi-task WSNs.
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