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A Distributed Adaptive Algorithm for Non-Smooth
Spatial Filtering Problems in Wireless Sensor

Networks
Charles Hovine , Alexander Bertrand

Abstract—A wireless sensor network often relies on a fusion
center to process the data collected by each of its sensing
nodes. Such an approach relies on the continuous transmission
of raw data to the fusion center, which typically has a major
impact on the sensors’ battery life. To address this issue in the
particular context of spatial filtering and signal fusion problems,
we recently proposed the Distributed Adaptive Signal Fusion
(DASF) algorithm, which distributively computes a spatial filter
expressed as the solution of a smooth optimization problem
involving the network-wide sensor signal statistics. In this work,
we show that the DASF algorithm can be extended to compute the
filters associated with a certain class of non-smooth optimization
problems. This extension makes the addition of sparsity-inducing
norms to the problem’s cost function possible, allowing sensor
selection to be performed in a distributed fashion, alongside the
filtering task of interest, thereby further reducing the network’s
energy consumption. We provide a description of the algorithm,
prove its convergence, and validate its performance and solution
tracking capabilities with numerical experiments.

Index Terms—wireless sensor networks, distributed signal
processing, non-smooth optimization, spatial filtering

I. INTRODUCTION

THE advent of Cloud computing and the so-called Big
Data era has led to a significant increase in the amount

of data that is being generated, and subsequently processed.
The vision put forth by the Cloud is that data is generated
at the “edge”, and compute is located at the “center” [2],
making it the most extreme form of centralized computing.
In the context of Wireless Sensor Networks (WSNs), the
center is usually referred to as the fusion center (FC) and
is responsible for the analysis and processing of the signals
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Vlaanderen” programme. Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union
or ERC. Neither the European Union nor the ERC can be held responsible
for them.

Charles Hovine and Alexander Bertrand are with the STADIUS Center
for Dynamical Systems, Signal Processing and Data Analytics and with the
Leuven.AI institute for Artificial Intelligence at KU Leuven, Leuven 3001,
Belgium (e-mails: {charles.hovine, alexander.bertrand}@esat.kuleuven.be).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the author. The material includes
several proofs and subresults omitted from the main manuscript. This material
is 230KB in size.”

A conference precursor of this manuscript has been published in [1].
©2024 IEEE. Personal use is permitted, but republication/redistribution

requires IEEE permission. See https://www.ieee.org/publications/rights/index.
html for more information.

gathered by a possibly large set of wirelessly connected sensor
nodes. Although conceptually simple, this “data centraliza-
tion” approach comes with several challenges. First, it requires
significant bandwidth to transfer data from the sensing devices
to the central computing location [3] . This can be particularly
problematic in the case of low-power WSNs, where centralized
data aggregation can have a significant impact on the battery
life of the individual sensor nodes, making long term or remote
deployments impractical. Second, the back and forth commu-
nication between the computing device and sensing devices
can prevent real-time computations to be performed due to
increased network latency [2]. Time-critical tasks such as
speech enhancement in acoustic sensor networks [4], auditory
attention decoding in EEG sensor networks [5], [6] or target
detection in decentralized radar systems [7], require real-time
data analysis to be of any use. Finally, the FC constitutes a
single point of failure [8], which can lead to loss of service
in case of malfunction. This motivates the development of
distributed algorithms that can process the data both locally
and in real-time, at the edge of the network, or collaboratively
compute optimally compressed representations of the data that
can be efficiently offloaded to an external computing device,
at a much lower cost than the transmission of the raw sensor
data.

Distributed datasets as those sensed by sensor networks can
be broadly classified into two categories: those with distributed
features, and those with distributed samples. The latter is
usually less challenging to process, as the objective function
can typically be decomposed as a sum of local node-specific
objective functions that only require the samples from one
node. In this case, the distributed task can often be solved
by first processing the samples of each node locally and
independently from the other nodes, and then aggregating
the intermediate local results (which typically consist of a
parameter vector, rather than individual time samples). Typical
examples of algorithms suited for datasets with distributed
samples are those put forth by federated learning [9], the Al-
ternating Direction Method of Multipliers (ADMM) [10], [11],
and consensus and diffusion strategies [12], [13], amongst
others.

In the case of distributed features, the objective function
cannot be decomposed into a sum of local objectives at
the individual nodes, making decentralized processing sig-
nificantly more challenging. For example, in the context of
spatial filtering in WSNs, the goal is to linearly combine the
different sensor channels of all nodes in an optimal data-driven
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fashion, which requires measurements of the signal covariance
across all node pairs in the WSN. Existing algorithms for
distributed-features problem are typically not suited for the
the online setting of WSNs. Indeed, they typically rely on
some form of consensus inner loop that requires the data
associated with a single batch of samples to be retransmitted
and iterated over multiple times, and often require that the
inner iterative loop associated with a single batch of samples
converges before moving on to the next batch [10], [14]–
[16]. [17] is an example of algorithm that could be adapted
to the batch-adaptive setting of WSN, but it is limited to
solving smooth and unconstrained optimization problems, in
star-topology networks only, contrarily to this paper.

This work extends the Distributed Adaptive Signal Fusion
(DASF) algorithm [18], [19], which was originally designed
to solve such distributed features problems, in particular in the
context of spatial filtering in WSNs, where the sensor channels
are distributed across the nodes of a WSN. Specifically, the
DASF framework provides a generic “meta-algorithm” that
computes adaptive spatial filters whose coefficients are the
solutions of some smooth optimization problem, where the
latter defines the optimal centralized spatial filter based on
the network-wide signal statistics (which are assumed to be
unknown at start-up). The DASF algorithm relies on the
exchange of linearly compressed views of the nodes’ data,
which are then used by each node to locally solve a subprob-
lem preserving the original problem structure, and iteratively
producing a better estimate of the optimal filter coefficients.
By spreading iterations of the algorithm over different sample
batches, DASF is able to adaptively track the optimal filters
based on their evolving statistics, which are estimated online
using the most recently collected samples. The DASF frame-
work is applicable to a wide class of spatial filtering problems,
including the trace ratio problem [20], principal component
analysis [21], generalized eigenvalue problems [22], minimum
mean squared error filtering, minimum variance beamforming
[23], and single and multi-view canonical correlation analysis
[24]. However, the DASF algorithm requires the optimization
objective to be smooth, which notably prevents the use of the
ℓ1 norm, which is often used in signal processing to encourage
sparsity in the solutions. Our focus in this work, is the exten-
sion of the DASF algorithm to non-smooth problems, with the
side goal of performing ℓ1-induced node or sensor selection
alongside a given filtering task (rather than performing an a
priori node selection based on some task-agnostic criterion as
in, e.g., [25]).

Our contribution is three-fold. Firstly, we propose an exten-
sion of the original DASF algorithm to certain classes of non-
smooth adaptive spatial filtering problems, referred to as non-
smooth DASF (NS-DASF). Secondly, we provide a conver-
gence and optimality proof for the NS-DASF algorithm based
on milder assumptions than the original DASF algorithm. The
new assumptions and optimality in the case of non-smooth
problems lead to a very different proof strategy compared to
the convergence proof of the smooth version of DASF. Finally,
we apply our algorithm to the problem of node selection
in WSNs, where only a subset of the nodes is required to
contribute to the filtering task. In this paper, we show via

numerical experiments that the problem of (distributed) node
selection can be solved concurrently with the filtering task, by
the addition of an appropriate regularizer to the optimization
problem.

The outline of the paper is as follows. In Section II we
formalize the scope of DASF and NS-DASF in a WSN context.
In Section III we describe the NS-DASF algorithm. We
first introduce the simpler case of fully-connected connected
networks, before extending the description to arbitrary network
topologies. In Section IV, we prove the convergence and
optimality of NS-DASF. Section V describes several numerical
experiments, and Section VI concludes the paper with a brief
discussion.

II. PROBLEM STATEMENT

We consider a network of K nodes with labels in K =
{1, . . . ,K}. Each node k senses an Mk-channel stochastic
signal yk(t) with values in RMk for each sample t ∈ Z. We de-
note the network-wide M -channel signal with values in RM as
y(t) ≜ [y1(t)

T , . . . ,yK(t)T ]T , where M ≜
∑

k Mk. In this
paper, we focus on the distributed computation of an adaptive
M -inputs Q-outputs spatial filter X ∈ RM×Q, that is optimal
in some sense, and structured as X ≜ [XT

1 , . . . , X
T
K ]T ,

where Xk is the k-th block of X , corresponding to the filter
associated with yk.

A. Scope of the Original DASF Framework

The original smooth version of DASF [18], [19], applies to
filtering problems of the form

X⋆ ∈ argmin
X∈RM×Q

φ(XTy(t), XTB)

s.t. ∀j ∈ JI , ηj(XTy(t), XTDj) ≤ 0,

∀j ∈ JE , ηj(XTy(t), XTDj) = 0.

(1)

where the matrices B and Dj
1 are deterministic matrices

known by every node, φ is a smooth real-valued function
encoding some design objective for the filter output, JI and
JE are the sets of inequality and equality constraints indices,
respectively, and ηj are smooth functions enforcing some
hard constraints on the filter outputs and/or filter coefficients.
As y(t) is a stochastic signal, we assume that the afore-
mentioned functions implicitly contain an operator extracting
some statistics from the signal, such as e.g. an expectation or
covariance operator, hence keeping the problem deterministic2.
In order for the nodes to be able to evaluate, or at least
approximate those quantities, we assume that y(t) is ergodic,
i.e. its statistics can be evaluated using sample averages. We
furthermore assume that y(t) is short-time stationary and that
its statistics change sufficiently slowly such that they can be
tracked by the updates of the DASF algorithm. We emphasize

1The non sequitur notation is chosen to stay consistent with the notation
introduced in [18], where Ck has another meaning, used later in this paper.

2In order to be perfectly rigorous, we could have defined the domain of the
above functions as a subset of some Hilbert space of random signals. This
would however have introduced unnecessary complexity, as for all intents and
purposes, the random signals could be replaced by sample matrices and leave
our developments mostly unchanged.
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this fact by dropping the time index t for most of the remainder
of this paper.

X⋆ ∈ argmax
X

XTE
{
yyT

}
X (2)

s.t. XTX = I (3)

is a typical instance of (1). It produces a filter that extracts
the principal components of y. In this particular case B = 0,
and the sole constraint is

η(XTy, XTD) = XTDX = I, (4)

with D = I . Although the D matrix looks superfluous here, it
plays an important algorithmic role, and allows DASF to solve
(1) by solving a sequence of lower-dimensional versions of (1),
but where D (or B when it is non-zero) is not equal to the
identity matrix anymore.

B. Extended Scope of the NS-DASF Framework

The NS-DASF algorithm deals with filters that are solutions
of optimization problems of the form

X⋆ ∈ argmin
X∈RM×Q

φ(XTy(t), XTB) + γ(XTA)

s.t. ∀k ∈ K, ∀j ∈ J k
I , ηj(X

T
k yk(t), X

T
k Dj,k) ≤ 0,

∀j ∈ J k
E , ηj(X

T
k yk(t), X

T
k Dj,k) = 0.

(5)

The matrices A and Dj,k
3 are, similarly to B, deterministic

matrices known by every node. γ is a possibly non-smooth but
convex4 real-valued function encoding some soft-constraints
on the filter coefficients. The ηj’s are smooth functions now
describing per-node constraints on the filter. Note that the
block-separability of the constraints is specific to the non-
smooth version of DASF, and is not required for its smooth
counterpart. The ηj’s in (1) can thus possibly introduce mul-
tiplicative coupling between the filter coefficients of different
nodes, but the ηj’s in (5) can only depend on a single block
Xk. As described in Subsection IV-F, there is an upper-bound
on the maximal allowable number of per-node constraints,
which depends on the network topology. We also require γ
to be per-node block separable, i.e. there exist functions γk
such that

γ(XTA) =
∑
k∈K

γk(X
T
k Ak) (6)

This implies that A must be a block diagonal matrix, whose
blocks we denote Ak. Typical examples of functions satisfying
this property are the weighted ℓ1 and ℓ2,1 norms, where
the later is typically used to introduce group-sparsity in an
optimization model, and the per-node sum of nuclear norms,
promoting locally low-rank filters. Note that the smooth func-
tion φ is not required to be block-separable. Although this
block-separability requirement of the constraints can seem
arbitrary, it is essential to ensure the optimality of the proposed

3Most problems are usually formulated with γ(AX) rather than γ(XTA).
This notation was chosen to stay consistent with the XT · structure of the
remaining functions involved in the problem.

4Note that neither strong or strict convexity is required.

procedure (see Section IV). As will be seen in Subsection
III-B, the separability of the constraints poses an additional
challenge in terms of the required data exchanges between the
nodes. We denote the parametric optimization problem defined
in (5) as P(y, A,B,D), where D denotes the collection (i.e.
set) of matrices Dj,k.

The problem description (5) is purposedly kept generic
and somewhat abstract in order to cover as many problems
as possible. However, this structure is satisfied by several
problems of interest. For example, the problem

max
X

Tr
(
XTE

{
y(t)y(t)T

}
X
)

s.t. XT
k E

{
yk(t)yk(t)

T
}
Xk = IQ ∀k ∈ K

(7)

where IQ is the Q-dimensional identity matrix, and Tr (·) and
E {·} denote the trace and expectation operators, respectively,
is typically referred to as the SUMCORR formulation of
generalized canonical correlation analysis (GCCA) [26]–[28]
and can be cast in the form (5). SUMCORR extracts signal
components that are hightly correlated between the nodes,
and can for example be used to find a subspace which is
observed by every node in the network [28], [29]. By adding
γ(X) =

∑
k ∥Xk∥F to the objective function of (7), where

∥·∥F denotes the Frobenius norm, we obtain a sparse version
of SUMCORR, which encourages a subset of the nodes to
participate in the problem.

As another example, the following problem can be viewed
as a sparse Wiener filtering problem [30] with additional power
constraints on the per-node filter outputs:

min
X

E
{∥∥XTy(t)− d(t)

∥∥2
F

}
+ ∥X∥∞

s.t. E
{∥∥XT

k yk(t)
∥∥2
F

}
≤ Pk ∀k ∈ K

(8)

where ∥·∥∞ is the matrix ∞-norm, corresponding to the
largest ℓ1-norm of its rows, encouraging the least number
of input channels to be used. Pk are scalars denoting some
power constraint on the filter output, and d(t) is a known
target signal taking values in RQ. The Wiener filter is typically
used in denoising applications, for example in accoustic sensor
networks, where d could for example be a known speech
signal and y the recordings of several microphone arrays [4].
Note that these are only two examples of the many problems
that fit in the proposed non-smooth DASF framework.

Our goal is to efficiently track a solution X⋆ ∈ RM×Q of
(5) and the corresponding filter output X⋆Ty(t). Although the
optimal filter X⋆ is required, we are typically more interested
in the output signals of the spatial filter, i.e., in the Q-
dimensional filtered output z(t) ≜ X⋆Ty(t) for each sample
time t, which could, for example, correspond to a denoised
speech signal that must be available to the network at any
time. The DASF algorithm must therefore be such that both
the optimal filter and the filtered signal z(t) can be computed
in a bandwidth efficient manner.

The NS-DASF algorithm assumes that a centralized solver
that would be able to find the solution of (5) if all data would
be known at a fusion center is available. Similarly to the
original DASF algorithm, the NS-DASF algorithm will use this
solver to compute the solution of lower-dimensional versions
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of (5) that are available at individual nodes. We also assume
that computing a solution of this local lower dimensional
problem is cheap in comparison to the cost of sharing the data
y(t), which motivates the design of a distributed algorithm
that can compute X⋆ and z(t) while also limiting the amount
of data that needs to be exchanged between the nodes, by
relying on local computations instead. This is a reasonable
assumption, as it is well known that the wireless data exchange
is typically an energy bottleneck in WSNs [3], [31].

III. THE NS-DASF ALGORITHM

In this section, we describe the extension of DASF to non-
smooth problems (NS-DASF), i.e. we describe an iterative
procedure to solve (5) in a distributed fashion, while also
tracking the filtered output z(t) at each node. The procedure
relies on each node sending a compressed view of its local data
to a given node, which we call the updating node, and whose
role is assumed by a different node at each iteration. Based
on the compressed data it received, the updating node will
update the current estimate of X⋆. For the sake of an easier
exposition, we first introduce the algorithm in fully-connected
networks before extending the description to arbitrary network
topologies at the end of the section.

A. NS-DASF in Fully-Connected Networks
The state of the algorithm at any iteration i is characterized

by the (initially random) current estimate of the optimal solu-
tion Xi and the updating node index qi (we use the node index
q without any iteration index to refer to the updating node
when the iteration is clear from the context). The algorithmic
procedure is essentially the same as the one described in [18]
for its smooth counterpart, except for the handling of the term
γ and the resulting local problems solved by each updating
node. However, the convergence analysis (and in particular the
optimality results) is substantially impacted by the addition of
this non-smooth term (see Section IV).

Each iteration is divided into three phases:
(i) Data Aggregation: Each node k collects N new sam-

ples of yk and sends a block of N Q-dimensional compressed
samples of

ŷi
k ≜ XiT

k yk (9)

along with

D̂i
j,k ≜ XiT

k Dj,k (10)

Âi
k ≜ XiT

k Ak (11)

B̂iT
k ≜ XiT

k Bk (12)

to the updating node q, where Bk is the block-row of B
associated with Xk. Note that Xi

k acts both as the compression
matrix and as the current estimate of the optimal filter.
Upon reception of the compressed data, the updating node
q constructs the local data

ỹi =
[
yT
q ŷiT

1 · · · ŷiT
q−1 ŷiT

q+1 · · · ŷiT
K

]T
,

Ãi = BlkDiag(Aq, Â
i
1, . . . , Â

i
q−1, Â

i
q+1, . . . , Â

i
K), and

B̃i =
[
BT

q B̂iT
1 · · · B̂iT

q−1 B̂iT
q+1 · · · B̂iT

K

]T
(13)

adding node q’s own data to the aggregated data. Similarly
to D, we denote the collection of the D̂i

j,k’s and the Dj,q

as D̃i. One can already notice that the “local” data ỹi, Ãi,
B̃i and D̃i live in a subspace of the original data y, A, B
and D, and can be interpreted as a low-dimensional “view”
(i.e. linear combination of the channels/rows) of the original
data, where the view of the node’s own data is unaltered (i.e.
uncompressed).

(ii) Local Solution: In order to update the current estimate
of the optimal filter Xi, the updating node q computes a
solution of the original problem (5), but using the aggregated
data (13) received in the previous step instead of the original,
global, data y, A, B, and D. More specifically, it solves
P(ỹi, Ãi, B̃i, D̃i):

X̃⋆ ∈ argmin
X̃

φ(X̃T ỹi, X̃T B̃i) + γ(X̃T Ãi)

s.t. ∀k ∈ K, ∀j ∈ J k
I , ηj(X̃

T
k ŷ

i
k, X̃

T
k D̂

i
j,k) ≤ 0,

∀j ∈ J k
E , ηj(X̃

T
k ŷ

i
k, X̃

T
k D̂

i
j,k) = 0

(14)

where we denote ŷi
q ≜ yq , B̂i

q ≜ Bq and D̂i
q ≜ Dq for the

special case of the updating node, and where X̃⋆ is partitioned
as

X̃⋆ = [X̃⋆T
q , X̃⋆T

1 , . . . , X̃⋆T
q−1, X̃

⋆T
q+1, . . . , X̃

⋆T
K ]T . (15)

with each block associated with the corresponding blocks of
the local data (13). Note that X̃q is an Mq × Q matrix,
whereas all the other X̃k’s are Q × Q matrices. Also note
that because the node receives blocks of samples, it will not
solve P(ỹi, Ãi, B̃i, D̃i) exactly, but an approximation thereof,
where the implicit statistics involved in φ and the ηj’s are
approximated using sample averages across a batch of N
samples.

As (14) shares the structure of the original problem (5),
it can be solved using the same solver. It should be noted
that the dimension of this local problem is much smaller
than the original problem, and therefore cheaper to solve,
making it amenable to run on devices with limited computing
capabilities.

(iii) Parameters Update: Following the partitioning de-
fined in (15), the updating node q updates its own filter
according to

Xi+1
q ← X̃⋆

q (16)

and sends the appropriate blocks of X̃⋆ to the other nodes,
such that they can update their local filters according to

Xi+1
k ← Xi

kX̃
⋆
k . (17)

The above rule is related to (9)-(10): At each node, the
signal yk of a node can only be manipulated by the updating
node “through” the current estimate of the filter Xi

k, via the
parametrization introduced by X̃⋆

k .
Upon completion of the above steps, the updating node role

is passed-on to another node5 and another iteration begins,

5As will be discussed in Section IV, the order does not matter as long as
each node acts as an updating node an infinite number of times.
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Algorithm 1: NS-DASF algorithm in fully-connected networks.

begin
i← 0, q ← 1, Randomly initialize X0

loop
for k ∈ K ∖ {q} do

At node k
Collect a new batch of N samples of yk(t) and

send the compressed samples
ŷi
k(t) = XiT

k yk(t) along with Âi
k = XiT

k Ak ,
B̂i

k = XiT
k B̂k and D̂i

k = XiTDk to node q.

At node q

Obtain X̃⋆ by solving and selecting any solution of
P(ỹi(t), Ãi, B̂i

k, D̃
i) (see (14)).

Extract the X̃⋆
k ’s from X̃⋆ according to (15).

Xi+1
q ← X̃⋆

q
for k ∈ K ∖ {q} do

Send X̃⋆
k to node k.

At node k

Xi+1
k ← Xi

kX̃
⋆
k

i← i+ 1, q ← (q + 1) mod K

using another batch of N samples. At the end of each iteration,
the updating node has access to an estimate of the output
filtered signal for the latest N -samples block:

z ≈ X̃⋆T ỹi = Xi+1Ty. (18)

As a different batch of N samples is used at each iteration,
the (NS-)DASF algorithm produces an estimate of the filtered
signal for each N -samples block, while at the same time
improving the estimate of the optimal spatial filter X⋆, such
that each new block of the filtered signal is closer to the desired
filtered signal (under the stationarity assumption). In other
words, (NS-)DASF acts as a time-recursive block-adaptive
filter, which continually adapts itself to the (possibly changing)
statistics of y(t) [18].

The full algorithm description is given by Algorithm 1.

B. NS-DASF in Arbitrary Network Topologies

A fully-connected network topology allows the updating
node to receive the compressed data of every other node
directly. In an arbitrary network topology, the updating node
can only receive data from its neighbors. Applying the same
procedure as in the fully-connected case, i.e. requiring the
nodes to relay the compressed data of their neighbors to the
updating node, would result in a significant communication
overhead, most extreme in the case of line topologies. To avoid
this, it was proposed in [18] to construct at each iteration
a spanning tree that is rooted at the updating node, and let
each node fuse (i.e. sum) the compressed data of its neighbors
before relaying it to the neighbor closest to the updating node.
In other words, the updating node will receive some linear
combination of the compressed data of the rest of the network.
With this interpretation in mind, the procedure described for
fully connected networks can readily be applied, considering
each branch at a given iteration as if it were a single node.
The local variables Xk of each node in a branch are therefore
updated with the same linear transformation (i.e. there is a
single matrix X̃(·) per branch).

As we have required the constraints to be block separable,
we would in practice still need to forward all the compressed
data XTi

k yk in order for the updating node to be able to
evaluate each ηj(X

Ti
k yk, X

TiDk). As this would require
expensive data relaying, we require the constraints to depend
only on the first or second order statistics of XT

k yk in the
arbitrary topology case. This allows the nodes to relay the
compressed data XTi

k Dk along with XTi
k E

{
yky

T
k

}
Xk or

XTi
k E {yk} instead of a batch of N samples of XTi

k yk, which
is of much larger dimension than the compressed statistics
(which have a dimension of the same order of magnitude as
the parameter update matrices X̃). For example, to handle
constraints of the form

XT
k E

{
yky

T
k

}
Xk = IQ,

the nodes would relay (sample-averaged estimates of) R̂i
k ≜

XiT
k E

{
yky

T
k

}
Xi

k itself and still be able to evaluate the
constraints, as then the local constraints in (14) would be of
the form

X̃T
k R̂

i
kX̃k = IQ. (19)

In what follows, we denote the per-node covariance matrix
E
{
yky

T
k

}
as Rk, and the per-node first order statistics E {yk}

as rk. The procedure in arbitrary topologies is as follows.
(i) Data aggregation: A spanning tree rooted at the

updating node and preserving the links with its neighbors is
computed in a distributed fashion, using e.g. [25, Algorithm
4]. We denote the set of nodes in the subtree (i.e. branch)
containing k and obtained by removing the link between k
and q as Bkq (see Figure 1 for an example). The compressed
data D̂i and Âk are forwarded to the updating node. Similarly,
each node k computes and forwards its compressed first and
second-order statistics

R̂i
k = XTi

k RkX
i
k, (20)

r̂ik ≜ XTi
k rk (21)

based on the latest available batch of samples. We denote the
compressed data associated with subtree Bkq as

ŷi
kq =

∑
l∈Bkq

ŷi
l , and

B̂i
kq =

∑
l∈Bkq

B̂i
l .

(22)

This can be computed recursively by having each node k in
the subtree sum the data it receives from its children, and
then forward the result to its parent. This ensures that the
dimension of the data sent by each node stays equal to Q,
independently of the network size and topology, making the
communication of the compressed N -sample batches fully
scalable. The full aggregation procedure is formally described
by Algorithm 2 and an illustrative example is shown in Figure
1. Upon completion, the updating node q has access to the
compressed data ŷi

kq of each of its neighbors n ∈ Nq , and
the set of compressed matrices R̂i

k, r̂ik, D̂i
j,k and Âk for every

node in the network.
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Fig. 1: Example of an aggregation scheme in a spanning tree rooted
at node 1. Transmission of R̂i

k, B̂i
k D̂i

k and Âi
k omitted.

The updating node constructs the local data ỹi as

ỹi ≜
[
yT
q ŷiT

n1k
· · · ŷiT

nLk

]T
,

B̃i ≜
[
BT

q B̂iT
n1k

· · · B̂iT
nLk

]T (23)

where {n1, . . . , nL} = Nq are the neighbors of node q. The
matrix Ãi, is constructed as in the fully connected case (13).

(ii) Local solution: The updating node solves

X̃⋆ ∈ argmin
X̃

φ(X̃T ỹi, X̃T B̃i) + γ(ÃiX̃)

s.t. ∀ n ∈ Nq,∀l ∈ Bnq
∀j ∈ J l

I , ηj(X̃
T
n ŷ

i
l , X̃

T
n D̂

i
j,l) ≤ 0,

∀j ∈ J l
E , ηj(X̃

T
n ŷ

i
l , X̃

T
n D̂

i
j,l) = 0,

(24)

where the dependence on the R̂i
k and r̂ik is implicitly embed-

ded in the ηj .
(iii) Parameters Update: X̃⋆ is now partitioned corre-

spondingly to (23) as

X̃⋆ ≜
[
X⋆T

q , X̃⋆T
n1

, . . . , X̃⋆T
nL

]T
. (25)

Similarly to the fully-connected case, the updating node up-
dates its filter with X⋆

q and for each branch Bnlq , the nodes
all update their filters according to Xi+1

k ← Xi
kX̃

⋆
nl

for all
k ∈ Bnlq (Note that X̃⋆

nl
is the same for every node in

the branch). The full algorithmic procedure is described by
Algorithm 3.
Remark III.1. The dimension of the local problem (24) directly
depends on the number of neighbors of the updating node kept
when building the spanning tree. Indeed, the local optimization
variable will have dimension (Q|Nq| + Mq) × Q. We could
in practice build a spanning tree ignoring some of the links
between the updating node and its neighbors, but this would
not yield any savings in required bandwidth (every node still
needs to forward its data to some node), and it would be at
the expense of convergence speed, as the available degrees of
freedom available when minimizing the local problems (24)
would then be lower.

IV. CONVERGENCE AND OPTIMALITY

In this section, we provide convergence and optimality
results for the proposed NS-DASF algorithm. The addition of
the non-smooth term and the different technical assumptions

Algorithm 2: Recursive aggregation procedure in a tree-topology
network rooted at node q.

input : Parent node pk and set of childrens Ck for each node
k ̸= q (the parent node is the neighbor closest to the
updating node q, Ck = ∅ for leaf nodes)

begin
At node k

Collect a new batch of samples of yk(t)
Wait for the aggregate compressed signals received from

children ŷi
lk along with the sets of compressed matrices

{D̂i
j,m}m∈Blk

, {Âi
m}m∈Blk

, {R̂i
m}m∈Blk

and
{r̂im}m∈Blk

for l ∈ Ck
Send ŷi

kpk
= ŷi

k +
∑

l∈Ck
ŷi
lk to pk and similarly for

B̂i
kpk

Send {D̂i
j,k} ∪l {D̂

i
j,m}m∈Blk

, {Âi
k} ∪l {Â

i
m}m∈Blk

,
{R̂i

k} ∪l {R̂
i
m}m∈Blk

and {r̂ik} ∪l {r̂
i
m}m∈Blk

to pk

Algorithm 3: NS-DASF algorithm in arbitrary networks

begin
i← 0, q ← 1, Randomly initialize X0

loop
Construct a spanning tree rooted at node q.
Aggregate the data according to Alg. 2.
At node q

Obtain X̃⋆ by solving and selecting any solution of
(24).

Extract the X̃⋆
k ’s from X̃⋆ according to (25).

Update the filter of node q with X̃⋆
q .

for n ∈ Nq do
Send X̃⋆

n to node n.
for l ∈ Bnq do

At node l

Wait for X̃⋆
n and forward it to its

children.
Xi+1

l ← Xi
l X̃

⋆
n

i← i+ 1, q ← (q + 1) mod K

under which convergence and optimality are obtained do
not allow for a straightforward extension of the convergence
proofs of the original DASF algorithm (see [19]). These proofs
are the main contribution of this paper. In order to keep them
accessible, the convergence and optimality are first derived
for fully-connected networks in Sections IV-A to IV-D, while
Section IV-E briefly describes how the same results obtained
for fully-connected networks can be extended to arbitrary
network topologies. Section IV-G describes our main result
via a single theorem stating the convergence and optimality
of DASF for any network topology, including fully-connected
networks.

Similarly to the original proofs described in [19] and as
described earlier in Section II, we must make two simplifying
assumptions on y(t) to ensure that the optimal solution
X⋆ is time-independent and does not vary across iterations,
which would make the convergence analysis of the algorithm
mathematically intractable.

Short-Time Stationarity: We assume that the stochastic
signal y(t) is stationary, as is typically assumed in the conver-
gence analysis of adaptive filters. However, this should not be
viewed as a practical limitation. In order to track the optimal
solution X⋆, it is in practice sufficient to assume that the
changes in the statistics of y(t) are sufficiently slow compared
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to the convergence time of the algorithm.
Perfect Estimation of the Signal Statistics: As the func-

tions involved in (5) are real-valued, they implicitly depend
on the statistics of y(t). In practice, the actual distribution of
y(t) is unknown, and its statistics would typically be estimated
from sample averages, i.e., the expected value operator in the
examples (7) and (8) would be replaced with a sample average
over a finite batch of samples. In the (NS-)DASF algorithm,
these statistics are estimated on the most recent batch of N
samples that were transmitted by the nodes. However, the
convergence proof assumes for mathematical tractability that
these statistics are estimated perfectly, which means that the
convergence results should be viewed as asymptotic results.
We refer the reader to the stochastic optimization literature
for details on this topic (see, for example, [32]).

A. Relationship between Local and Global Problems (in
Fully-Connected Networks)

Before delving into the actual proof, we give some intuition
about the relationship between global and local problems in
the case of fully-connected networks (see Section IV-E for the
extention to arbitrary network topologies).

From (9)-(13), it can be observed that ỹi, Ãi, B̃i and
D̂i

j,k are linear (compressive) transformations of y, A, B and
Dj,k. Therefore, these variables can be related via a matrix
transformation with some matrix Ci

q , such that ỹi = CiT
q y

(and similarly for the other matrices, with the exception of
Dj,k, as explained below). From (9)-(13), it is clear that the
matrix Ci

q is constructed from the entries in Xi, such that we
can define Ci

q as the result of a matrix-valued function Cq(·)
such that Ci

q ≜ Cq(X
i). With this notation (9)-(13) can be

written as6

ỹi = Cq(X
i)Ty,

B̃i = Cq(X
i)TB, and

Ãi = Cq(X
i)TA

(26)

which is simply the expression in matrix form of the combina-
tion of (9)-(13). Note that Cq(X) is here implicitly defined7.

An update rule naturally emerges from the parametrizations
introduced by (26), as by simple associativity,

X̃⋆T ỹi = X̃⋆T
(
Cq(X

i)Ty
)

=
(
Cq(X

i)X̃⋆
)T

y

= Xi+1Ty

(27)

(and similarly for B and A). The last equality follows from
the structure of Cq , which flows directly from the update rules
(16)-(17) (see supplementary materials). This means that we
can also re-express (16)-(17) in matrix form as

Xi+1 ← Cq(X
i)X̃⋆. (28)

6We purposedly omit the matrices Dj,k as their case is a bit different.
Defining D′

j,k ≜ [0 · · · DT
j,k · · · 0]T , the same relationship can be

established by noting that the k-th block of Cq(Xi)D′
j,k is D̂i

j,k and q-
th block Cq(Xi)D′

j,q is Di
j,q ,and extending the same reasoning used for y.

See the explicit structure of Cq in the supplementary materials.
7The explicit description and structure of Cq(X) is explained in the

supplementary material for the interested reader.

This shows that the local problem (14) at node q can be
interpreted as a parametrized version of the centralized prob-
lem (5), where the optimization variable is now constrained
to a smaller linear subspace defined by the column space of
Cq(X

i). We define

L(X) ≜ φ(XTy, XTB) + γ(AX) (29)

and the set X as the set of feasible points of (5), allowing us
to express the original global problem (5) as

min
X∈RM×Q

L(X) s.t. X ∈ X . (30)

Then, based on (27)-(28), we find that the variable Xi+1 that
is obtained by solving (14) followed by the updates (16)-(17)
must be a solution of the following problem:

Xi+1 ∈ argmin
X

L(X)

s.t. X ∈ X
X ∈ rangeCq(X

i),

(31)

with range denoting the range or column space operator8. The
block structure9 of Cq(X

i) allows us to further express this
constraint set as

Sq(X) ≜ rangeCq(X) =

rangeX1 × · · · × rangeXq−1 × RIMq×Q

× rangeXq+1 × · · · × rangeXK . (32)

The new constraint thus simply restricts each block Xk of
the optimization variable X to stay within the range of the
corresponding block Xi

k of Xi (at the previous iteration),
except for the block associated with the updating node q,
which can move freely within the original constraint set.
Solving this equivalent problem and updating Xi+1 with its
solution is effectively equivalent to performing the Local
Solution and Parameters Update steps described earlier in
Section III-A.

B. Notation and Proof Outline

We can summarize the local problem at any node q by a
single set-valued map

Fq(X) ≜ argmin
U∈X∩Sq(X)

L(U), (33)

such that (31) is equivalent to

Xi+1 ∈ Fqi(X
i). (34)

We will show the convergence of the algorithm by studying
the properties of the map (33). We will first show that the
successive application of the map converges to the set of its
fixed points, defined as

{X | ∀k ∈ K, X ∈ Fk(X)}. (35)

8With a slight abuse of notation, as X has Q columns. We thus actually
mean the Q-th Cartesian power of the column space.

9Owing to the fact that Xi+1
k ← Xi

kX̃
⋆
k for every k ̸= q, (see

supplementary materials for details).
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We will then show that the fixed points are solutions, or at
least stationary points, of the original problem (5). In order to
obtain the most general result, we do not assume any particular
order for the sequence of updating nodes qi, but simply that
each node is selected infinitely many times. Formally, this can
be expressed as

Acc (qi)i∈N = K. (36)

where Acc · denotes the set of accumulation points of a
sequence10.

C. Subsequential Convergence (in Fully-Connected Networks)

This first section contains a proof that the NS-DASF
algorithm converges to the set of its fixed points, i.e. for
any distance δ, we can find an index T , such that for any
i > T there is some fixed point XF of NS-DASF such that∥∥XF −Xi

∥∥
F
< δ.

In this first part, we first prove that the procedure results in a
monotonic decrease of the objective, and a sequence of feasi-
ble points. We then describe the three technical assumptions on
which the convergence relies, and finally state the convergence
towards fixed points. For readability, the technical details of
this first part are located in the appendix.

Let us now show the monotonic decrease of the objective
values.

Proposition 1 (Monotonic decrease). Let (Xi)i∈N be
a sequence of iterates generated by (34). Then, the
sequence of objective function values (L(Xi))i∈N is
monotonically decreasing. In addition, all the points in
(Xi)i∈N are feasible, i.e. Xi ∈ X .

Proof. As by the definition of the algorithm (34) Xi+1 is a
solution of (33), it must be feasible (i.e. Xi ∈ X for any
i). By the definition (32) of Sq , we have that X ∈ Sq(X)
for every X (as each block of X is trivially in its own range).
Combining these two facts yields that Xi ∈ X ∩Sq(Xi), i.e. it
is feasible for the local problem (31). As Xi+1 ∈ Fq(X

i), it is
the solution of (31), and therefore it must be that L(Xi+1) ≤
L(X) for every X in X ∩Sq(Xi). Since we just showed that
Xi is also in this set, we find that L(Xi+1) ≤ L(Xi).

The remainder of the convergence analysis relies on three
technical assumptions, satisfied by a broad class of problems.

Assumption 1 (Continuity, compactness and CCP regu-
larizer). The function L : X 7→ R is continuous and has
compact sublevel sets. In addition, γ is closed, convex
and proper (CCP).

Assumption 1 is standard in the optimization literature, as
lower-semicontinuity and bounded sub-level sets is a sufficient
condition for the existence of minimizers.

10An accumulation point of a sequence is defined as a point that has
infinitely many elements of the sequence in a fixed neighborhood around
itself, no matter how small the neighborhood. A converging sequence has a
unique accumulation point.

The closedness and convexity requirements are automati-
cally satisfied for any matrix norm, which are often used as
regularizers. Note that the continuity of L on X prevents γ
to encode some constraint via an indicator function, as this
would automatically result in a discontinuity. The compactness
assumption is required to ensure that the optimization proce-
dure eventually visits point it has already visited, and does not
result in a sequence growing or shrinking indefinitely.

Compactness implies both closedness and boundedness.
Closedness is automatically satisfied as L is assumed continu-
ous, which is sufficient to ensure closed sub-level sets. When
y has linearly independent channels (the covariance matrix
E
{
yyT

}
has full rank), boundedness is ensured in the case

of a strictly convex φ or γ. Any constraint on the norm of the
filter outputs will also result in bounded sub-level sets for L.

Note that the monotonic decrease property from Proposition
1 implies that the compactness of all sublevel sets in Assump-
tion 1 can be relaxed to the compactness of at least the sublevel
set of L(X0) in X , where X0 is the initialization point of the
algorithm.

Assumption 2 (Similar solutions). The solution of
P(·, ·, ·, ·) is unique, or all its solution share the same
column space.

This is trivially satisfied by strictly convex problems, or
problems that can be cast as subspace problems, i.e., optimiza-
tion problems where the solution set is a linear subspace11. For
problems without such a subspace structure, we argue that the
occurence of multiple solutions remains unlikely, as the pur-
pose of the regularizer γ is precisely to discriminate between
ambiguous solutions and its introduction will typically produce
a single solution [34]–[36].

Assumption 2 ensures that in the case of local problems
with multiple solutions, all the solutions yield the same local
problem at the next iteration, that is the value of Sq(Xi+1)

is independent of any particular choice of local solution X̃⋆.
Indeed, one may notice from the definition of Sq in (32) that
for any full-rank matrix R, Sq(XR) = Sq(X).

The next assumption relies on a parametric description of
the constraint set. We define the set-valued map

X (y,D) ≜ {X ∈ RM×Q | ∀k ∈ K,
∀j ∈ J k

I , ηj(X
T
k yk, X

T
k Dj,k) ≤ 0,

∀j ∈ J k
E , ηj(X

T
k yk, X

T
k Dj,k) = 0}

(37)

which describes the feasible set X as a parametric set depend-
ing on the data y and D. We will keep using X without any
argument to denote the feasible set of the global problem (5).

11Notable examples are principal component analysis, trace ratio or
Rayleigh quotient optimization, canonical correlation analysis, and even
SUMCORR under some technical conditions on the covariance matrix (see
[33]).
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Assumption 3 (Feasible set continuity). The set-valued
map (y,D) 7→ X (y,D) is continuous, i.e., it is both
upper and lower semicontinuous12.

Note that this is a significantly more relaxed assumption
than the assumption of continuity of the solution set that was
used in the proof of the original DASF algorithm [19].

Set continuity can intuitively be understood as requiring
that the minimum distance between any point in the set
resulting from an infinetisimal change in the inputs of X ,
i.e., perturbations in the distribution of y or in the entries
of D, and the points of the original set can always be
made arbitrarily small by choosing a sufficiently small input
perturbation (i.e. the set grows and shrinks “smoothly”). To
further illustrate this property, we show that the constraints sets
most commonly encountered in signal processing problems are
indeed continuous with respect to their input parameters.

a) Linear constraints: Linear constraints of the form

X (R) = {X | RX = P} (38)

vary continuously with R on trajectories where R has con-
stant rank. Indeed, the solution of this linear system can be
expressed via the pseudo-inverse of R (used to express the
projection on the null-space of R), which is continuous on
the set of matrices with constant rank [40], [41]. Intuitively, if
the range of R would suddenly lose a dimension, then a new
dimension would appear in the solution space of RX = P
(corresponding to R’s null-space having gained a dimension).

b) Orthogonality constraints: Quadratic orthogonality
constraints of the form

X (y) = {X | XTE
{
yyT

}
X = I} (39)

are continuous on trajectories where E
{
yyT

}
has full rank. A

proof of this fact can be found in the supplementary materials.
c) Convex Inequality Constraints: Convex inequality

constraints of the form

X (y,D) = {X | G(y, X,D) ≤ 0} (40)

where ≤ is here element-wise, are continuous if the function
G is convex and continuous in X for any D and distribution
of y, and if for any y and D there is a strictly feasible X . A
proof can be found in [37]. Typical example of such constraints
include linear inequality constraints of the form XTD ≤ R
or the power constraints of problem (8).

Remark IV.1. In the first two constraint set examples (linear
constraints and orthogonality constraints), the continuity of the
constraint set requires the data to have constant/full rank. As
descibed in Appendix A, we actually require the continuity of
the local constraint set, therefore, keeping in mind that we can
express the local constraint sets of the local problems as

X ∩ Sq(Xi) = X (ỹi, D̃i), (41)

12This particular concept of set-continuity has different names depending
on fields and authors. Authors in variational analysis typically use “inner” and
“outer” semicontinuity [37], authors in mathematical economics use upper and
lower “hemicontinuity” [38], and authors in set analysis use the terminology
we adopt in this paper [39].

this constant rank assumption must also hold for the subblocks
of X , because when Xi

k loses rank, the compressed ỹk will
have dependent channels. The subset of full-rank matrices is
dense within the global set of matrices, i.e. any rank-deficient
matrix is arbitrarily close from a full-rank matrix, and it is
therefore unlikely that Xi

k becomes exactly rank deficient
in practice. However, it can become ill-conditioned, possibly
leading to unstable behavior. In [19], some algorithmic mod-
ifications have been proposed for such edge cases, which can
be applied to NS-DASF as well (we refer to [19] for further
details).

Based on those assumptions, we can state the convergence
of the prodecude to fixed points of the algorithms. We defer
the proof to the appendix.

Proposition 2 (Subsequential convergence). Let
(Xi)i∈N be any sequence generated by (34). Then
under Assumptions 1, 2 and 3, any accumulation point
of (Xi)i∈N is a fixed point of the map Fq for any q ∈ K.

Proof. See Appendix A.

Note that this result alone is not sufficient to guarantee the
convergence to a single point, as the algorithm could have
multiple fixed points, and the procedure could eventually result
in a sequence oscillating between those fixed points. This
behavior is discussed in more details in Section IV-G.

D. Optimality of Fixed Points (in Fully-Connected Networks)

It now remains to show that the aforementioned fixed points
the algorithm converges to are optimal in some sense. We first
describe the optimality result for the case of fully-connected
networks, before describing it for arbitrary network topologies.
For ease of notation let us define the functions

f(X) ≜ φ(XTy(t), XTB) and g(X) ≜ γ(XTA). (42)

In the non-smooth case, a stationary point X◦ is defined as a
point satisfying the following inclusion13:

0 ∈ ∇f(X◦) + ∂g(X◦) +NX (X◦) (43)

where ∇f(X◦) is the gradient of f at X◦, ∂g(X◦) is the
subdifferential of g at X◦ and NX (X◦) is the normal cone
to X at X◦ [37], [43]. The sum of sets must be understood
as a Minkowski sum14. Intuitively, the normal cone to a set at
a particular point can be understood as the set of directions
having no component “pointing inwards” the set (it therefore
only contains 0 at a point in the set’s interior). The subdiffer-
ential is the set of slopes of all the linear underapproximators
tangent to the graph of g at a particular point. This inclusion
translates the fact that at a stationary point, any direction of
improvement musts exit the constraint set, and is known as
Fermat’s rule. In the smooth case, (43) is strictly equivalent
to the usual KKT conditions [44], [45].

13A fairly complete and self-contained introduction to the notions of
stationarity in the non-smooth case is available in [42].

14A+ B ≜ {a+ b | a ∈ A, b ∈ B}.
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In order to prove that the fixed points of the algorithm
satisfy (43), we will show that under the proper assumption (or
qualification, in optimization parlance), the local optimality at
each node (defined by (33)) implies global stationarity (i.e.
being a stationary point of the centralized problem (5)).

We first treat the case of fully-connected networks before
moving on to arbitrary topologies.

1) Fully-Connected Networks: We start with a technical
lemma that ensures that the tangent cone of Rq(X) is a subset
of the sum of the tangent cones of X and Sq(X).

Lemma 1. Let X satisfy the following constraint
qualification

∀U ∈ NX (X), Ck(X)TU = 0⇒ U = 0 ∀k (44)

Then for every k,

NRk(X)(X) ⊆ NX (X) +NSk(X)(X).

Proof. See supplementary materials.

Later on, we will provide a more interpretable sufficient
condition for the qualification (44), see Proposition 5. The
following proposition states the optimality of fixed points in
fully-connected networks. Note that the qualification can be
ignored in the case of unconstrained problems (as it is trivially
satisfied).

Proposition 3 (Optimality in Fully-Connected Net-
works). Under Assumption 1, fixed points X◦ of the
algorithm (34) satisfying the qualification (44) are
stationary points of problem (5).

Proof. Since X◦ is a fixed point, it is a solution of the local
problem (31) at any node q. This local optimality of X◦ along
with the fact that γ and hence g is CCP (Assumption 1) implies
that [43, Theorem 4.75] for every k

0 ∈ ∇f(X◦) + ∂g(X◦) +NRk(X◦)(X
◦). (45)

From (45) and Lemma 1, we find that the following must also
hold:

0 ∈ ∇f(X◦) + ∂g(X◦) +NX (X◦) +NSk(X◦)(X
◦). (46)

From [43, Prop. 4.44 & 6.43], the block separability of g
and X implies that

∂g(X◦) +NX (X◦) = (∂g1(X
◦
1 ) +NX1

(X◦
1 ))×

· · · × (∂gK(X◦
K) +NXK

(X◦
K)). (47)

Therefore, as NSk(X◦) also has a block structure, and in par-
ticular, the block [NSk(X◦)]k = {0} (as the updating block is
unconstrained, any direction is feasible, i.e. [Sk]k = RMk×Q),
we have that for any k,

−∇kf(X
◦) ∈ ∂gk(X

◦
k) +NXk

(X◦
k) (48)

and therefore

−∇f(X◦) ∈ ∂g(X◦) +NX (X◦), (49)

which is equivalent to (43), hence completing the proof.

We defer the statement of our main result for fully con-
nected networks to Section IV-G, after giving a more inter-
pretable condition for the qualification of Lemma 1 to hold.

E. Extention to Arbitrary Network Topologies

In this subsection, we explain how all previous results,
which were derived only for the case of a fully-connected
network, can be extended to arbitrary topologies. It only
requires a minor change in the description of the in-network
fusion process. In the fully-connected case, this fusion process
is mathematically described by the matrix Cq . For the case
of arbitrary topologies, we have to modify this fusion matrix
to describe the per-branch fusion within each of the trees
constructed around each updating node q. Indeed, instead of
receiving the compressed data ŷi

k = XiT
k yk from all other

nodes, the updating node q will receive the linear combination
TqCq(X

i)Ty where Tq ∈ R(Mq+|Nq|Q)×(K−1)Q+Mq has the
structure

Tq = BlkDiag(IMq , N ⊗ IQ) (50)

where ⊗ denotes the Kronecker product, and N is a topology-
dependent matrix encoding the aggregation procedure. More
specifically, we define some tree graph with the updating node
as the root. The matrix N groups the nodes based on the
branches Bnq for n ∈ Nq (see Figure 2 for an illustrative
example). It has as many rows as the updating node has
neighbors, and K−1 columns corresponding to all nodes with
the column for node q omitted. The element Ni,j is 1 if node
j is in the i-th branch, and 0 otherwise. The received data
TqCq(X

i)Tyi is then a block matrix, where the first block
of Mq rows correspond to the updating node’s uncompressed
data yq , and where each subsequent block of Q rows can be
interpreted as the compressed data of a full branch (instead of
a single node in the fully-connected setting). Note that in the
case of fully-connected networks, Tq = I for any q.

1) Convergence: The results of Sections IV-A to IV-C can
be straightforwardly extended to arbitrary network topologies
by replacing Cq(X) by Cq(X)TT

q everywhere it appears in
those sections, and thus update the definition of the local range
constraint set Sq in (32) with

S ′q(X) ≜ rangeCq(X)TT
q . (51)

12

3

4

5 6

N =

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1


↓ ỹ2

ỹ3

ỹ4 + ỹ5 + ỹ6


Received data at node 1

Fig. 2: An example aggregation matrix and received data for a tree
rooted at node 1.
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Cq(X)TT
q shares with Cq the two properties that matters to the

proof: its continuity and invariance to full-rank transformations
of X . The continuity ensures that the continuity of the local
constraint set X ∩ S ′q(·) in Lemma 2 still applies to arbitrary
topologies, and the invariance to full-rank transformation is a
key property used in the proof of Proposition 2. The proof of
convergence is otherwise identical to the fully-connected case.

2) Optimality: Proposition 3 must be slightly modified to
ensure that the proper qualification is met at each of the local
problems, as described hereafter. Note that the qualification
can again be ignored in the case of unconstrained problems.

Proposition 4 (Optimality in Arbitrary Network
Topologies). Fixed points X◦ of the procedure (34)
satisfying for every k the qualification

∀U ∈ NX (X◦), TkCk(X
◦)TU = 0⇒ U = 0 (52)

are stationary points of the problem (5).

Proof. Let R′
k(X) ≜ X (D) ∩ S ′k(X). The qualification is

sufficient to ensure the inclusion [37]:

NR′
k(X)(X) ⊆ NX (X) +NS′

k(X)(X). (53)

The reasoning for the above inclusion is the same as Lemma
1 (see supplementary materials), but where we consider
TkCk(X)T instead of Ck(X)T . The rest of the proof is
identical to the proof of Proposition 3 with Rk replaced with
R′

k and Sk replaced with S ′k.

Note that Proposition 3 is a special case of Proposition 4
where Tk = I .

F. Constraint Qualifications and an Upper Bound on the
Number of Constraints

In the case of a constrained optimization problem, the qual-
ifications in Propositions 3 and 4 simply ensure that the local
solutions satisfy the optimality conditions of the local prob-
lems (see [43] for examples failing to meet the qualification).
The following proposition gives a sufficient condition akin
to the familiar linear independence constraint qualifications
(LICQ) for the qualification to hold in the case of equality
and inequality constraints in arbitrary topology networks. In
what follows, we define ϑk

j : Xk 7→ ηj(X
T
k yk, X

T
k Dk).

Proposition 5 (Constraint Qualification). Let
Ak(X) ≜ {j ∈ J k

I | ϑk
j (Xk) = 0} denote the

set of active inequality constraints for node k and

Dnk ≜
{
XT

l ∇ϑl
j(Xl) | j ∈ J l

E ∪ Al(X), l ∈ Bnk
}
.

Then if the elements of Dnk are linearly independent
matrices for every pair of neighboring nodes n, k, then
it holds that

∀U ∈ NX (X), TkCk(X)TU = 0⇒ U = 0 (54)

for any k.

Proof. See supplementary materials.

The independence of the elements of Dnk implies that the
“compressed” gradients XT

l ∇ϑl
j(Xl) of all the constraints,

associated with all the nodes of a branch Bnq (for some
updating node q), must be independent. In order to ensure that
Dnq has independent elements, all the nodes in a single branch
can (in total) have at most Q2 constraints (the dimension
of the compressed gradients). This requirement can be taken
into account when constructing the spanning tree around the
updating node q. In the case of fully-connected networks,
each branch contains a single node, and the bound can be
relaxed to a maximum of Q2 constraints per node. The
difference with the similar bound found for the original smooth
DASF algorithm [18], [19] can be attributed to the imposed
separability of the constraints in the non-smooth problem (5).

Even though the qualification can appear to be hard to
check, especially at the unknown limit points of the algorithm,
such assumptions are commonly found in the optimization
litterature (see e.g. [37], [43], [46]–[50]). Unless the problem
has a specific structure promoting the violation of the qual-
ification, it is unlikely to be violated for a random instance
of the problem. Still, we can in some cases guarantee that the
qualification holds globally, i.e. at every point in the constraint
set. See Appendix B for a worked-out example.

G. Main Result
We finally summarize the convergence and optimality of

NS-DASF with the following theorem:

Theorem 1 (Convergence and optimality). Let (Xi)i∈N
be a sequence generated by Algorithm 1 or 3. Assume
that the qualification described in Proposition 5 holds
at the accumulation points of (Xi)i∈N, along with
Assumptions 1–3. Then (Xi)i∈N converges to the set
of stationary points of problem (5).

Proof. By virtue of Proposition 2 (which can be extended
to arbitrary topologies by considering Cq(X)TT

q instead of
Cq(X)), the accumulation points of (Xi)i∈N are fixed points
of the algorithm, and the sequence therefore converges to the
set of fixed points of the algorithm (see the supplementary
materials for the proof that a sequence converges to the set of
its accumulation points). Finally, Proposition 5 ensures that the
qualification (44) is met, which in turns ensures by Proposition
3 the stationarity of fixed points.

Theorem 1 only guarantees convergence to a set, which
can lead to an unstable filter that “jumps” between different
solutions across iterations. In order to ensure that the output
filter is stable over time, we must ensure the convergence of
the residuals

∥∥Xi −Xi+1
∥∥
F

. In addition to ensuring a stable
filter, the convergence of the residuals guarantees that, if the
problem has a finite number of stationary points, the filter will
converge to a single point (see [19] for a proof). Convergence
of the resifduals can be guaranteed when the solution of the
local problems is uniquely defined. In this case, the output of
the set-valued maps Fq is a singleton, and the map is therefore
a function in the usual sense, resulting in the convergence of
the residuals, as stated in the following proposition.
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Proposition 6. Let the solution of the local problems
(33) be uniquely defined. Then under Assumptions 1
and 3,

lim
i→∞

∥∥Xi −Xi+1
∥∥
F
= 0. (55)

Proof. In the proof of Proposition 2, we have shown that for
any subsequence generated by the procedure, there is some
index set I such that (Xi, Xi+1, qi)i∈I converges to some
(X̄, X̄+1, q), and such that both X̄, X̄+1 ∈ Fq . But because
Fq is single-valued, it must be that X̄ = X̄+1. Thus

lim
i∈I→∞

∥∥Xi −Xi+1
∥∥
F
= 0. (56)

As this is true for any subsequence, 0 is the sole accumulation
point of (

∥∥Xi −Xi+1
∥∥i
F
)i∈N, such that this sequence must

converge to 0.

It seems reasonable that, in the context of our target
problems (5), the regularizer will most likely favor a particular
solution of the local problems to be selected (which is typically
the purpose of a regularizer). If that would not be the case,
once the algorithm is sufficiently stable in objective values, but
without observing convergence in the filters Xi, the weight
of the regularization parameter can be progressively increased
across iterations until a single solution is obtained. Note that
a convex problem, can be turned into a strictly convex one by
the addition of Tikhonov regularization, therefore ensuring a
single minimizer.

If we cannot guarantee that the local problems have a unique
solution, we can enforce the uniqueness by replacing the
local problem by a bi-level optimization problem, as originally
proposed in [18]. The procedure is essentially the same as
the one described for NS-DASF, except that in the case of
multiple local solutions of (33), the one minizing the distance
with the previous iterate Xi−1 is chosen. It is shown in [19],
that if the solution set of the global problem is continuous
with respect to the distribution of y and the other problem
parameters, then the convergence of the residuals is also
guaranteed. Note that the continuity of the solution set is a
much stronger assumption than the continuity of the constraint
set (Assumption 3) considered here.

V. NUMERICAL EXPERIMENTS

This section provides some numerical results supporting the
theoretical claims of Section IV. We consider the problem
of computing a sparse Wiener filter. The target filter is the
solution of

x⋆ ≜ min
x

E
{∥∥xTy(t)− d(t)

∥∥2
F

}
+ λ ∥x∥1 , (57)

where d(t) is a single channel known target signal. Note that
the regularization term can be written as

∥∥xTA
∥∥
1

with A = I ,
such that it fits (5) (the ℓ1-norm is computed over a row
vector here). We use a lowercase x to emphasize that the
filter has a single output channel (i.e. Q = 1). λ acts here
as a meta-parameter allowing to tune the trade-off between
solution accuracy and bandwidth (more nodes will eventually

become inactive with a higher value of λ). The local problems
associated with (57) will be of the form

min
x̃

E
{∥∥x̃T ỹ(t)− d(t)

∥∥2
F

}
+ λ

∥∥∥x̃T Ã
∥∥∥
1
. (58)

As x 7→ ∥Ax∥1 is not proximable, using proximal gradient
descent [51] for solving the local problems would be very
inefficient. We use the Chambolle-Pock [52] algorithm instead,
as it was designed specifically for problems such as (58).

A. Synthetic Data

For the following experiment, we considered a fully-
connected network where M = K = 10. Each entry of a
sample of y(t) is sampled from a zero-mean unit-variance
gaussian distribution. d(t) is constructed as

d(t) = aTy(t) + n(t), (59)

where the entries in n(t) and a are also sampled from a zero-
mean unit-variance gaussian distribution.

Figure 3 depicts the typical convergence behavior of NS-
DASF applied to (57), i.e. error convergence when starting
from a random filter. In order to better observe the adaptivity
of the algorithm, the solution x⋆ was randomly changed at
iteration 40. The top plot depicts the relative excess cost
computed as

1− L(xi)

L(x⋆)
, (60)

and the bottom plot depicts the hamming distance between the
set of active nodes, that is

dH(xA, xB) ≜ H(|xA| > 0, |xB | > 0), (61)

where H denotes the actual hamming distance, | · | and > are
the element-wise absolute value and “greater than” operators.

NS-DASF applied to (57) appears to exhibit a linear con-
vergence rate. A first dip in excess cost can be observed after
the tenth iteration, as it is only then that each node has had
the opportunity to freely update its corresponding block of
xi. The set of active channels is correctly identified after at
most two full rounds of iterations (i.e. 20 iterations). Figure
3 depicts this same behavior when changing the solution to a
new random point.

Figure 4 depicts the adaptive property of NS-DASF in a
scenario where the solution changes over time for different
rates of change. At each iteration, we apply a perturbation with
zero-mean gaussian entries ei to the ground-truth solution xi⋆,
with the ratio

∥∥ei∥∥
F
/
∥∥xi⋆

∥∥
F

kept constant across iterations
(this ratio reflects the amount of change in x⋆ across iterations,
i.e., a higher ratio is more challenging). The residual excess
cost is defined as

lim
i→∞

1− L(xi)

L(xi⋆)
, (62)

and is estimated in the simulation by computing the relative
excess cost at iteration i = 200.
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Fig. 3: Transient behavior of NS-DASF. The optimal solution changes
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Fig. 4: Tracking performance of NS-DASF. Each data point cor-
responds to the mean relative excess cost at iteration 200 of 100
Monte-Carlo runs.

B. EEG Data

This second experiment simulates the context of a wireless
encephalography sensor network (WESN) [3]. We used the
data associated with subject a of the BCI Competition IV
dataset [53]. We considered an eye blink artifact removal task
based on Wiener filtering, similar to [3], but with the addition
of an ℓ1 regularizer to obtain a sparse solution. Our goal is to
use all the channels in the WESN to estimate the eye blink
artifact, such that it can be regressed out from the data. We use
a channel near the eyes (channel AF3) as the reference for the
artifact. The problem can again be expressed as (57), where
d(t) now corresponds to the eye blink artifact in the reference
channel AF3. Note that while d(t) itself is not available, the
Wiener filter can still be computed by exploting the on-off
characteristic of the eye blink artifact (see [3] and [54] for
more details).

To illustrate the tracking abilties of the algorithm, an itera-
tion of DASF was performed for each batch of 1000 samples
(corresponding to 10 seconds of data), and the relative error

power of the estimated signal

10 log10

E
{∥∥d(t)− xTy(t)

∥∥2}
E
{
∥d(t)∥2

} (63)

was estimated using samples averages. We also recorded the
number of non-zero entries of the filters associated with each
batch. λ was selected in an ad-hoc fashion, ensuring a good
trade-off between reconstruction error and sparsity. In the
distributed case, the data was distributed between 4 nodes,
each observing 14 channels. Note that, in order to have access
to a ground truth, we here define d(t) as the complete signal
in channel AF3 (which includes both the eye blink artifact
and some neural activity) as we can otherwise not properly
compare and quantify the performance of the algorithms.
However, we re-iterate that in practice, one should use the
method from [3] or [54] to compute the actual Wiener filter
that only extracts the blinking artifact while ignoring neural
activity.

The performance of the filter over time for both NS-DASF
and a centralized solver with access to all the channels of
each batch are depicted in Figure 5. We also considered the
case of data-reuse described in [55], where a batch of data is
re-used by DASF for 4 iterations with little additional com-
munication cost, thereby allowing to improve the convergence
and adaptivity of the filter. On average accros all batches, the
error associated with the centralized solver is 2.52dB lower
than the distributed one, and 1.02dB lower when data-reuse is
used. Although all three methods achieve similar performance
and sparsity levels, the centralized solver requires 14 times
more bandwidth than the distributed solution (8 times in the
case of data-reuse). Figure 6 shows a sample output for each
of the three filters.

VI. DISCUSSION

In this paper, we have described an extension of the DASF
algorithm for a particular class of non-smooth spatial filter-
ing problems. We have provided theoretical results ensuring
the convergence and optimality of this NS-DASF algorithm.
Using Monte-Carlo simulations, we have demonstrated the
algorithm’s transient and stationary behavior when applied to
a sparse form of the multichannel Wiener filtering problem. In
particular, this shows that NS-DASF can be used to perform
channel or node selection alongside a given filtering task,
allowing energy savings by omitting the transmission from
nodes with 0-norm filters.

APPENDIX

A. Proof of Proposition 2

This proof is organized as follows.
1) We prove that the continuity of the global constraint set

implies the continuity of the local constraint set.
2) We prove that the above implies that the optimal function

value of the local problem is an upper semicontinuous
function of Xi.

3) Based on the above two results, we show that if we
select a subsequence of (Xi)i∈N over which the updating
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Fig. 6: Example outputs of the filters for the estimation of the AF3
channel.
.

node q remains the same (i.e. qi = q for any i in
the subsequence), the accumulation points of such a
sequence are fixed points of Fq .

4) We finally show that this must also be true for every
node q.

We first establish the fact that the continuity of X also
ensures the continuity of the map Rq : X 7→ X ∩ Sq(X),
describing the local constraint set, as stated in the following
lemma.

Lemma 2 (Continuity of Local Feasible Sets). Let
(y,D) 7→ X (y,D) be a continuous map. Then the map
Rq : X 7→ X ∩ Sq(X) is continuous.

Proof. See supplementary materials.

As the sublevel sets of L are compact (Assumption 1), any
sequence (Xi)i∈N satisfying the update rule (34) has at least

one accumulation point X̄ [56, Theorem 3.6]. In other words,
there is some index set I ⊆ N such that (Xi)i∈I converges
to X̄ . Because of (36), we can in particular select I such
that (qi)i∈I is a constant subsequence with value q. Our first
objective is to show that the accumulation point X̄ associated
with such a sequence is a fixed point of the map Fq . Before
doing so, we first need to show that the value function

mq(X) ≜ min
U∈Rq(X)

L(U) (64)

is upper semicontinuous (in the classical sense, not the set-
analysis sense), as stated in the following lemma.

Lemma 3 (Semicontinuity of the Value Function).
Under Assumptions 1 and 3, the value function mq :
X → R is upper semicontinuous.

Proof. See supplementary materials.

We can now relate the accumulation points of (Xi)i∈N to
the fixed points of the maps Fq .

Lemma 4. Let (Xi)i∈N and (qi)i∈N be sequences
related by (34) and let I ⊆ N be such that the
subsequence (Xi, qi)i∈I converges to (X̄, q). Then
under Assumptions 1 and 3, X̄ is a fixed point of Fq .

Proof. Since qi is part of the finite set K, its convergence
implies that it eventually becomes constant. We can therefore
proceed as if it was a constant sequence. By (34) and (64), we
have L(Xi+1) = mq(X

i). As L is continuous with compact
sublevel sets, it attains its minimum value in X (extreme value
theorem) [38], and the sequence L(Xi+1) is therefore bounded
below by L(X⋆) and, as a consequence of its monotonic
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decrease (Proposition 1), it must therefore converge to some
value L̄ [56]. From the continuity of L, it must be that
L̄ = L(X̄). Since L(Xi+1) converges to L(X̄), and since
mq(X

i) = L(Xi+1), it must hold that mq(X
i) also converges

to L(X̄). From Lemma 3, it must be that

L(X̄) ≤ mq(X̄). (65)

Since X̄ is the accumulation point of a sequence (Xi)i living
in the closed15 set X , it must be that X̄ ∈ X (by the definition
of closedness), and since X̄ ∈ Sq(X̄) by definition (see (32)),
we conclude that X̄ ∈ Rq(X̄) = X ∩Sq(X̄). Hence, we have
by definition of the value function,

mq(X̄) ≤ L(X̄). (66)

Combining this fact with (65), we conclude that

mq(X̄) = L(X̄), (67)

and hence X̄ ∈ Fq(X̄) = argminU∈Rq(X̄) L(U).

Based on this sub-result, we can show that accumulation
points of the full sequence (Xi)i∈N are fixed points of the
map Fq for any q. Let (Xi)i∈N be a sequence satisfying (34),
by Assumpion 1, there must be an index set I ⊆ N such
that the subsequence (Xi, Xi+1, qi, qi+1)i∈I converges to
some (X̄, X̄+1, q, q′) (we also used the fact that the cartesian
product of compact sets is compact [38]). We first prove that
X̄+1 ∈ Fq(X̄). From Assumption 3 and Lemma 2, we have16

that X̄+1 ∈ Rq(X̄). From the continuity of L (Assumption
1), we know that

L(X̄+1) = L(X̄) = lim
i→∞

L(Xi), (68)

and by Lemma 4 (see (67))

L(X̄+1) = L(X̄) = mq(X̄),

we find that X̄+1 ∈ Fq(X̄) (as X̄+1 is in the local feasible set
and minimizes the local objective). We will use this result to
show that X̄+1 is also a fixed point of Fq (we already know
that X̄ is a fixed point from Lemma 3).

From Assumption 2 and since both X̄+1, X̄ ∈ Fq(X̄), we
have Sk(X̄) = Sk(X̄+1) and thus

Fk(X̄) = Fk(X̄
+1) (69)

for any k, because, by Assumption 2, they share the same
column space. As any pair of successive accumulation points
(X̄, X̄+1) share the same column space, we can induc-
tively deduce that any sequence of accumulation points
(X̄, . . . , X̄+Q) (for the right selection of I) share the same
column space. In addition, by (68), we also have

L(X̄) = L(X̄+1) = · · · = L(X̄+Q). (70)

Because we assumed that every node is selected infinitely
many times, i.e. Acc (qi)i∈N = K, for any i, we can select
Q < ∞ such that the sequence of accumulation points
associated with (Xi, . . . , Xi+Q)i∈I is such that all nodes are
selected at least once between iterations (see supplementary
materials for details). For any q we can therefore find some
X̄+a, with a ≤ Q, such that Sq(X̄) = Sq(X̄+a) and hence

15The closedness of X follows from the continuity of the ηj .
16This is the definition of set upper semicontinuity.

because L(X̄) = L(X̄+a),

X̄ ∈ Fq(X̄), (71)

where q was selected arbitrarily in K. We therefore find that
X̄ is a fixed point for any q and therefore a fixed point of the
full algorithm.

B. Checking the Qualification for Linear Constraints

We can check that for linear equality constraints of the form

XT
k Dk = Rk ∀k ∈ K (72)

where Rk ∈ RMk×Lk and Dk ∈ RLk×Q, the qualification of
Proposition 5 holds globally.

There is a total of QLk constraints at each node k, each
constraint constraining the dot product of a column of Xk with
a column of Dk to be equal to the corresponding entry of Rk.
The compressed gradients in the qualification of Proposition
5 associated with the constraint for entry (m, l) of Rk in (72)
can be expressed as the Q×Q matrix

XT
k

[
0Mk

· · · dl,k · · · 0Mk

]
(73)

where 0Mk
denotes the 0 vector of dimension Mk. dl,k

denotes the l-th column of Dk, and where dl,k is in the m-
th column. There is such a compressed gradient for every
combination of l,m and k. Checking the independence of the
compressed gradients therefore amounts to ensuring that the
matrices XT

k dl,k are independent for any pairs of (m, k), when
the nodes referred by k are in a common branch. From the
constraints (72), this is equivalent to ensuring that the matrix[

Rl1 · · · RlN

]
, (74)

where {l1, . . . , lN} = Bnk, has linearly independent columns
for any choice of n, k. If the network topology is not known
in advance, it is sufficient to check that the concatenation
of all the Rk’s has independent columns. Note that (74) has∑

j∈Bnk
Lj columns, where Lj is the number of columns of

Rj , such that a necessary condition for (74) to have linearly
independent columns is that

∑
j∈Bnk

Lj ≤ Q. Since the total
number of constraints associated with (74) is

∑
j∈Bnk

QLj ,
this indeed confirms that the total number of constraints can
not be larger than Q2, as already explained in Subsection IV-F.

In fully-connected networks, Bnk = {k}, such that the
constraint qualifications can be checked on a per-node basis.
For example, constraints of the form

XT
k E

{
yk(t)yk(t)

T
}
Xk = IQ ∀k ∈ K (75)

can be shown to always satisfy the qualification, for any Xk

when applied in a fully-connected network, since the per-node
compressed gradients can be shown to be independent (This
is explained in [19, Example 1] and is not repeated here.
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