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ABSTRACT
Many array-processing algorithms or applications require the
estimation of a target signal subspace, e.g., for source local-
ization or for signal enhancement. In wireless sensor net-
works, the straightforward estimation of a network-wide sig-
nal subspace would require a centralization of all the sensor
signals to compute network-wide covariance matrices. In this
paper, we present a distributed algorithm for network-wide
signal subspace estimation in which such data centralization
is avoided. The algorithm relies on a generalized eigenvalue
decomposition (GEVD), which allows to estimate a target sig-
nal subspace in spatially correlated noise. We show that the
network-wide signal subspace can be found from the inver-
sion of the matrices containing the generalized eigenvectors
of a pair of reduced-dimension sensor signal covariance ma-
trices at each node. The resulting distributed algorithm re-
duces the per-node communication and computational cost,
while converging to the centralized solution. Numerical sim-
ulations reveal a faster convergence speed compared to a pre-
viously proposed algorithm.

Index Terms— Wireless sensor network (WSN), dis-
tributed estimation, signal subspace estimation, generalized
eigenvalue decomposition (GEVD)

1. INTRODUCTION

Many array-processing algorithms or applications require the
estimation of a target signal subspace, e.g., for source local-
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ization [1,2] or for signal enhancement [3], where the perfor-
mance heavily depends upon how accurately the signal sub-
space is estimated. We consider the problem of network-wide
signal subspace estimation in a fully-connected1 wireless sen-
sor network (WSN), with multi-sensor nodes and where the
noise is possibly spatially correlated. Although the per-node
signal subspace can be estimated locally without any signal
exchange between nodes, the network-wide signal subspace
provides better estimates, since more correlation structure can
be exploited (as demonstrated in [5,6]). Furthermore in some
applications such as WSN positioning, the network-wide rel-
ative geometry between the nodes has to be captured in the
network-wide signal subspace. In a WSN, the straightforward
estimation of a network-wide signal subspace would require
a centralization of all the sensor signals to compute network-
wide covariance matrices. In this paper, we present a dis-
tributed algorithm for network-wide signal subspace estima-
tion in which such data centralization is avoided.

The network-wide signal subspace can be estimated us-
ing an eigenvalue decomposition (EVD) of the network-wide
sensor signal covariance matrix, where part of the eigenvec-
tors directly corresponds to the underlying signal subspace.
However, a generalized EVD- (GEVD-) based counterpart
delivers a better estimation performance for scenarios with
spatially correlated noise, assuming that the noise covariance
is either known a-priori or can be estimated, e.g., based on
‘noise-only’ signal segments [6,7]. Furthermore as discussed
in [5,6], the GEVD is immune to arbitrary sensor gains at dif-
ferent nodes. Hence we consider a GEVD-based method for
the estimation of the network-wide signal subspace.

When a GEVD is employed, the actual network-wide
signal subspace can be extracted by the inversion of a ma-
trix containing all the network-wide generalized eigenvectors
(GEVCs) [6]. An attempt to estimate this network-wide sig-
nal subspace in a distributed fashion was presented earlier
in [6], relying only on part of the local GEVCs, i.e., without

1For the sake of an easy exposition, we only consider the case of a fully-
connected WSN, but it is noted that all results in this paper can be extended
to partially-connected WSNs, using similar techniques as in [4].



the need to compute all local GEVCs at each node. In this pa-
per we propose an alternative distributed algorithm in which
each node first estimates the matrix containing all the local
GEVCs in each iteration, and then applies a local matrix in-
version to estimate part of the network-wide signal subspace.
Remarkably, while these inverted matrices are based on the
local GEVCs of per-node reduced-dimension covariance ma-
trices, we show that a concatenation of part of these matrices
converges to the signal subspace that can be obtained from the
inversion of the matrix containing all network-wide GEVCs.
Moreover, it will be shown via numerical simulations that
the proposed method delivers a faster convergence speed,
compared to the method presented in [6].

2. DATA MODEL AND PROBLEM STATEMENT

We consider a fully-connected WSN with K multi-sensor
nodes in which each node k ∈ K = {1, . . . ,K} collects
observations of a complex-valued Mk-channel sensor signal
yk, which is modeled as

yk = Aks + nk (1)

where s is an R-channel signal containing R target source
signals, Ak = [ak1 · · ·akR] is a static (or slowly varying)
Mk×R steering matrix with akr (r = 1, · · · , R) the so-called
steering vector (SV) from source r to the sensors of node k,
and nk is the additive noise which can be spatially correlated
between nodes. By stacking all yk’s and nk’s, we obtain the
network-wide M -channel (M =

∑K
k=1Mk) signals y and n,

respectively. Likewise, we define the M × R matrix A =
[a1 · · ·aR] as the stacked version of all Ak’s such that

y = As + n. (2)

In this paper we consider the problem of estimating an R-
dimensional basis of the network-wide signal subspace, i.e.,
the range or the column space of the network-wide steering
matrix A. We aim to do this in a distributed fashion, i.e., with-
out explicitly constructing network-wide covariance matrices,
as this would require centralization of all the sensor signal ob-
servations. Instead the nodes will only exchange R-channel
sensor signal observations, which results in a compression
factor of Mk/R at node k (assuming Mk ≥ R). Here we
assume that R is either known or estimated a-priori (e.g., as
in [1,8]). It is noted that, if R = 1, the problem reduces to an
SV estimation problem, where we estimate a1 up to a scaling
ambiguity.

3. CENTRALIZED GEVD-BASED SIGNAL
SUBSPACE ESTIMATION

In this section we first explain how the network-wide signal
subspace can be estimated by means of a centralized GEVD,
i.e., in the case where all the sensor observations are col-
lected in a fusion center. The network-wide sensor signal and
noise correlation matrices are defined as Ryy = E{yyH}

and Rnn = E{nnH}, respectively, where E{·} denotes the
expected value operator, and the superscript H denotes the
conjugate transpose operator.

Since y is observable, Ryy can be estimated using sample
averaging, and we assume that Rnn is either known a-priori
or can be estimated as well via sample averaging from ‘noise-
only’ segments in the sensor signal observations (as explained
in [5, 6]).

A GEVD of the ordered matrix pair (Ryy,Rnn) is de-
fined as [9]

RyyX̂ = RnnX̂Λ̂ (3)

where X̂ = [x̂1 . . . x̂M ], with x̂m the m-th GEVC, and
Λ̂ = diag{λ̂1 . . . λ̂M}, with λ̂m the m-th largest generalized
eigenvalue (GEVL), and where the hat (̂.) refers to the fact
that the centralized estimation is considered. Note that when
Rnn is invertible, (3) can be written as a non-symmetric EVD
such that

R−1nnRyy = X̂Λ̂X̂−1. (4)

In general, the corresponding joint diagonalization of Ryy

and Rnn can be written as Ryy = Q̂Σ̂Q̂H and Rnn =

Q̂Γ̂Q̂H , where Σ̂ and Γ̂ are diagonal matrices. With this
and using (4), it follows that Q̂ = X̂−H , with Q̂ a full-rank
M ×M matrix (not necessarily orthogonal). It can be then
verified that Σ̂ = X̂HRyyX̂ and Γ̂ = X̂HRnnX̂ and that
Λ̂ = Σ̂(Γ̂)−1. Since the GEVCs are defined up to a scal-
ing, here we assume without loss of generality (w.l.o.g.) that
all x̂m’s are scaled such that X̂HRnnX̂ = IM . With this we
have Γ̂ = IM and Σ̂ = Λ̂, and hence the joint diagonalization
becomes

Ryy = Q̂Λ̂Q̂H , Rnn = Q̂Q̂H . (5)

Defining Π = diag{P1, ..., PR} with Pr the power of target
source signal r, equation (2) implies that AΠAH = Ryy −
Rnn, where further incorporating (5) yields

AΠAH = Q̂
(
Λ̂− IM

)
Q̂H . (6)

Note that Q̂ is full rank, and that the left-hand side of (6)
consists of a positive semi-definite matrix with rank R. This
requires that Λ̂ − IM contains only R non-zero diagonal en-
tries. Therefore, the firstRGEVLs are larger than one, and all
others are equal to one. The first R columns of Q̂ must then
span the same R-dimensional subspace as the columns of A
and hence fully define the network-wide signal subspace.

We define X̂ and Q̂ as an M × R matrix containing the
first R columns of X̂ and Q̂, respectively. Hence Q̂ spans
the network-wide signal subspace. We further define the par-
titioning

X̂ ,

 X̂1

...
X̂K

 , Q̂ ,

 Q̂1

...
Q̂K

 (7)



where (.)k is the Mk ×R submatrix that corresponds to node
k. Moreover we define the R × R diagonal matrix �̂ =
diag{λ̂1 . . . λ̂R}.

4. DISTRIBUTED GEVD-BASED SIGNAL SUBSPACE
ESTIMATION

So far we have considered the GEVD-based estimation of Q̂
via data centralization. However in a typical WSN, a node
k only observes its own Mk-channel sensor signal yk and
hence can only estimate an Mk ×Mk submatrix of Ryy and
Rnn. In this section we explain how the nodes can effi-
ciently cooperate to estimate the columns of the network-wide
Q̂, without constructing the network-wide correlation matri-
ces Ryy and Rnn. The algorithm derivation starts from a
distributed GEVD algorithm, referred to as the distributed
adaptive covariance-matrix generalized eigenvector estima-
tion (DACGEE) algorithm [7]. We will then show that the
network-wide Q̂ can be inferred from the inversion of com-
pressed GEVC matrices that are computed at the individual
nodes in the DACGEE algorithm. This is remarkable, since
DACGEE only computes X̂, whereas the inversion of the full
matrix X̂ is at first sight required to find Q̂.

4.1. The fully-connected DACGEE algorithm

The DACGEE algorithm [7] estimates and updates (in a dis-
tributed and block-adaptive fashion) the matrix X̂, where the
communication cost of node k is reduced by a factor Mk/R
(compared to the centralized case and assuming Mk ≥ R).
In DACGEE, each node k only updates the Mk × R subma-
trix Xi

k, which is the estimate of X̂k at iteration i. We define
the M × R matrix Xi as the estimate of X̂, which is con-
structed by concatenating all submatrices Xi

k,∀k ∈ K, i.e.,
Xi , [Xi T

1 . . .Xi T
K ]T . Hence the objective of DACGEE is

to obtain limi→∞X
i = X̂.

Each node k, at iteration i, usesXi
k to compress N obser-

vations of its Mk-channel sensor signal into observations of
the R-channel signal

zik = Xi H
k yk (8)

and then broadcasts these N observations of zik to all other
nodes. Therefore an updating node q observes the following
Pq-channel sensor signal (Pq , Mq + R(K − 1)) and esti-
mates the corresponding covariance matrix:

ỹi
q =

[
yq

zi−q

]
⇒ Ri

ỹq ỹq
= E{ỹi

qỹ
i H
q } (9)

where zi−q = [zi T1 . . . zi T(q−1)z
i T
(q+1) . . . z

i T
K ]T . In a similar

way, we can define Ri
ñqñq

, which can be estimated from
ỹi
q during ‘noise-only’ segments2. The updating node q can

2If the network-wide Rnn is known a-priori , one can compute Ri
ñqñq

directly by means of the compression matrices from the other nodes, as in
(24).

then compute the GEVD of the reduced-dimension GEVD of
(Ri

ỹq ỹq
,Ri

ñqñq
) as (compare with (3))

Ri
ỹq ỹq

X̃i
q = Ri

ñqñq
X̃i

qΛ̃
i
q s.t. X̃iH

q Ri
ñqñq

X̃i
q = IPq (10)

where the Pq × Pq matrix X̃i
q and the Pq × Pq diago-

nal matrix Λ̃i
q contain all Pq local GEVCs and GEVLs of

(Ri
ỹq ỹq

,Ri
ñqñq

), respectively. We now define the Pq×R ma-

trix X̃i
q containing the first R columns of X̃i

q . Moreover we
define the R×R diagonal matrix �̃i

q as the R×R submatrix
of Λ̃i

q containing its first R diagonal entries. In DACGEE,
node q then uses the first Mq rows of X̃i

q asXi+1
q . In the next

iteration, the updating node q is changed, and a new block
of N sensor signal observations is used. Note that the latter
means that the iterations are spread out over different signal
segments in a block-recursive fashion.
Using the above updating procedure, it can be shown that (up
to estimation errors in the covariance matrices) [7, 10].

lim
i→∞

Xi = X̂ and lim
i→∞

�̃i
k = �̂,∀k ∈ K (11)

4.2. Extracting the signal subspace

Similar toXi we defineQi , [Qi T
1 . . .Qi T

K ]T as the estima-
tion of Q̂ at iteration i. Then the objective is to estimate Qi

in a distributed fashion such that it converges to the network-
wide Q̂. We first briefly review the correlation-based method
presented in [6].

4.2.1. Correlation-based method [6]

Let ẑ = X̂Hy =
∑

k∈K X̂
H
k yk. Note that, due to the con-

vergence of the DACGEE algorithm, ẑ will be equal to ẑ =∑
k∈K zik for i → ∞ (see (8)). It has been shown in [6] that

R̂yẑ = E{yẑH} = Q̂�̂. Since �̂ only scales the columns of
Q̂, R̂yẑ defines the network-wide signal subspace. In itera-
tion i, each node computes Ri

ykz
= E{ykziH} where zi =∑

k∈K zik. The stacked matrix of all Ri
ykz

’s, i.e., Ri
yz , has

been shown to converge to R̂yẑ , i.e., limi→∞Ri
yz = R̂yẑ .

4.2.2. Inversion-based method

In this section we propose a new method to estimate the
network-wide signal subspace Q̂, based on the inversion
of the matrix X̃i

k at each node k. X̃i
k is computed by the

DACGEE algorithm, although DACGEE for its own conver-
gence only needs to compute the matrix X̃i

q at the updating
node q. Therefore, similar to (5), we can write

Ri
ỹkỹk

= Q̃i
kΛ̃i

kQ̃iH
k , Ri

ñkñk
= Q̃i

kQ̃iH
k (12)

where Q̃i
k = X̃i−H

k . Node k then extractsQi
k as

Qi
k = [IMk

0] Q̃i
k

[
IR
0

]
. (13)



Table 1. Distributed signal subspace estimation based on local
GEVC matrix inversion in a fully-connected WSN

1. Set i← 0, q ← 1, and initialize allX0
k , ∀ k ∈ K, with random

entries.

2. Each node k ∈ K\q broadcasts N new compressed observa-
tions of

zik[j] = X
i H
k yk[iN + j], j = 1 . . . N (14)

where [.] denotes a sample index and where N is sufficiently
large such that it includes both ‘signal+noise’ and ‘noise-only’
samples.

3. At node q:

(a) Estimate Ri
ỹq ỹq

and Ri
ñqñq

via sample averaging.

(b) Compute local GEVCs X̃i+1
q from the GEVD of

(Ri
ỹq ỹq

,Ri
ñqñq

) and then Q̃i+1
q =

(
X̃i+1

q

)−H .

(c) Partition Q̃i+1
q as

Qi+1
q =

[
IMk

0
]
Q̃i+1

q

[
IR
0

]
. (15)

(d) Partition X̃i+1
q as

Xi+1
q =

[
IMk

0
]
X̃i+1

q

[
IR
0

]
(16)

G−q =
[
0 IR(K−1)

]
X̃i+1

q

[
IR
0

]
. (17)

(e) Broadcast G−q ,
[
GT

1 . . . GT
q−1 GT

q+1 . . . GT
K

]T
and ziq [j] = X

i+1 H
q yq [iN + j] to all other nodes.

4. Each node k ∈ K\{q} updates its compressor as Xi+1
k =

Xi
kGk .

5. Each node k ∈ K\{q} updates itsQi+1
k similar to steps 3a-3c.

6. i← i+ 1 and q ← (q mod K) + 1 and return to step 2.

The stacked matrix Qi will be shown below to converge to
Q̂, which is remarkable since Q̂ is part of the inverse of the
full matrix X̂, whereas the Qi

k’s are extracted from the in-
verses of the compressed matrices X̃i

k. The resulting dis-
tributed algorithm is provided in Table 1. It will be shown in
Section 5 that the new method significantly outperforms the
correlation-based method described in Section 4.2.1 in terms
of convergence speed. This improvement is indeed achieved
at the cost of more complex computations, since each node
k ∈ K at iteration i must compute all the Pk GEVCs in X̃i

k

from the GEVD of the reduced-dimension correlation matri-
ces (Ri

ỹkỹk
,Ri

ñkñk
) as well as a matrix inverse.

Theorem I: In the algorithm defined in Table 1, the
network-wide signal subspace Qi converges to the central-
ized network-wide signal subspace Q̂, i.e., limi→∞Q

i = Q̂
or in particular, limi→∞Q

i
k = Q̂k,∀k ∈ K.

Proof: Replacing Ri
ỹkỹk

in (10) by (12), and considering
the fact that Q̃iH

k X̃i
k = IPk

, equation (10) can be rewritten
as

Q̃i
kΛ̃i

k = Ri
ñkñk

X̃i
kΛ̃i

k (18)

where taking the first R columns yields

Q̃i
k = Ri

ñkñk
X̃i

k. (19)

We define the M × Pk compressor matrix Ci
k as

Ci
k =

 0 Bi
<k 0

IMk
0 0

0 0 Bi
>k

 (20)

where 0 is an all-zero matrix of proper dimension, and where3

Bi
<k = Blkdiag(Xi

1, . . . ,X
i
(k−1)) (21)

Bi
>k = Blkdiag(Xi

(k+1), . . . ,X
i
K). (22)

With this, and using (8)-(9), we can link the reduced Pk-
dimensional correlation matrices (Rỹkỹk

,Rñkñk
) with the

full M -dimensional correlation matrices (Ryy,Rnn), i.e.,

Ri
ỹkỹk

= CiH
k RyyC

i
k (23)

Ri
ñkñk

= CiH
k RnnCi

k. (24)

We now assume that i→∞, i.e., when DACGEE has con-
verged and hence at all nodes k ∈ K we have that Xi

k = X̂k

and that �̃i
k = �̂ (see (11)). Moreover since after the con-

vergence at all nodes k ∈ K we have that Xi+1
k = Xi

k, this
requires that [10]

X̃i+1
k = [Xi T

k IR . . . IR]
T . (25)

Let Ĉk be the compressor matrix Ci
k after the convergence

of the DACGEE algorithm, i.e., when in (20)-(22) Xi
k =

X̂k,∀k ∈ K. Considering this together with (24), we can
rewrite (19) as

lim
i→∞

Q̃i
k = lim

i→∞
ĈH

k RnnĈkX̃
i
k (26)

Based on (25), after convergence we have that X̂ = ĈkX̃
i
k.

Now plugging (5) into (26), and considering the fact that
Q̂HX̂ = IR, it follows that

lim
i→∞

Q̃i
k = lim

i→∞
ĈH

k Q̂Q̂HX̂ (27)

= lim
i→∞

ĈH
k Q̂

[
IR
0

]
(28)

= lim
i→∞

ĈH
k Q̂. (29)

Selecting the first Mk rows of (28), we obtain

lim
i→∞

Qi
k = Q̂k (30)

which proves the theorem.
3It is noted that the diagonal blocks are not square here, i.e., in this case

Blkdiag(.) is not truly a block-diagonal matrix in the strict sense.



5. SIMULATION RESULTS

In this section, we compare the performance of the proposed
inversion-based method with the correlation-based method
previously proposed in [6]. The simulations compare the
two methods with the ‘centralized’ and the ‘isolated’ cases.
The latter corresponds to the case where each node only ob-
serves its own Mk-channel sensor signal and hence does not
cooperate with other nodes. In all Monte-Carlo (MC) runs,
K = 10 and Mk = 15,∀k ∈ K. Out of 10 localized sources
in each MC scenario, R of them are considered as the target
sources (with an on-off behavior) and the remaining (10−R)
sources are treated as noise sources (continuously active).
The network-wide noise signal n (see (2)) can be described
as n = Jt + v where J is the steering matrix corresponding
to the noise sources, t contains the (10 − R) noise source
signals, and v models the spatially uncorrelated noise sig-
nals. The network-wide steering matrices A and J are static
matrices with dimensions 150 × R and 150 × (10 − R),
respectively, in which the entries are drawn from a uniform
distribution over the interval [−0.5; 0.5]. s and t are R-
channel and (10−R)-channel stochastic source signals from
which the observations are independently drawn from a uni-
form distribution over the interval [−0.5; 0.5]. Moreover, v is
a 150-channel stochastic signal from which the observations
are independently drawn from a uniform distribution over
the interval [−

√
0.1/2;

√
0.1/2]. In each MC run, a different

simulation scenario is created and an average of the largest
canonical angle (principal angle) between the true steering
matrix Ak and its corresponding signal subspace estimate
over all nodes is considered as a performance measure.

Fig. 1 illustrates the results for the cases where R = 2
and R = 4, averaged over 200 MC runs. This figure clearly
shows that: 1) The cooperative estimation (either centralized
or distributed) significantly outperforms the one achieved by
the isolated estimation in terms of the estimation accuracy;
2) The estimate obtained with the proposed distributed al-
gorithm converges to the estimate obtained with the central-
ized estimation; 3) The distributed signal subspace estima-
tion obtained with the proposed method converges signifi-
cantly faster than the correlation-based method presented in
[6]; 4) While the value of R remarkably affects the conver-
gence speed of the correlation-based method, it has almost
no effect on the convergence speed of the the inversion-based
method.

6. CONCLUSION

In this paper, we have proposed a distributed algorithm for
network-wide signal subspace estimation in a fully-connected
WSN. We have applied a GEVD-based method, which al-
lows to better estimate a target signal subspace in spatially
correlated noise. The algorithm first applies the DACGEE
algorithm to estimate the matrix containing all local GEVCs
at each node, and then inverts this matrix to obtain a basis
of the corresponding part of the network-wide signal sub-
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Fig. 1. Multiple target sources (signal subspace estimation)

space. It has been demonstrated that the network-wide sig-
nal subspace estimate obtained with the proposed distributed
algorithm converges to the estimate obtained with the central-
ized network-wide signal subspace, with a faster convergence
speed compared to the correlation-based method.
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