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ABSTRACT
The linearly constrained minimum variance (LCMV) beam-
former has been widely employed to extract (a mixture of)
multiple desired speech signals from a collection of micro-
phone signals, which are also polluted by other interfering
speech signals and noise components. In many practical ap-
plications, the LCMV beamformer requires that the subspace
corresponding to the desired and interferer signals is either
known, or estimated by means of a data-driven procedure,
e.g., using a generalized eigenvalue decomposition (GEVD).
In practice, however, it often occurs that insufficient relevant
samples are available to accurately estimate these subspaces,
leading to a beamformer with poor output performance. In
this paper we propose a subspace projection-based approach
to improve the performance of the LCMV beamformer by ex-
ploiting the available data more efficiently. The improved
performance achieved by this approach is demonstrated by
means of simulation results.

Index Terms— LCMV beamforming, generalized eigen-
value decomposition, subspace estimation, speech enhance-
ment, noise reduction.

1. INTRODUCTION

Sensor arrays allow space-time signal processing which often
improves the performance of parameter- or signal-of-interest
estimation, when compared with single-sensor based estima-
tion [1, 2]. In audio and speech enhancement applications,
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microphone arrays have been widely used [3]. A common
problem is to extract (a mixture of) multiple desired speech
signals from the microphone signals, which are also polluted
by other interfering speech signals and noise components. To
solve this problem, one can use a so-called beamforming ap-
proach [4]. A well-known approach is linearly constrained
minimum variance (LCMV) beamforming which aims at min-
imizing the total power of the beamformer output, under a set
of linear constraints that control the array beam pattern such
that the signals coming from the desired directions remain
undistorted while signals coming from the interfering direc-
tions are rejected [4].

Basically, there are two main classes of LCMV beam-
formers. The first class assumes that each individual room
impulse response (RIR) (or equivalently acoustic transfer
function (ATF)) between each source and each microphone is
known [5]. In this case, the LCMV beamformer will estimate
the mixture of desired source signals (that have not yet been
distorted by the RIRs). The second class deals with cases
where the RIRs are not known a priori and hence have to
be estimated on the fly based on statistical properties of the
microphone signals. This class is often referred to as blind
LCMV beamforming [5, 6]. In practice however, estimating
individual RIRs may not be straightforward, as it is usually
required that there are sufficient signal segments in which
only one of the sources is active, i.e., for each of the individ-
ual desired and interfering sources [7]. In [5, 6], the authors
proposed a beamforming framework in which the unknown
ATFs of the desired and interfering sources are replaced by re-
spective bases for the desired sources and interfering sources
subspaces spanned by the columns of the true ATFs. The
resulting response then estimates the mixture of the desired
source signals as observed by an arbitrarily chosen reference
microphone and suppresses the interfering source signals. In
this paper we consider such an LCMV beamformer for which
the desired sources and interfering sources subspaces must be
estimated based on the microphone signals.

To estimate the desired sources and interfering sources
subspaces, an eigenvalue decomposition- (EVD-) based ap-



proach can be used (as in [8]). However, a generalized EVD
(GEVD-) based subspace estimation is better suited for sce-
narios with spatially correlated noise, as it directly incorpo-
rates the estimated noise covariance matrix such that each re-
sulting subspace estimate is aimed to have the highest output
signal to noise ratio (SNR) [9, 10].

For the estimation of the desired sources and interfering
sources subspaces, in practice we must first construct the
relevant sample covariance matrices based on the time seg-
ments during which only the desired or interfering sources
are active, namely ‘desired-sources-only’ and ‘interfering-
sources-only’ segments, respectively. This procedure in prac-
tice requires a voice activity detector (VAD) that is able to
distinguish between such segments (e.g., as in [11]). Note
that in this way the samples from the segments during which
both the desired source(s) and the interfering source(s) are
simultaneously active will be discarded for the estimation of
the individual subspaces. In practice, however, it often hap-
pens that insufficient ‘desired-sources-only’ and ‘interfering-
sources-only’ samples are available to accurately estimate
these individual subspaces. In this paper we propose a sub-
space projection-based approach which improves the output
performance of the blind LCMV beamformer based on the
projection of the individual subspace estimates onto the joint
signal subspace of all the desired and interfering sources
present in the environment. Basically, the motivation be-
hind this is the fact that now all segments can be involved
for the estimation of the joint signal subspace (except for
‘noise-only’ segments). Hence the accuracy and tracking per-
formance of this joint subspace estimation is expected to be
higher compared to the individual subspace estimates.

2. DATA MODEL AND PROBLEM STATEMENT
We consider a microphone array with M microphones, in
which the captured signal at microphone m, m = 1, . . . ,M
can be described in the frequency domain as

ym(ω) = dm(ω) + im(ω) + nm(ω) (1)

where dm(ω) is the desired source signals component and
im(ω) is the interfering speech signals component, and where
nm(ω) denotes the additive noise component which includes
both spatially correlated and uncorrelated noise contributions.
Although im(ω) can also be considered as noise, it is not in-
cluded in nm(ω), because we aim to control the suppression
of the interferers, possibly targeting a complete removal. In
(1), ω is the discrete frequency-domain variable where the
resolution is defined by the discrete Fourier transform (DFT)
of size L. For the sake of brevity, ω will be omitted in the
sequel. We assume that there are Nd desired speech sources,
and Ni interfering speech sources and that these numbers are
known (although they could also be estimated in practice).
Hence dm =

∑Nd

d=1 admsd and im =
∑Ni

i=1 aimsi, where
adm and aim denote the ATFs from the desired speech source
sd and the interfering speech source si to microphone m, re-
spectively. The stacked version of all microphone signals is

represented as

y = Adsd + Aisi + n , d + i + n (2)
where Ad = [ad1

. . .adNd
], Ai = [ai1 . . .aiNi

] are M ×Nd

and M ×Ni steering matrices, respectively, with ax denoting
the RIR (ATF) from the source x to the microphone array. In
(2), sd and si are stacked signal vectors containing theNd de-
sired speech source signals and Ni interfering speech source
signals, respectively.

In this paper we consider the problem of extracting the
mixture of the desired speech signals as it is observed at
the reference microphone, from the noisy microphone sig-
nals y and with an LCMV beamformer. This extraction is
assumed to be carried out in scenarios where insufficient
‘desired-sources-only’ and ‘interfering-sources-only’ sam-
ples are available to accurately estimate the individual sub-
spaces spanned by the columns of Ad and Ai, respectively.

3. LCMV BEAMFORMING

LCMV beamforming in general applies a linearM -dimensional
estimator w to theM -channel signal y to estimate the desired
signal d̄ = wHy, where H denotes the conjugate transpose
operator, and where overline (̄.) denotes the estimate. To de-
sign an LCMV beamformer that estimates the unreverberated
source signals sd, the steering matrices Ad and Ai have to
be known [5]. When instead of estimating sd the aim is to
estimate mixture of the desired speech signals as captured
by the reference microphone, a modified LCMV beamformer
can be designed which requires only estimates ofQd andQi,
where Qd is an M ×Nd matrix at which the columns define
a unitary basis for the desired sources subspace spanned by
the columns of Ad, and whereQi is anM×Ni matrix where
its columns define a unitary basis for the interfering sources
subspace spanned by the columns of Ai [5, 6]. The resulting
LCMV problem can be expressed as [6]

min
w

E{|wHy|2} (3)

s.t. QHw = f (4)

where Q , [Qd Qi], and where f is the vector of desired re-
sponses defined as f = [qT

d 0]T where qd is the j-th column
of QH

d , with j denoting the reference microphone. In the se-
quel and without loss of generality (w.l.o.g.), we assume that
the first microphone is chosen as the reference microphone,
i.e., j = 1. The solution of (3)-(4) is then given by

w = R−1
yyQ(QHR−1

yyQ)−1f . (5)
Note that (5) has to be computed for each frequency bin sep-
arately. The resulting output signal, namely d̄ref, can be then
described as d̄ref = wHy =

∑Nd

d=1 ad1sd + ŵHn, which
verifies the fact that this solution estimates the mixture of the
desired speech signals as captured by the first microphone,
while fully cancelling the interfering speech signals and while
suppressing the ambient noise as much as possible [6].



To estimate Qd and Qi based on the microphone signal
y in (2), we first define the following source-activity-based
correlation matrices:

Rd
yy = AdΠdA

H
d + Rnn (6)

Ri
yy = AiΠiA

H
i + Rnn (7)

where Πd = diag{Pd1 . . . PdNd
} and Πi = diag{Pi1 . . . PiNi

},
with Px being the power of x-th source signal, and where
Rnn = E{nnH}. Note that in practice the correlation matri-
ces Rd

yy and Ri
yy can be estimated via sample averaging over

the ‘desired-sources-only’ and ‘interfering-sources-only’ seg-
ments, respectively, requiring an oracle algorithm that can
distinguish between these segments [5, 6]. An EVD-based
approach can then be used to estimate the subspaces (e.g.,
as in [5, 6, 8]). In [5, 6], the authors proposed a procedure to
choose a set of Nd and Ni eigenvectors (EVCs) of Rd

yy and
Ri

yy that span the same subspace asQd andQi, respectively.

4. PROJECTION-BASED SUBSPACE ESTIMATION

The estimation ofQd andQi, as explained in Section 3, may
yield poor results if (6) and (7) can not be accurately esti-
mated, e.g., when there are insufficient ’desired-sources-only’
and/or ’interfering-sources-only’ segments or samples avail-
able. Indeed, in the procedure described in Section 3, a large
part of the data is not used, namely the signal segments in
which desired and interfering sources are simultaneously ac-
tive. In this section, we propose a method which also exploits
these signal segments, which leads to an improved speech en-
hancement performance.

Here we employ a GEVD-based subspace estimation al-
though a similar strategy can be used for other subspace es-
timation techniques. Define Xd and Xi as M ×M matrices
containing the generalized EVCs (GEVCs) of the ordered ma-
trix pair (Rd

yy,Rnn) and (Ri
yy,Rnn), respectively, in their

columns. Note that Rnn can be estimated from the ‘noise-
only’ segments when all the desired and interfering speech
sources are inactive. We assume (w.l.o.g.) that 1) the GEVCs
are sorted such that their corresponding generalized eigenval-
ues (GEVLs) are sorted in descending order 2) the GEVCs are
scaled such that XHRnnX = IM . Now let Qd = (Xd)−H

and Qi = (Xi)
−H . It can then be verified that the first Nd

columns of Qd and the first Ni columns of Qi span the same
subspace asQd andQi, respectively [9].

As mentioned earlier, because of insufficient ‘desired-
sources-only’ or ‘interfering-sources-only’ segments,Qd and
Qi will be poorly estimated, which may often result in inad-
equate LCMV beamforming outputs. In such conditions we
propose the following subspace projection-based approach
such that the discarded samples associated with the segments
during which the desired and interfering sources are simulta-
neously active can also be exploited. Excluding the samples
of the ‘noise-only’ segments, all other segments are then used
to estimate

Rd,i
yy = AdΠdA

H
d + AiΠiA

H
i + Rnn. (8)

We now define Xd,i as the full-rank matrix containing
the GEVCs of the ordered matrix pair (Rd,i

yy ,Rnn). The
joint (Nd + Ni)-dimensional desired sources and interfer-
ing sources subspace Qd,i can then be defined as the first
(Nd +Ni) columns of the matrix Qd,i = (Xd,i)

−H .
Note that in theory, the columns of Qd,i and the columns

of [Qd Qi] span the same signal subspace. In practice how-
ever, because of the discrepancies between the data segments
based on which the correlation matrices (6)-(8) are estimated,
this does not hold anymore. This can be corrected by the
projection of the poorly estimated Qd and Qi onto the joint
subspace estimate Qd,i. Hence we define the projected indi-
vidual subspace estimates as

Q
proj
d , Qd,i(Q

T
d,iQd,i)

−1QT
d,iQd (9)

Q
proj
i , Qd,i(Q

T
d,iQd,i)

−1QT
d,iQi (10)

The subspace projection-based version of the LCMV beam-
former solution (5) can then be expressed as

wproj = (Rd,i
yy )−1Qproj(Q

H
proj(R

d,i
yy )−1Qproj)

−1fproj (11)

where Qproj , [Qproj
d Q

proj
i ] and where fproj , [qT

proj 0]T ,
with qproj being the first column of (Qproj

d )H . The actual out-
put of the beamformer (11), i.e., d̄proj = wH

projy, will be eval-
uated in the next section via simulation results.

5. SIMULATION RESULTS

In this section, the improved performance achieved by the
subspace projection-based LCMV solution (11) is demon-
strated by means of simulation results. For this goal, two
different scenarios are simulated. The first scenario assumes
multiple desired and multiple interfering sources in the enclo-
sure, with narrowband source signals. This scenario allows
us to easily perform Monte Carlo (MC) simulations to better
investigate the benefits of the proposed approach in different
conditions. The second scenario tests the proposed approach
for multi-talker speech enhancement where the desired and
interfering sources produce different speech signals (English
sentences).

5.1. Simulated scenario with narrowband source signals
A setup with different position of nodes and sources, and with
different narrowband source signals is considered in each MC
run. Further specifications of this scenario are as follows:
M = 10, Nd = 2, Ni = 3, total number of samples= 20000,
number of samples in which both desired and interfering
sources are active= 7000 and MC runs= 1000. Number
of available ‘desired-sources-only’ and ‘interfering-sources-
only’ samples, namely Nbonly, are assumed to be equal.
Nbonly is then varied from 1 to 5000 (see Figure 1). The
remaining 13000 − 2Nbonly samples are ‘noise-only’. All
desired and interfering sources have the same power P . The
noise consists of two randomly placed spatial noise sources
with power 0.5P , as well as uncorrelated noise on each sen-
sor which is 5% of the power of the first desired source as



Number of available desired-only  and interference-only samples
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

O
ve

ra
ll 

ou
tp

ut
 S

IN
R

 (
dB

)

5

10

15

20

25

30

Without projection
With projection

Fig. 1. MC results based on narrowband source signals

observed on the first sensor. The entries of the steering matri-
ces are independently drawn from a uniform distribution over
the interval [0.5; 0.5]. The same holds for the samples of all
the involved source signals, followed by a proper scaling to
modify their power. As a performance measure, we utilized
the output signal to interference plus noise ratio (oSINR) at
the reference sensor, defined as

oSNRI = 10 log10

E{|wHd|2}
E{|wH i|2}+ E{|wHn|2}

(12)

(expectations are taken over all frequency-time points). Fig-
ure 1 compares the output oSNRI of the proposed subspace
projection-based LCMV beamformer (11) to that of (5), as
a function of the number of available ‘desired-sources-only’
and ‘interference-sources-only’ samples. As can be seen, the
proposed approach significantly outperforms when insuffi-
cient ‘desired-sources-only’ and ‘interference-only’ samples
are available. Note that two figures eventually converge to
each other when sufficiently large number of relevant samples
are available.
5.2. Multi-talker speech enhancement
In this scenario we simulate a cubic room with dimensions
5m × 5m × 5m and with surface reflection coefficient β =
0.2 using the image method [12]. The RIRs were simulated
based on the modified version in [13]. A uniform linear mi-
crophone array consisting of M = 10 omni-directional mi-
crophones with inter-microphone distance of 5cm is consid-
ered where the center microphone is located at the position
[x = 2.5m, y = 1.5m]. A desired speech source, an interfer-
ing speech source and a babble noise source is located at [x =
1m, y = 2m], [x = 4m, y = 2m] and [x = 2.5m, y = 3.5m],
respectively. We use a sampling frequency of Fs = 16kHz, a
Hann-windowed DFT with size L = 512 and with 50% over-
lap. To avoid including the effect of VAD errors, we here use
an ideal VAD with the ability of distinguishing between the
desired and interfering speech sources. Both the desired and
interfering speech sources produce short sentences with the
same power Ps = Pi, with 7 seconds of overlapping activ-
ity and with some silence periods in between sentences (see
top plot of Figure 2). The power of the babble noise source
is 0.5Ps. An additional spatially uncorrelated noise compo-
nent at each microphone is simulated with a white Gaussian
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Fig. 2. Results based on a simulated room with speech signals

signal with 5% of the power of the desired speech signal
as observed at the first microphone. To evaluate the perfor-
mance, we again increase the number of available samples
in ‘desired-sources-only’ and ‘interfering-sources-only’ seg-
ments, varying from 0.1Fs to 7Fs. Besides oSINR, we here
also consider the output signal to distortion ratio (oSDR) at
the first microphone, defined as

oSDR = 10 log10

E{|d|2}
E{|d−wHd|2}

(13)

In the simulated scenario, input SNR≈ 9.5dB, input SIR≈
2.2dB and input SINR≈ 1.5dB, measured at the first mi-
crophone. The middle and bottom part of Figure 2 evaluate
the performance of the LCMV beamformer output with the
projection-based approach in terms of the output SINR and
SDR. These convincing results again verify that the proposed
projection-based approach delivers a significantly better per-
formance. This improvement is indeed achieved at the cost of
more complex computations due to the need for the computa-
tion of the full joint subspace Qd,i which in turn requires to
perform an extra GEVD. Note that a sufficiently large number
of available samples lets the plots in Figure 2 to converge to
each other (not shown here).

6. CONCLUSION
In this paper, we have proposed a subspace projection-based
approach to increase the performance of an LCMV beam-
former in conditions where insufficient relevant samples are
available to accurately estimate the subspaces of the desired
sources and interfering sources, respectively. We have con-
sidered a GEVD-based method for subspace estimation in
combination with a subspace projection step, which allows
to better estimate the desired sources and interfering sources
subspaces. This improvement is achieved at the cost of more
complex computations, as the poorly estimated subspaces
have to be projected onto the larger joint subspace, which
itself requires an extra GEVD. The improved performance
achieved by this subspace projection-based approach has
been demonstrated by means of simulation results.
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