
A DISTRIBUTED ADAPTIVE ALGORITHM FOR NON-SMOOTH SPATIAL FILTERING
PROBLEMS

Charles Hovine and Alexander Bertrand

KU Leuven, Department of Electrical Engineering (ESAT)
STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics

KU Leuven Institute for Artificial Intelligence (Leuven.AI)
Leuven, Belgium

{charles.hovine, alexander.bertrand}@esat.kuleuven.be

ABSTRACT

Computing the optimal solution to a spatial filtering problems in a
Wireless Sensor Network can incur large bandwidth and computa-
tional requirements if an approach relying on data centralization is
used. The so-called distributed adaptive signal fusion (DASF) algo-
rithm solves this problem by having the nodes collaboratively solve
low-dimensional versions of the original optimization problem, re-
lying solely on the exchange of compressed views of the sensor data
between the nodes. However, the DASF algorithm has only been
shown to converge for filtering problems that can be expressed as
smooth optimization problems. In this paper, we explore an exten-
sion of the DASF algorithm to a family of non-smooth spatial fil-
tering problems, allowing the addition of non-smooth regularizers
to the optimization problem, which could for example be used to
perform node selection, and eliminate nodes not contributing to the
filter objective, therefore further reducing communication costs. We
provide a convergence proof of the non-smooth DASF algorithm and
validate its convergence via simulations in both a static and adaptive
setting.

Index Terms— Adaptive spatial filtering, Wireless Sensor Net-
works, Non-smooth optimization, Distributed signal processing.

1. INTRODUCTION

A spatial filtering problem usually consists in finding the linear com-
bination of a set of signals that is optimal with regards to some cri-
terion, and can therefore be expressed as the solution of an opti-
mization problem. Common examples include principal components
analysis [1], canonical correlation analysis [2], MAX-SNR beam-
forming, multichannel Wiener filtering [3] and common spatial pat-
terns [4].

In the case of Wireless Sensor Networks (WSNs), where several
sensing nodes communicate via wireless links, signals are often only
short-term stationary, with statistics drifting over time. Being able to
adaptively compute filters therefore becomes an important require-
ment. The classical approach to computing spatial filters in WSNs
consists in designating a particular node as the fusion center (FC),
which will collect all the raw data and perform the filter computation

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 802895), the FWO (Research Foundation
Flanders) for project G081722N and from the Flemish Government under
the ”Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” pro-
gramme.

centrally [5]. This approach is however not ideal, as the bandwidth
and computational power required at the FC scales poorly with the
number of both nodes and signals. Additionally, the FC constitutes
a single point of failure, which can be problematic for many de-
ployment scenarios. An alternative approach consists in solving the
filtering problem in a distributed fashion, by sharing the work across
the sensor nodes.

The DASF algorithm [6] is a framework for solving adaptive
spatial filtering problems in a distributed fashion. Instead of shar-
ing their raw observations, the nodes share efficiently crafted com-
pressed views of their sensor data, which are then used to locally
solve low-dimensional versions of the original optimization problem
at each node. In addition, the sensor signals’ statistics are allowed
to change during the course of the algorithm, such that the optimal
solution can be tracked adaptively.

The convergence and optimality of DASF in the case of filter-
ing problem expressible as smooth optimization problems, has been
studied in [7], but the applicability of the algorithm to non-smooth
problems is still unknown. In this paper, we show the convergence
and optimality of the algorithm for a family of non-smooth, and pos-
sibly non-convex optimization problems. In addition to allowing the
algorithm to be applied to well-known non-smooth problems such
as sparse signal recovery and compressed sensing [8,9], it allows the
use of non-smooth sparsity-promoting regularizers. In the context of
WSNs, such regularizers can for example be used to perform chan-
nel selection, and hence reduce both bandwidth and computational
stress on the sensor nodes.

2. PROBLEM STATEMENT

We consider a network consisting of K sensor nodes, where each
node k collects discrete observations of an Mk-channel signal yk(t).
We denote y(t) = [yT

1 (t), . . . ,y
T
K(t)]T the network-wide multi-

channel sensor signal, where each observation is an element of RM

with M =
∑

k Mk.Our goal is to design a network-wide spatial
filter X ∈ RM×Q which fuses all the channels of y(t) into Q output
channels that satisfy a certain optimality criterion, which in generic
form can be written as

X⋆(t) ∈ argmin
X

f(XTy(t),XTB) + g(XTΓ)

s.t. [XT
k yk(t),X

T
k Bk] ∈ Xk ∀k.

(1)

where each block Xk ∈ RMk×Q is defined according to the par-
titioning X = [XT

1 , · · · ,XT
K ]T . Γ = BlkDiag(Γ1, . . . ,ΓK),

https://orcid.org/0000-0001-6657-1066
https://orcid.org/0000-0002-4827-8568


where BlkDiag(·) is the operator producing a block diagonal matrix
whose blocks correspond to the operator’s ordered arguments, with
Γk ∈ RMk×Lk a constant (time-independent) data matrix, along
with B = [BT

1 , . . . ,BK ]T ∈ RM×D . The term involving f is a
smooth function of X (i.e. differentiable with continuous gradient)
and the term involving g is a convex, possibly non-smooth, function
of X . The other particular characteristics, of f , g and Xk are not
immediately relevant and will thus be later described in Section 4,
along with our convergence analysis. Additionally, we require that
there exist some functions gk, such that the non-smooth term g can
be separated as

g(XTΓ) =
∑
k

gk(X
T
k Γk). (2)

which holds for, e.g., the l1-norm. Typically, f is a cost function
depending on the second order statistics of y(t) (e.g. the covari-
ance matrix), g is a regularizing term promoting certain desirable
properties of the solution (e.g. a sparsity inducing norm), and the
constraint sets Xk encode some hard limits on the filter, such as lim-
iting the maximum output power, or requiring the per-node filters to
have uncorrelated outputs. Note that, as it is defined, g cannot be
an indicator function, and that all the constraints must therefore be
encoded in Xk

1. As an example, a possibility for f is

f(XTy(t)) = E
{∥∥∥XTy(t)− d(t)

∥∥∥2

2

}
, (3)

where E {·} denotes the expectation operator, and both y(t) and
d(t) are random signals. Finally, we emphasize that the per-node
(i.e. per-block) constraints in (1) are stricter than in the original
DASF problem setting in [6], which allowed for coupling con-
straints between the different blocks of variables, i.e. between the
variables of different nodes. Note that although (1) is only allowed
to depend on y(t), it does not preclude the existence of multiple sets
of signals. Indeed, by imposing the proper structure on both f and
y(t), we can describe problems depending on multiple sets of data.
We may for example wish to solve problems of the form

min
X1,X2

f(XT
1 u(t),XT

2 v(t)) (4)

which is possible in the framework of (1) by defining X =
[XT

1 ,XT
2 ]T and y(t) = BlkDiag(u(t),v(t)).

For the rest of this paper, we will omit the time index t of X⋆,
as we assume for mathematical tractability that y(t) is short-term
stationary, and hence that the set of optimal filters varies slowly with
time (i.e. X⋆(t) ≈ X⋆(t + τ) for small enough τ ). Furthermore,
we do not have access to the data-generating process y(t), but only
to consecutive realizations of y(t), which, under the assumption of
ergodicity, can be used to obtain an estimate of the statistics implic-
itly involved in (1). In an actual implementation, one would evalu-
ate/optimize (1) based on estimated statistics of y(t), i.e. y(t) would
need to be replaced by a matrix of discrete samples Y (t) centered
around t and the expectation in (3) would have to be approximated
with a sample average.

Our objective is to solve (1) in a bandwidth-efficient manner.
The optimization procedure therefore cannot rely on a fusion center
to collect samples of the full y(t) vector to estimate inter-channel
statistics, as this would incur significant communication costs. In-
deed, in an adaptive setting where the data is allowed to change at
every iteration, every new sample would need to be collected by the
FC. Instead, we propose a fully distributed procedure that relies on

1This does not restrict the set of allowable problems, but allows us to
simplify the notation used in Section 4.

the nodes sharing linearly compressed views of their observations
with one another, and locally solving lower dimensional versions of
(1) at different times instance, depending only on the compressed ob-
servations received from other nodes. By exploiting the short-term
stationarity of y(t), each iteration of the algorithm can be performed
over a different time-window, thereby behaving like an adaptive filter
in which the filter coefficients are adjusted every time a new (block
of) sample(s) is collected.

3. NON-SMOOTH DASF

In order to ease the exposition of the algorithm, we limit our descrip-
tion to the specific case of fully-connected networks. A generaliza-
tion to arbitrary topologies can be done in a similar fashion as for the
original DASF algorithm [6, 7]. Furthermore, without loss of gener-
ality, we ignore the deterministic argument XTB as it adds a lot of
clutter in the equations, while it is largely treated in the same way as
the XTy(t) argument (we again refer to [6, 7] for further details).

In our algorithm, each node k is responsible for updating its own
block Xk ∈ RMk×Q of X = [XT

1 , . . . ,XT
K ]T , corresponding to

its own locally observed data yk(t). Let us denote Xi the algo-
rithm’s estimate of the solution of (1) at iteration i. We emphasize
that each iteration is performed on a different block of N samples of
y(t), i.e., the update from Xi to Xi+1 will be based on the obser-
vations of y(t) at sample times t = (i− 1)N, ..., iN − 1.

Let us consider problem (1) with the additional linear constraints

Xk ∈ C(Xi
k) ∀k ̸= q, (5)

with C(·) denoting the column space of its argument and where q is
some arbitrary node, which we will refer to as the updating node.
By introducing the parametrization Xk = Xi

kGk for k ̸= q cor-
responding to the linear subspace constraints (5), and defining the
compressed signals of node k as zi

k(t) ≜ XiT
k yk(t) and F i

k ≜
XiT

k Γk, the new problem (1) equipped with (5) can be reformulated
as

X̄⋆ ∈ argmin
X̄

f(X̄Tzi(t)) + g(X̄TF i) (6a)

s.t. GT
k z

i
k(t) ∈ Xk ∀k ̸= q (6b)

XT
q yq(t) ∈ Xq (6c)

X̄ = [GT
1 , . . . ,X

T
q , . . . ,GT

K ]T (6d)

zi(t) = [zT
1 (t), . . . ,y

T
q (t), . . . , z

T
K(t)]T (6e)

F i = BlkDiag(XiT
1 Γ1, . . . ,Γq, . . . ,X

iT
K ΓK). (6f)

We can see that by collecting the compressed observations of every
other node, some node q can compute a solution of the local problem
(6), and equivalently of the linearly constrained global problem (1)
with the addition of the constraints (5). We use the term compressed
observations since, if Q < Mk, zi

k(t) will have a lower dimension
than yk(t) and can therefore be more efficiently transmitted than the
raw data. As Γ is assumed static, it only needs to be shared once, and
only the Xi

k will need to be exchanged, unless L < Mk, in which
case it is more efficient to share F i

k .
Note that the global and local problems (1) and (6) have the

same general structure but with a different dimension, therefore if a
solver exists for the global problem, it can also be used to solve the
local problems. In other words, if we denote by P(y(t),Γ) a par-
ticular instance of problem (1), solving (6) is equivalent to solving
P(zi(t),F i).

Our iterative procedure consists in updating Xi by iteratively
solving (6), each time selecting a new node q to act as the “updat-



Algorithm 1: NS-DASF algorithm.

begin
i← 0, q ← 1, Randomly initialize X0

loop
for k ∈ {1, . . . ,K}∖ {q} do

At node k
Collect a new batch of N samples of yk(t)

and send the compressed samples
zi
k(t) = XiT

k yk(t) along with
F i

k = XiT
k Γk to node q.

At node q
Obtain X̄⋆ by solving the local problem (6)

using only the compressed data zi(t) and Γi.
If the solution is not unique, select the one
minimizing

∥∥X̄⋆ − X̄i−1
∥∥
F

.
Extract X⋆

q and the G⋆
k’s from X̄⋆ according

to the partitioning (6d).
Xi+1

q ←X⋆
q

for k ∈ K ∖ {q} do
Send G⋆

k to node k.
At node k

Xi+1
k ←Xi

kG
⋆
k

i← i+ 1, q ← (q mod K) + 1

ing node” in a round-robin fashion. Formally, the procedure is as
follows:

1. Data collection: Every node collects discrete N new observa-
tions of yk(t).

2. Aggregation: Every node except the updating node q, computes
its compressed data zi

k(t) and F i
k and transmits the correspond-

ing N compressed samples to the updating node q.
3. Local solution: Based on the received compressed samples of

zi
k(t), and its own data yq(t), the updating node q can estimate

the signal statistics involved in (6) and solve it using any solver
for P(·, ·). It then updates its local block as Xi+1

q = X̄⋆
q , and

extracts the optimal update matrices G⋆
k from X̄⋆ using the par-

titioning (6d)2.
4. Solution update: The updating node transmits the update ma-

trices G⋆
k to their corresponding nodes. Each node except the

updating node updates its block of the estimate of the solution
as Xi+1

k = Xi
kG

⋆
k.

The full description of the algorithm is given by Algorithm 1, which
we refer to as non-smooth DASF (NS-DASF).

4. CONVERGENCE

One can gain intuition about the algorithm’s convergence by noting
that Xi is always in the feasible set of problem (6), as it satisfies
(5) trivially, ensuring a monotonic decrease of the objective. We will
start by showing that fixed points of Algorithm 1 (i.e. points X∗

such that if X0 = X∗, then (Xi)i∈N = (X∗)i∈N) are stationary
points of problem (1), and then reuse one of the result of [7] to show

2In the case where the local problem would have multiple solutions, the
solution with the smallest distance to X̄i−1 ≜ [I, . . . ,Xi−1T

q , . . . , I]T is
selected [6]

convergence to such a point. Let us first define

p(X) ≜ f(XTy(t))

q(X) ≜ g(XTΓ)

qk(Xk) ≜ gk(X
T
k Γk)

Dk ≜ {Xk |XT
k yk(t) ∈ Xk}

D ≜ D1 × · · · × DK

(7)

where × denotes the cartesian product between sets. We assume
that p : RM×Q → R is a smooth function with compact sublevel
sets, q : RM×Q → R is a proper, lower semicontinuous and convex
function, and D is a closed set in RM×Q. We wish to show that the
fixed points of the algorithm are also stationary points of problem
(1), that is feasible points X⋆ such that [10]

0 ∈ ∇p(X⋆) + ∂q(X⋆) +ND(X⋆), (8)

where ∂q(·) denotes the set of subgradients of q at a particular point
and N(·)(·) denotes the normal cone at a particular point of a set. The
sum between sets must be interpreted as a Minkowski sum3. Equa-
tion (8) generalizes the well-known Karush-Kuhn-Tucker (KKT)
conditions [11,12] to the case of non-smooth functions4 (it therefore
reduces to the KKT conditions in the smooth case). It merely gives
necessary conditions for a feasible point to be a solution of (1), but
the condition is also sufficient in the case of convex instances of the
problem [10]. Intuitively, those points are such that all directional
derivatives pointing inside the feasible set are positive (i.e. there is
no feasible descent direction at that point, see [10, 14] for details).

Before stating our main result, we give an explicit expression of
the normal cone corresponding to the subspace constraints (5) at a
point Xi = X . We denote

Lq(X) ≜ C(X1)× · · · × RMq×Q × · · · × C(XK) (9)

the subspace constraints at node q, where X here corresponds to
Xi in (5) and where RMq×Q corresponds to the lack of constraints
associated with node q. As the normal cone to a linear subspace is
simply its orthogonal complement [14], we have

Nk(X) ≜ NLq(X)(X) = C(X1)
⊥× · · ·×{0}× · · ·×C(XK)⊥,

(10)
where (·)⊥ denotes the orthogonal complement and the singleton
{0} = (RMq×Q)⊥. We can now state a first result, which estab-
lished the optimality of fixed points of Algorithm 1 under a mild
technical condition which is akin to the well-known linear indepen-
dence constraint qualification (LICQ).

Theorem 1. Let X∗ be a fixed point of Algorithm 1 and assume that
the following constraint qualifications hold:

ND(X∗) ∩Nk(X
∗) = {0} ∀k. (11)

Then X∗ satisfies the stationary conditions (8) and is therefore a
stationary point of problem (1).

Proof. The qualification (11) can be viewed as a generalization of
the traditional LICQ [14], and ensures that the solutions of the local
problems (6) satisfy5 the stationarity conditions of (6) (or equiva-
lently (1) with the additional constraints (5)) [10]

0 ∈ ∇p(X∗) + ∂q(X∗) +ND(X∗) +Nk(X
∗) ∀k, (12)

3A+B = {a+ b | a ∈ A, b ∈ B}.
4 [13] contains a useful introduction to the concepts of stationnarity for

non-smooth problems.
5This is true in part because all the properties of f , g, and Xk described

at the beginning of Section 2 are inherited by p, q and Dk . We omit this part
of the proof due to the page limit.



or equivalently

∀k, ∃zk ∈ ∂q(X∗) +ND(X∗), ∃ak ∈ Nk(X
∗) :

∇p(X∗) + zk + ak = 0.
(13)

Let ak
k and zkk denote the blocks corresponding to node k within

ak and zk, respectively. Similarly, Let ∇kp(X
∗) correspond to the

block of the gradient associated with the block X∗
k . Then 0 = zkk +

∇kp(X
∗), as ak

k ∈ {0} from the definition (10). From the block
separability of D and q, we have that [10]

ND = ND1 × · · · ×NDK (14a)
∂q(X) = ∂q1(X)× · · · × ∂qK(X). (14b)

Therefore it must be that

zkk = −∇kp(X
∗) ∈ ∂qk(X

∗) +NDk (X
∗) ∀k, (15)

and therefore−∇p(X∗) ∈ ∂q(X∗)+ND(X∗), i.e. (8) is satisfied.

In the case where the constraint set consists of smooth equality
and inequality constraints, we have the following corollary.
Corollary 1. (Proof omitted) Let X∗ be a fixed point of Algorithm
1 and let uk

j : RM×Q → R, vkl : RM×Q → R be smooth functions
∀j, l, k. If the constraint sets Dk can be expressed as

Dk = {Xk | uk
j (X) = 0, vkl (X) ≤ 0 ∀j, l} (16)

and it holds that the element of the set

{X∗
k
T∇uk

j (X
∗
k) ∀j; X∗

k
T∇vkl (X∗

k) ∀l ∈ A(X∗)}, (17)

where A(X∗) denotes the active inequality constraints at X∗, are
linearly independent for every k, then the qualification (11) is satis-
fied and X∗ is a stationary point of problem (1).
The qualification (17) can be seen as a stricter version of the well-
known LICQ, where each of the blocks of the gradients are required
to be independent when projected on the column-spaces of the
blocks of X∗, instead of the gradients themselves.

We will now rephrase [7, Theorem 6], which asserts conver-
gence of Algorithm 1 (the proof is the same as in [7] since it does
not depend on the (non-)smoothness of the objective, except for the
part associated with Theorem 1, which was proven above).
Theorem 2. Let (Xi)i∈N denote a sequence of iterates generated
by Algorithm 1 and assume that the solution set of (1) is non-empty
and varies continuously6 with the problem’s parameters y(t) and
Γ. Furthermore, assume that the number of stationary points of (1)
is finite (or the number of reachable stationary points of the solver
of (6) is finite). Then (Xi)i∈N converges to a stationary point of
problem (1).

5. SIMULATED EXAMPLE

Consider the sparse multichannel Wiener filtering problem

min
X

E
{∥∥∥XTy(t)− d(t)

∥∥∥2

2

}
+ λ ∥X∥1 , (18)

where d(t) is some desired Q-channel filter output signal. For the
following simulations, we generated instances of the problem as
d(t) = X⋆Ty(t) + n(t), where the entries of y(t) and n(t) are
i.i.d. zero-mean random gaussian signals with variance 1 and 0.1, re-
spectively. X∗ is an (M

10
)-sparse random vector with zero-mean and

unit variance gaussian entries. Furthermore, we set λ = 1, Q = 1,

6Continuity must here be understood in the context of point-to-set maps.
More specifically, we require upper hemicontinuity. For details see [15, 16].

0 5 10 15 20 25

Iteration

101

100

10−1

10−2

10−3

10−4

M
S
E

Fig. 1. Convergence of Algorithm 1 applied to problem (18). Dashed
red curves correspond to the min-max convergence curves. The blue
curve corresponds to the median convergence curve.

0 100 200 300 400 500

Iteration

−2.5

0.0

2.5

1-
D

P
ro

je
ct

io
n

Fig. 2. Tracking of an accelerating solution over time. The blue
curve corresponds to the optimal solution, the red dashed curve cor-
responds to NS-DASF’s estimate.

K = 10, Mk = 10, and generate a 1000 samples of y(t), d(t) and
n(t) for each experiment. The expectation in (18) is computed as a
simple sample average. The local version of (18) was solved using
Chambolle-Pock’s algorithm [17], and we therefore only approxi-
mate the optimal local solution of (6).

For the case of a problem which does not vary in time, we per-
formed a Monte Carlo simulation consisting of 100 runs, with the
parameters described above. Different y(t), X⋆ and n(t) were ran-
domly generated for each run. Figure 1 depicts the convergence in
terms of the relative mean-squared-error

∥∥Xi −X⋆
∥∥2

F
/∥X⋆∥2F .

We see that the algorithm consistently converges to reasonable ac-
curacy within two full rounds (i.e. each node has solved the local
problem twice, corresponding to 20 iterations in our example). The
remaining static error should be attributed to the error inherent to
the iterative method used to solve the local problems, and not to our
procedure itself (as implied by Theorem 1).

Although we do not provide any proof or quantitative relation-
ship between the rate of change of X⋆(t) and the relative error of the
algorithm’s estimate of the solution, we illustrate the tracking capa-
bilities of the algorithm with a particular example depicted in Figure
2. Two sparse vectors XA and XB were drawn from the same dis-
tribution used for X⋆ in the static case, and X⋆(t) was computed
as w(t)XA + (1−w(t))XB , where w(t) = t cos(t4). The time at
iteration i is ti = i/180. Figure 2 depicts the projection of the op-
timal solution and the algorithm’s estimate on the line joining XA

to XB . We see that as the rate of change of the optimal solution
increases, the algorithm starts lagging behind the optimal solution.

6. CONCLUSION AND FUTURE WORK

In this paper, we have described a distributed adaptive algorithm to
solve a particular family of non-smooth spatial filtering problems.
The algorithm was validated both by a formal proof and numeri-
cal simulations. In future works, we will provide an analysis of the
convergence properties of the algorithm and investigate the link be-
tween the global solution accuracy, the local accuracy, and the rate of
change of the data (i.e. the tracking performance of the algorithm).



7. REFERENCES

[1] H. Hotelling, “Analysis of a complex of statistical variables
into principal components.” Journal of educational psychol-
ogy, vol. 24, no. 6, p. 417, 1933.

[2] J. R. Kettenring, “Canonical analysis of several sets of vari-
ables,” Biometrika, vol. 58, no. 3, pp. 433–451, 1971.

[3] S. Doclo, A. Spriet, J. Wouters, and M. Moonen, “Frequency-
domain criterion for the speech distortion weighted multichan-
nel wiener filter for robust noise reduction,” Speech Communi-
cation, vol. 49, no. 7-8, pp. 636–656, 2007.

[4] Z. J. Koles, M. S. Lazar, and S. Z. Zhou, “Spatial patterns un-
derlying population differences in the background eeg,” Brain
topography, vol. 2, no. 4, pp. 275–284, 1990.

[5] S. Haykin and K. R. Liu, Handbook on array processing and
sensor networks. John Wiley & Sons, 2010, vol. 63.

[6] C. A. Musluoglu and A. Bertrand, “A unified algorithmic
framework for distributed adaptive signal and feature fu-
sion problems–part i: Algorithm derivation,” arXiv preprint
arXiv:2208.08867, 2022.

[7] C. A. Musluoglu, C. Hovine, and A. Bertrand, “A unified al-
gorithmic framework for distributed adaptive signal and fea-
ture fusion problems–part ii: Convergence properties,” arXiv
preprint arXiv:2208.09088, 2022.

[8] J. A. Tropp and A. C. Gilbert, “Signal recovery from random
measurements via orthogonal matching pursuit,” IEEE Trans-
actions on information theory, vol. 53, no. 12, pp. 4655–4666,
2007.

[9] D. L. Donoho, “Compressed sensing,” IEEE Transactions on
information theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[10] R. T. Rockafellar and R. J.-B. Wets, Variational analysis.
Springer Science & Business Media, 2009, vol. 317.

[11] W. Karush, “Minima of functions of several variables with in-
equalities as side constraints,” M. Sc. Dissertation. Dept. of
Mathematics, Univ. of Chicago, 1939.

[12] H. Kuhn and A. Tucker, “Nonlinear programming,” in Proc.
2nd Berkeley Symposium on Mathematical Statistics and Prob-
abilistics, 1951, pp. 481–492.

[13] J. Li, A. M.-C. So, and W.-K. Ma, “Understanding notions of
stationarity in nonsmooth optimization: A guided tour of vari-
ous constructions of subdifferential for nonsmooth functions,”
IEEE Signal Processing Magazine, vol. 37, no. 5, pp. 18–31,
2020.

[14] J. O. Royset and R. J. Wets, An Optimization Primer.
Springer, 2021.

[15] C. Berge, Topological Spaces: including a treatment of multi-
valued functions, vector spaces, and convexity. Courier Cor-
poration, 1997.

[16] D. Charalambos and B. Aliprantis, Infinite Dimensional Anal-
ysis: A Hitchhiker’s Guide. Springer-Verlag Berlin and Hei-
delberg GmbH & Company KG, 2013.

[17] A. Chambolle and T. Pock, “A first-order primal-dual algo-
rithm for convex problems with applications to imaging,” Jour-
nal of mathematical imaging and vision, vol. 40, no. 1, pp.
120–145, 2011.


	 Introduction
	 Problem Statement
	 Non-Smooth DASF
	 Convergence
	 Simulated Example
	 Conclusion and Future Work
	 References

