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Correlation Analysis for Group Analysis of
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Abstract— Various new brain-computer interface tech-
nologies or neuroscience applications require decoding
stimulus-following neural responses to natural stimuli such
as speech and video from, e.g., electroencephalography
(EEG) signals. In this context, generalized canonical cor-
relation analysis (GCCA) is often used as a group analysis
technique, which allows the extraction of correlated signal
components from the neural activity of multiple subjects
attending to the same stimulus. GCCA can be used to
improve the signal-to-noise ratio of the stimulus-following
neural responses relative to all other irrelevant (non-)neural
activity, or to quantify the correlated neural activity across
multiple subjects in a group-wise coherence metric. How-
ever, the traditional GCCA technique is stimulus-unaware:
no information about the stimulus is used to estimate the
correlated components from the neural data of several
subjects. Therefore, the GCCA technique might fail to ex-
tract relevant correlated signal components in practical
situations where the amount of information is limited, for
example, because of a limited amount of training data or
group size. This motivates a new stimulus-informed GCCA
(SI-GCCA) framework that allows taking the stimulus into
account to extract the correlated components. We show
that SI-GCCA outperforms GCCA in various practical set-
tings, for both auditory and visual stimuli. Moreover, we
showcase how SI-GCCA can be used to steer the estimation
of the components towards the stimulus. As such, SI-GCCA
substantially improves upon GCCA for various purposes,
ranging from preprocessing to quantifying attention.

Index Terms— generalized canonical correlation analy-
sis, correlated component analysis, electroencephalogra-
phy, stimulus-following neural response

I. INTRODUCTION

Traditionally, brain-computer interface (BCI) and other neuro-
science applications are oriented towards active paradigms, re-
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quiring the active participation of a user following instructions.
Furthermore, they use multi-trial designs, requiring the same
stimulus to be repeated multiple times to be able to average
the brain responses to enhance the signal-to-noise (SNR) ratio.
Moreover, synthetic stimuli such as flickering checkerboard
patterns or beep sounds are used to elicit more controllable
and deterministic neural responses, such as the P300-response
or steady-state visual-evoked potentials (SSVEPs) [1]. While
such controlled BCI paradigms are valuable from a scientific
point of view, their practical impact is often limited to a few
niche applications, for example, to re-establish communication
for patients suffering from locked-in syndrome [1], [2]. To
open up BCI technology to much more widespread usage in
the daily life context, the limiting artificial conditions of such
controlled BCI paradigms need to be alleviated.

In the past few years, we have seen a surge of BCI applica-
tions that are passive, i.e., tapping into the natural behavior of a
user, single-trial, i.e., not requiring repetitions of the stimulus,
and operate on natural sensory stimuli, such as speech/music
and natural video [3]–[13]. These new BCI paradigms can then
be employed in much more mainstream application domains,
such as hearing aids and consumer earphones [3], [4], [14]–
[16], educational sciences [5], [11], [17], neuromarketing [6],
or virtual reality environments [18]. Many of these applica-
tions require decoding stimulus-following neural responses,
for example, to quantify levels of absolute [8], [10], [19] or
selective attention [3], [14] to a particular auditory or visual
stimulus. The temporal dynamics of the stimulus then result
in a so-called stimulus-following neural response, which can
be decoded from different neurorecording modalities such
as electroencephalography (EEG), magnetoencephalography
(MEG), or electrocorticography (ECoG). The EEG modality
is particularly interesting because it is non-invasive, low cost
and highly mobile [1].

However, decoding neural responses to natural stimuli is
much more challenging from a signal processing perspective,
given that they are much more unpredictable (resulting from
the nature of the stimulus) and suffer from a very low SNR,
as the targeted stimulus-following neural responses are buried
under all kinds of non-neural and neural noise. Given the
single-trial paradigm, averaging the responses across multiple
trials is not an option anymore to deal with this extremely
low SNR. Therefore, much more advanced, data-driven signal
processing algorithms are required and being developed to
enhance the targeted stimulus-following activity and suppress
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all other noise [3], [20], [21]. In this paper, we focus on the
group analysis of such stimulus-following responses, i.e., we
assume a set of synchronized neural responses to the same
natural stimulus is available, e.g., from a group of subjects
all attending to the same stimulus. The group analysis of
the stimulus-following neural responses can then be a goal
in itself, e.g., to decode a notion of group attention to the
stimulus, as employed in educational neuroscience [5] or
neuromarketing [6]. Alternatively, the group information can
be leveraged to assist the decoding of stimulus-following
neural responses on an individual level, using it as, e.g., a
preprocessing technique to a priori improve the SNR [22],
[23].

In this paper, we specifically focus on a signal processing
technique called generalized canonical correlation analysis
(GCCA), the multi-view extension of the frequently used
canonical correlation analysis (CCA) [24], [25]. CCA extracts
the correlated components between two views of the same
activity [26]. In more traditional BCI’s that, for example,
decode SSVEPs, CCA is one of the most commonly used
algorithms for classification by maximizing the correlation
between the EEG responses and template reference signals
that model the different flickering stimuli at their specific
frequency (including harmonics) [27]. In the context of natural
stimulus-following neural responses, CCA is, for example,
used to decode the speech envelope of an attended speech
source from EEG [9], [28]. In CCA, a decoder on the multi-
channel EEG is then simultaneously trained with an encoder
on the speech envelope to find these correlated components.
The resulting correlation can then be used to decode selective
attention, e.g., between two competing speech sources [3].
Its multi-view extension is GCCA, where the objective is to
decode correlated components between more than two views
of the same activity [24], [25]. In SSVEP-based BCIs, GCCA
has been used to extract more natural reference signals by
extracting the correlated components from several EEG trials
containing responses to the same stimulus frequency. These
learned reference signals can then be used in the previous two-
view CCA method to classify new SSVEPs [29]. GCCA is
moreover often used when multiple EEG signals from several
users are available that simultaneously attend to the same
natural stimulus. GCCA can then be used to quantify attention,
enhance the SNR, reduce the dimensionality, or summarize the
set of EEG signals [5], [6], [13], [22]. An excellent tutorial
paper on GCCA (there dubbed MCCA) for decoding brain
responses is written by de Cheveigné et al. [22].

A property of GCCA in this context is that it is stimulus-
unaware: to extract the correlated components from the syn-
chronized EEG signals, it does not assume or use any stimulus
information. This is attractive in situations where the stimulus
is unknown or unavailable, or when it is unknown what
features of the stimulus elicit decodable neural responses.
However, this stimulus-unawareness can be a disadvantage at
the same time, e.g., when the stimulus is available or known,
which occurs when a particular stimulus is deliberately used
(e.g., in neuromarketing) or can be recorded (e.g., in hearing
aids, in the classroom). Exploiting the stimulus in those
situations as side information to help (e.g., in a regularization

context) or steer the estimation of the correlated components
across the synchronized EEG activity can then be highly
beneficial, especially if we consider the very low SNR of
the stimulus-following neural responses. This very low SNR
is even harder to cope with when the amount of estimation
data is limited, as is the case in a time-adaptive, online
processing context [4], or when the group size is limited by the
application. Therefore, the objective of this paper is to develop
and analyze a stimulus-informed GCCA (SI-GCCA) algorithm
that allows taking the stimulus into account when performing a
group analysis of stimulus-following neural responses. While
the use of CCA to extract correlated components between
(individual) neural responses and the (natural) stimulus has
been successfully established (see before and, e.g., [9], [27],
[28]), such a group analysis of multiple stimulus-following
neural responses where the neural decoders are specifically
steered to yield responses that are (more) coherent with the
natural auditory/visual stimulus has not yet been developed.

The paper is structured as follows. In Section II, we explain
the well-known MAXVAR algorithm for GCCA and its cor-
related component analysis (corrCA) variant. In Section III,
we derive our proposed SI-GCCA algorithm. In Section IV,
we then describe all necessary details about the datasets and
experiments to analyze the developed algorithms. The results
are shown and discussed in Section V, and conclusions are
drawn in Section VI.

Disclaimer: A conference precursor of this manuscript has
been published in [30]. The current manuscript contains a
more extensive explanation of the developed algorithm, in-
cludes an additional variant (e.g., the corrCA and SI-corrCA
algorithm), does not only focus on speech as in [30] but also
includes video, includes additional experiments, and provides
additional use cases of the algorithm and a more in-depth
analysis.

II. MAXVAR-GCCA/CORRCA

In canonical correlation analysis (CCA), the objective is to find
the components that exhibit the highest correlation across two
different views or subjects. There exist multiple options to gen-
eralize CCA to more than two views or subjects as envisaged
in generalized canonical correlation analysis (GCCA), such as
MAXVAR, SUMCORR, SSQCORR, . . . [24], [25] However,
the two most popular variants are SUMCORR and MAXVAR,
which both have the traditional CCA for two views as a special
case [31]. SUMCORR naturally extends CCA to more than
two views by maximizing the sum of pairwise correlations be-
tween the different filtered views. However, this optimization
problem turns out to be NP-hard with no closed-form solu-
tion [32]. Therefore, a relaxation of the SUMCORR-problem
is often used, the MAXVAR-problem, in which the average
pairwise distance between the filtered views is minimized.
Hence, MAXVAR starts from a different interpretation of the
CCA problem and conveniently boils down to a closed-form
solution in the form of a generalized eigenvalue decomposition
(GEVD), similar to CCA [24], [33], [34]. An interesting
property of such a GEVD is that it is invariant under a scaling
of one the views in the (G)CCA problem (see Lemma I in
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Hassani et al. [35]). Because of this attractive property of the
MAXVAR-GCCA formulation (i.e., boiling down to a GEVD)
and because it allows for an easier introduction of the stimulus
information (see Section III), we choose this formulation in
this work. The MAXVAR-GCCA formulation for stimulus-
following neural responses is introduced in Section II-A. In
the context of a group analysis of stimulus-following neural
responses [22], sometimes an additional constraint is added to
enforce identical neural decoders across all subjects [5], [6],
[9]. GCCA with this additional constraint is often referred to as
‘correlated component analysis’ (corrCA) and will be briefly
reviewed in Section II-B. The additional constraint in corrCA
acts as a regularizer to limit the degrees of freedom in the
model, avoiding overfitting in cases where the amount of data
is limited.

A. MAXVAR-GCCA

We consider the EEG data from K subjects attending to the
same natural stimulus, for example, a speech signal or video.
This setup is visualized in Figure 1. We denote Xk ∈ RT×M

as the EEG data of the kth subject, where T denotes the
number of available EEG samples. Each EEG sample is M -
dimensional, corresponding to, for example, different EEG
channels and/or time-lagged copies of each channel, where the
latter allows to also exploit spectral or temporal information
in the data-driven decoder design. Such temporal filtering is,
for example, needed to compensate for temporal differences
in neural processing between subjects in the group. Given C
EEG channels and L time lags, ranging from −L−1

2 to L−1
2

(assuming L is odd), the EEG data matrix Xk when using
spatiotemporal filtering will then consist of M = CL columns.
The resulting EEG regression matrix Xk is in that case a block
Hankel matrix, e.g., for L = 5:

Xk =
[
Xk,1 . . . Xk,C

]
,

Xk,c =


0 0 xk,c(0) xk,c(1) xk,c(2)
0 xk,c(0) xk,c(1) xk,c(2) xk,c(3)

xk,c(0) xk,c(1) xk,c(2) xk,c(3) xk,c(4)
...

...
...

...
...

xk,c(T − 3) xk,c(T − 2) xk,c(T − 1) 0 0

 ,

with xk,c(t) the cth-channel EEG signal of the kth subject.
While not strictly necessary, for simplicity, we assume an
equal dimensionality per subject, i.e., M is the same across
the EEG recordings of all subjects. We also assume that the
EEG data in Xk is centered or high-pass filtered such that it
is zero-mean.

The objective is to find the M × Q-dimensional neural
decoders Wk ∈ RM×Q such that the individual projected
signals XkWk ∈ RT×Q across all subjects k = 1, . . . ,K
are on average as close as possible to each other. This can
be realized by introducing a Q-dimensional shared signal
subspace spanned by the columns of S =

[
s1 · · · sQ

]
∈

RT×Q, and also optimizing for this shared signal subspace to
be on average closest to XkWk, for all k [25], [34], [36]:

MAXVAR-GCCA problem

min
W1,...,WK ,S

K∑
k=1

||S−XkWk||2F + µ

K∑
k=1

||Wk||2F

s.t. STS = IQ,

(1)

with IQ the Q-dimensional identity matrix and ||·||F the
Frobenius norm. The second term in (1) represents ℓ2-norm
regularization or diagonal loading to avoid overfitting, where
the hyperparameter µ controls the amount of regularization
added. If µ = 0, no regularization is used, corresponding
to the original MAXVAR-GCCA problem. The constraint
STS = IQ ensures that subsequent neural decoders have
orthogonal/uncorrelated outputs on average1 and avoids the
trivial solution where all Wk’s and S are set to zero.

Defining Rkl = XT
kXl ∈ RM×M as the sample crosscor-

relation matrix of Xk and Xl (autocorrelation matrix when
k = l),

RDxx
= Blkdiag(R11, . . . ,RKK) ∈ RKM×KM

represents the block diagonal matrix containing the per-subject
autocorrelation matrices, and

Rxx = XTX ∈ RKM×KM ,

with X =
[
X1 · · · XK

]
∈ RT×KM , is the correlation

matrix of all EEG data, containing all correlation matrices Rkl

in its blocks. The Karush-Kuhn-Tucker (KKT) conditions then
lead to the following generalized eigenvalue problem2 [34],
[36]:

MAXVAR-GCCA solution

(RDxx
+ µIKM )W = RxxWΩ, (2)

where W =
[
WT

1 · · · WT
K

]T ∈ RKM×Q concatenates
all per-subject neural decoders. We find the optimal neural
decoders W as the Q generalized eigenvectors (GEVcs) cor-
responding to the Q smallest generalized eigenvalues (GEVls),
which can be found in the diagonal matrix Ω ∈ RQ×Q

(see [34] and the derivation of SI-GCCA in Section III-A).
Furthermore, it can be found that

S =

K∑
k=1

XkWkΩ. (3)

The correct scaling of the GEVcs and thus neural decoders is
determined via the equality constraint STS = IQ and (3).

Note that alternatively to solving the generalized eigenvalue
decomposition (GEVD) in (2), the neural decoders can also
be found via the eigenvalue decomposition of the correlation
matrix of all the pre-whitened data matrices of each subject. As
such, GCCA can be formulated as concatenating two principal
component analysis (PCA) blocks in a two-step analysis,

1This is a major difference with the SUMCORR formulation, where
the subsequent neural decoders for each individual subjects should yield
uncorrelated outputs.

2The derivation of (2) is a special case of the derivation of the SI-GCCA
solution in Section III-A, i.e., for γ = 0.



4

Fig. 1: In this work, we consider the EEG data Xk of K subjects attending to the same natural stimulus, represented by Y. In GCCA, the intuitive objective
is to find per-subject neural decoders Wk that maximize the pairwise correlation between the neurally decoded signals XkWk . Here we implement this
objective via the MAXVAR framework. In our proposed SI-GCCA framework, the stimulus is included in the optimization problem via a stimulus encoder
V to steer and regularize the estimation problem.

which might be more intuitive and easy to understand, as
explained and motivated in [22]. As furthermore explained
in [22], the inverse eigenvalues of (2) represent the degree of
correlation that exists for each component. A component that
is only present in the data of a single subject corresponds to
a unit eigenvalue, whereas a component shared by exactly P
data matrices corresponds to an associated eigenvalue of 1

P .
As such, the eigenvalues are smaller for signal components
that are shared by many subjects.

B. MAXVAR-corrCA

In the GCCA problem in Section II-A, for each subject k,
a different neural decoder Wk is trained. As an additional
constraint, one could restrict these per-subject neural decoders
to be the same across subjects, i.e., W1 = · · · = WK =
W ∈ RM×Q, which is dubbed corrCA in [5], [6], [9]. From
a parameter estimation point of view, this can be viewed as
an additional regularization, as the number of parameters that
need to be estimated drastically decreases. From a neural
point of view, this assumes more uniform neural signals across
subjects.

In MAXVAR-corrCA with diagonal loading, the optimiza-
tion problem in (1), therefore, boils down to:

MAXVAR-corrCA problem

min
W,S

K∑
k=1

||S−XkW||2F + µ ||W||2F

s.t. STS = IQ.

(4)

The KKT conditions then lead to the following generalized
eigenvalue problem3:

3Again, the derivation can be viewed as a special case of the derivation in
Section III-A, when γ = 0.

MAXVAR-corrCA solution(
K∑

k=1

Rkk + µIM

)
W =

(
K∑

k=1

K∑
l=1

Rkl

)
WΩ. (5)

As opposed to the GEVD in (2), which is of dimension KM ,
this GEVD is only of dimension M , effectively showing the
regularization aspect of corrCA. Moreover, the matrices in (5)
correspond to the sum of the M ×M block matrices of RDxx

and Rxx, respectively, showing the effect of restricting the
per-subject neural decoders to be the same.

III. SI-GCCA/SI-CORRCA

We now propose the stimulus-informed GCCA (SI-GCCA)
technique for the group analysis of stimulus-following neural
responses, in which we include the stimulus as side infor-
mation, as visualized in Figure 1. The implicit assumption
in SI-GCCA is, therefore, that the correlated components
across the K different EEG recordings correspond to stimulus-
following/-related neural responses. This assumption also de-
lineates the context in which we propose SI-GCCA, i.e., all K
EEG recordings are recorded using the same natural stimulus
and are synchronized in time. In that context, the assumption
holds by design.

The stimulus is incorporated in the GCCA technique with
two objectives in mind. Firstly, to steer the estimation of
the correlated components towards the stimulus and specific
stimulus representations. Secondly, it can be viewed as task-
informed regularization (in the broad sense), as it allows to
take additional information into account to cope with situations
where less information (e.g., little data, few subjects) is
available. Both objectives will be evaluated in Section V.

A. SI-GCCA

Apart from the K zero-mean EEG signals Xk, now also
assume we have access to the stimulus via the P -dimensional
stimulus representation Y ∈ RT×P (see Section IV-B.1 for
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examples of such a representation for a speech and video stim-
ulus). In SI-GCCA, our goal is to ensure that the shared signal
subspace S, which connects the EEGs of the different subjects,
is also close to the stimulus representation Y, i.e., the signals
in S and Y should be correlated. We do this by introducing
an extra term into the MAXVAR-GCCA estimation problem
in (1), where we use a forward model/encoder V ∈ RP×Q on
the stimulus to map it to the shared signal subspace S:

SI-GCCA problem

min
W1,...,WK ,

V,S

K∑
k=1

||S−XkWk||2F + γ ||S−YV||2F

+ µ

(
K∑

k=1

||Wk||2F + ||V||2F

)
s.t. STS = IQ.

(6)

The hyperparameter γ determines how much weight is put
onto the stimulus, i.e., how hard the stimulus ‘pulls’ on the
shared signal subspace. The motivation behind using a simple
forward model V on the stimulus representation is that it
essentially retains the MAXVAR-GCCA structure as in (1),
where the stimulus acts as an additional view of the underlying
shared subspace. We will show that, as a result, SI-GCCA
retains the attractive property of MAXVAR-GCCA that it can
be solved via a GEVD.

The Lagrangian function is equal to:

L(W1, . . . ,WK ,V,S,Λ) = (K + γ)Tr (STS)−

2

K∑
k=1

Tr (STXkWk) +

K∑
k=1

Tr (WT
kX

T
kXkWk)−

2γTr (STYV) + γTr (VTYTYV) + µ

K∑
k=1

Tr (WT
kWk)+

µTr (VTV)− Tr ((STS− IQ)Λ) ,

with Λ ∈ RQ×Q a symmetric matrix containing the Lagrange
multipliers. The KKT conditions then lead to the following
four equations:

∇Wk
(L) = 0 ⇔ XT

kS = (Rkk + µIM )Wk, ∀k (7)
∇V (L) = 0 ⇔ γYTS = (γRyy + µIP )V, (8)

∇S (L) = 0 ⇔ S =

(
K∑

k=1

XkWk + γYV

)
Ω, (9)

∇Λ (L) = 0 ⇔ STS = IQ, (10)

with Ryy = YTY ∈ RP×P the stimulus autocorrelation
matrix and Ω = ((K + γ)IQ −Λ)

−1 ∈ RQ×Q a symmet-
ric matrix. Define the crosscorrelation matrix between EEG
data matrix Xk and stimulus data matrix Y as Rky =
XT

kY ∈ RM×P , and the augmented data matrix X̄ =[
X1 · · · XK Y

]
∈ RT×(KM+P ) and variables W̄ =[

WT
1 · · · WT

K VT
]T ∈ R(KM+P )×Q, both including the

stimulus data matrix and, respectively, the forward encoder.
By plugging (9) into (7) and (8), and combining all equations,
we find:

SI-GCCA solution

(PRDx̄x̄ + µIKM+P )W̄ = PRx̄x̄PW̄Ω, (11)

where Rx̄x̄ = X̄TX̄ ∈ R(KM+P )×(KM+P ), RDx̄x̄ =
Blkdiag(R11, . . . ,RKK ,Ryy), and

P =

[
IKM 0
0 γIP

]
(weighting matrix).

Using this in (11), we find

PRDx̄x̄
= Blkdiag(R11, . . . ,RKK , γRyy) ,

and

PRx̄x̄P =


R11 . . . R1K γR1y

...
...

...
RK1 . . . RKK γRKy

γRy1 . . . γRyK γ2Ryy

 .

While (11) resembles a generalized eigenvalue problem, Ω
is not a diagonal matrix. However, it can be easily found that
the underlying solution boils down to a GEVD, given that Ω
is orthogonally diagonalizable as it is a symmetric matrix:

Ω = UΣUT, (12)

with U ∈ RQ×Q an orthogonal matrix and Σ ∈ RQ×Q a di-
agonal matrix. Substituting (12) in (11) reveals the underlying
GEVD that leads to the solution:

(PRDx̄x̄
+ µIKM+P )W̄U = PRx̄x̄PW̄UΣ. (13)

From (13), it can be seen that the set of optimal neural
decoders and stimulus encoders defined by W̄ are in the
subspace spanned by the GEVcs from the matrix pencil
(PRDx̄x̄

+ µIKM+P ,PRx̄x̄P). Given that P is a symmetric
matrix, and (PRDx̄x̄

)
T
= RT

Dx̄x̄
PT = RDx̄x̄

P = PRDx̄x̄
,

(13) is the GEVD of a matrix pencil of two real symmetric
matrices with PRx̄x̄P positive definite, therefore, resulting in
a real solution for GEVcs and GEVls (found on the diagonal
of Σ). Furthermore, as the solution of (6) is only defined
upon any orthogonal transformation, and since the objective
function at the optimal solution can be found4 to be equal to
(K+γ)Q−Tr

(
Σ−1

)
, we find the optimal neural decoders Wk

and stimulus encoder V as the Q GEVcs corresponding to the
Q smallest GEVls. The equality constraint in (10) determines
the correct scaling of the GEVcs. We summarize the SI-GCCA
algorithm in Algorithm 1. A MATLAB implementation is
available [37].

B. SI-corrCA

In the stimulus-informed corrCA (SI-corrCA) version we
constrain the per-subject neural decoders to be the same across
subjects. In this scenario, we are most heavily introducing
additional constraints into the group decoding problem: all
neural decoders are the same across subjects (corrCA) and
the correlated components must resemble the stimulus features
(stimulus-informed). The optimization problem then becomes:

4Proofs are omitted for conciseness.
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Algorithm 1: SI-GCCA

Input: K stimulus-driven EEG signals Xk ∈ RT×M , stimulus
features Y ∈ RT×P , stimulus hyperparameter γ, ℓ2-norm
regularization hyperparameter µ, subspace dimension Q
Output: Per-subject neural decoders Wk∈ RM×Q

1: Compute correlation matrices Rx̄x̄ and RDx̄x̄
=

Blkdiag(R11, . . . ,RKK ,Ryy) , with X̄ =[
X1 · · · XK Y

]
, Rkk = XT

kXk, and Ryy = YTY
2: Compute W̄ as the Q GEVcs corresponding

to the Q smallest GEVls of the matrix pencil

(PRDx̄x̄
+ µIKM+P ,PRx̄x̄P), with P =

[
IKM 0
0 γIP

]
3: Scale the GEVcs such that STS = IQ, with S defined in

(9)
4: Extract Wk from W̃ =

[
WT

1 · · · WT
K VT

]T

SI-corrCA problem

min
W,V,S

K∑
k=1

||S−XkW||2F + γ ||S−YV||2F

+ µ
(
||W||2F + ||V||2F

)
s.t. STS = IQ.

(14)

The KKT conditions then, similarly to Section III-A, lead
to the following generalized eigenvalue problem:

SI-corrCA solution K∑
k=1

Rkk 0

0 γRyy

+ µIM+P

[W
V

]
=


K∑

k=1

K∑
l=1

Rkl γ
K∑

k=1

Rky

γ
K∑

k=1

Ryk γ2Ryy

[WV
]
Ω,

(15)

merging properties from both the MAXVAR-corrCA solution
in (5) and the SI-GCCA solution in (13).

IV. EXPERIMENTS

We will evaluate and compare the different GCCA and SI-
GCCA variants based on the EEG signals of a group of
subjects listening to the same speech signals or watching the
same videos. In this section, we describe the experiments in
terms of the datasets (Section IV-A), the EEG preprocessing
and stimulus feature extraction (Section IV-B), the perfor-
mance evaluation schemes and metrics (Section IV-C), and the
decoder setup (Section IV-D). MATLAB code to reproduce all
experiments is available online [37].

A. Datasets
Two datasets are used to compare the various methods: one

with natural speech and one with video footage as the stimulus.

1) Speech dataset: The speech dataset is taken from the
first experiment of Broderick et al. [38] and contains the
EEG data of 19 normal-hearing subjects listening to the
same audiobooks. The EEG data is recorded with a 128-
channel BioSemi ActiveTwo system and is re-referenced to the
average mastoid channel. The data was recorded per subject
separately in 20 trials of around 3min long and is cut into
52 1min-trials for further processing. In total, there is 52min
of synchronized EEG/speech data per subject. This dataset is
publicly available [39].

2) Video dataset: The video dataset is taken from the
Single-Shot dataset of Yao et al. [13] and contains the EEG
data of 20 healthy subjects with normal or corrected-to-normal
vision watching the same video footage. The video footage
consists of a single moving person during a performance (e.g.,
dance, magic shows). The EEG data is recorded with a 64-
channel BioSemi ActiveTwo system. The data was recorded
per subject separately in 2 trials of around 36 and 35min and
is cut into 56 1min-trials for further processing. This dataset
is publicly available [40].

B. Stimulus feature extraction and EEG preprocessing

1) Stimulus features:
a) Speech: The speech signals are represented by the low-

frequency envelope of the speech signal, computed using the
Hilbert transform [41]. In various works (e.g., [14]–[16], [41]),
it has been shown that the EEG signals track this speech
envelope. Moreover, we bandpass-filter the speech envelope
using a 4th-order Butterworth filter in the δ-band (1–4Hz),
where it is shown to give good tracking results [10]. The
resulting signal is stored in a one-dimensional vector y ∈
RT containing the samples of the envelope at different time
instances during the experiment. This representation y of the
speech stimulus will be used in the SI-GCCA framework to
create the matrix Y (see also Section IV-D).

Note that while in this work, we choose the speech envelope
as an exemplary stimulus representation for natural speech,
other (higher-level) features such as, e.g., phoneme and word
onsets, phoneme and word surprisal, or cohort entropy could
be (even additionally) used, as they are shown to also syn-
chronize with neural signals [42]–[44].

b) Video: The video stimulus is represented by an object-
based version of the average optical flow, i.e., the magnitude of
the pixel-wise velocity vector between frames averaged across
all pixels belonging to an object in the video (after object
segmentation) [13]. This again results in a one-dimensional
vector y ∈ RT . In Yao et al. [13], it is shown that the object-
based optical flow leads to significant tracking in the EEG
signals of subjects watching a video. This object-based optical
flow is computed after resampling (including anti-aliasing) the
video data to 30Hz and resizing it to 854× 480 pixels [13].

2) EEG preprocessing: The EEG data are preprocessed
similarly to the original references of the datasets [13], [38].
This means that the EEG data for the video dataset is
first preprocessed by interpolating bad channels, average re-
referencing, notch filtering to remove the powerline noise,
and regressing out eye activity using EOG. For the speech
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dataset, the EEG data were re-referenced to the average of
the mastoid channels. Additionally, the EEG data is bandpass-
filtered (between 1–4Hz for the speech dataset and 0.5–15Hz
for the video dataset), downsampled (to 8Hz for the speech
dataset and 30Hz for the video dataset), and normalized. In
both cases, the EEG data are afterwards normalized per 1min-
trial by setting the mean per channel to zero and the Frobenius
norm across all channels to one.

C. Performance evaluation
1) Testing procedure: To investigate the influence of differ-

ent variables such as group size, amount of training data, and
number of channels, we perform Monte-Carlo experiments in
which we fix 2 variables to a default value, and perform a
sweep on the third one. 50 Monte Carlo runs are used for
each value in the sweep. Possible interactions between these
3 variables will be investigated ad hoc (see Section V-D).
The default values of the different variables are 40min of
training data, 64 channels, and using all subjects. In the speech
case, this means that the 64 channels corresponding to the
64-channel BioSemi system of the video dataset are chosen
from the 128-channel EEG system of the speech dataset.
As such, the baseline values between the speech and video
datasets are the same. When 40min of training are selected,
the rest of the trials are split into 25% validation set (for
hyperparameter estimation, see Section IV-D.2) and 75% test
set. Per Monte Carlo run, the training trials are randomly
sampled from all available trials. When varying the group
size or number of channels, the chosen group or channels
are similarly randomly changed between Monte Carlo runs.
The same training-validation-test set split per Monte Carlo
run is used for all methods, such that the results are directly
comparable between methods.

The test window length, over which the correlation perfor-
mance metrics below are computed, is 60 s.

2) Evaluation metrics: We consider two different evaluation
metrics to compare the different methods: the inter-subject
correlation (ISC) and stimulus correlation (SC). All evaluation
metrics are schematically explained in Figure 2.

a) Inter-subject correlation (ISC): GCCA is often used to
quantify the group attention to a specific natural stimulus by
using the ISC as a proxy for attentional engagement [5]–[8],
[13]. This ISC is defined as the average pairwise correlation
coefficient between the GCCA-decoded EEG recordings of the
different subjects, where the Pearson correlation coefficient
ρ(x,y) between two zero-mean one-dimensional time signals
x ∈ RT and y ∈ RT is defined as:

ρ(x,y) =
xTy

||x||2 ||y||2
.

Given the zero-mean one-dimensional projected EEG signals
z
(q)
k = Xkw

(q)
k ∈ RT where w

(q)
k denotes the qth column of

the (SI-)GCCA decoder Wk (or of W in the case of corrCA),
the ISC for component q is thus defined as:

ISC(q) =
2

K(K − 1)

K−1∑
k=1

K∑
l=k+1

ρ
(
z
(q)
k , z

(q)
l

)
. (16)

This ISC can be evaluated per window of a certain length on
the test set to compare the various methods. Note that even for
the stimulus-informed algorithms, at test time, we do not take
the stimulus into account but compare them with the stimulus-
unaware versions on exactly the same basis by only taking the
projected EEG signals z

(q)
k into account.

b) Stimulus correlation (SC): Similarly to [22], [23], we
can also use (SI-)GCCA/corrCA as a preprocessing tool to a
priori enhance the SNR of the stimulus-following responses by
leveraging the group information, to then perform a traditional
backward stimulus correlation analysis on the projected EEG
signals Zk = XkWk ∈ RT×Q. We can assume the stimulus
feature y ∈ RT to be one-dimensional here (see Section IV-
B.1). The SC can then be found by first training a least-
squares decoder dk ∈ RQLd from the time-lagged (using Ld

additional time lags) projected EEG signals Z̃k ∈ RT×QLd

to the stimulus y. As explained in [15], this decoder can be
found by solving the normal equations:

dk =
(
Z̃T

kZ̃k

)−1

Z̃T
ky. (17)

The SC for subject k can then be evaluated per window of a
certain length on the test set by first applying the (SI-)GCCA
decoders as a dimensionality reduction/preprocessing step and
then applying the stimulus decoder:

SCk = ρ
(
y, Z̃kdk

)
. (18)

While (18) contains the per-subject SCk, we can also eval-
uate the overall SC across all subjects based on the subspace

signal S = 1
K

K∑
k=1

XkWk defined as the average projected

EEG signal (similar to (3)), which then acts as the summary
signal. Using a decoder

davg =
(
S̃TS̃

)−1

S̃Ty (19)

trained on the time-lagged average subspace signal S̃ ∈
RT×QLd of the training set, the resulting stimulus correlation
SCavg then represents a proxy for the group attention:

SCavg = ρ
(
y, S̃davg

)
. (20)

These stimulus decoders (17) and (19) are trained
on the same data (i.e., the training set) on which the
(SI-)GCCA/corrCA decoders are trained. That means the
(SI-)GCCA/corrCA decoders are first applied to the training
set, after which the decoders in (17) and (19) can be trained.

3) Significance level computation: The significance levels of
the ISC and SC are computed using a random permutation test,
where all correlation between the data is removed by randomly
permuting all trials of the different subjects w.r.t. each other or
randomly permuting the (projected) EEG and stimulus trials
w.r.t. each other. Firstly, 50 Monte Carlo runs are performed
in which the 40 training trials are randomly selected and the
GCCA and stimulus decoders are trained. At test time, for
each Monte Carlo run, 20 random permutations of the test
trials are conducted, leading to a total of 1000 resamplings
to determine the null distribution of the ISC and SC (i.e.,
when all correlated patterns are removed). From these null



8

Fig. 2: To compare the different methods, we use three evaluation metrics: one individual metric that quantifies the synchrony between each individual
GCCA-decoded signal and the stimulus (i.e., the individual stimulus correlation SCk per subject k), and two group metrics that quantify the synchrony
between the group summary GCCA-decoded signal and the stimulus (i.e., the stimulus correlation SCavg on the average subspace signal) and the average
synchrony between GCCA-decoded EEG signals (i.e., the inter-subject correlation (ISC)).

distributions, the 5%-significance level can then be computed
and is the same for every algorithm. This significance level of
the correlations is mainly determined by the window length
(60 s) and the number of subjects/group size (which is varied
from 2 to the maximal number of subjects in the dataset) used
to compare the correlation.

D. Decoder setup

1) Filter design: In both the speech and video case, the
neural decoders are modeled using a spatiotemporal filter that
linearly combines the different EEG channels on different
time lags (see Section II-A). The number of time lags L is
chosen equal to 5, corresponding to an integration window
of [−250, 250]ms for speech, whereas in the video case, this
corresponds to [−66.7, 66.7]ms (in accordance with [13]).

The additional stimulus decoder to compute the SC in
Section IV-C.2.b is similarly modeled as a spatio-temporal
decoder, but where all time lags are now chosen post-stimulus,
i.e., from 0 to Ld−1 after the current stimulus sample. In both
cases, the integration window is chosen equal to [0, 250]ms
(post-stimulus), corresponding to Ld = 3 in the speech case
and Ld = 9 in the video case, consistent with, e.g., [3], [14].

In the SI-GCCA/-corrCA estimation, the stimulus repre-
sentation is augmented with additional time-lagged copies to
also allow for temporal filtering (via V) at the stimulus side
(including compensation for the intrinsic delay between the
stimulus and EEG response), resulting in a Hankel matrix
Y. In the speech case, the integration window is chosen
equal to [−1.25, 0]s, i.e., preceding the current sample (and
response), resulting in a Hankel matrix with P = 11 columns.
In the video case, the integration window is chosen consistent
with [13] equal to [−500, 0]ms, resulting in a Hankel matrix
with P = 16 columns.

In the speech case, maximally Q = 32 components are
extracted, whereas this is Q = 10 in the video case.

2) Hyperparameter selection: The hyperparameter µ in the
GCCA (1) and corrCA (4) estimation problems, determining
the weight on the diagonal loading regularization of the neural
decoders, and the hyperparameter γ in the SI-GCCA (6) and
SI-corrCA (14) estimation problems, determining the weight
on the stimulus part, are selected based on the average ISC
on a validation set, independent from the training and test
set. The optimal hyperparameter is selected based on the
maximal average ISC for the first component across the 1min-
trials in the validation set. For µ, a sweep in the range of
{0, 10−5, 10−4.5, . . . , 105} is performed. For γ a sweep in the
range of {0, 10−2, 10−1.5, . . . , 108} is performed.

To not further complicate the hyperparameter search in the
speech case, in the SI-GCCA (6) and SI-corrCA (14) esti-
mation problems, the hyperparameter µ for diagonal loading
is not validated, but automatically (heuristically) determined
using the method suggested by Ledoit and Wolf [45]. In the
video case, the optimal validated µ from the GCCA problem is
used in the SI-GCCA problem, as the Ledoit-Wolf procedure
did not lead to satisfying results in this case.

V. RESULTS AND DISCUSSION

We compare GCCA/corrCA with and without diagonal loading
from Section II with the newly proposed stimulus-informed
counterparts from Section III both on the speech and video
dataset according to the experiment details from Section IV.
First, we consider only the speech dataset, varying three
variables: the amount of available training data (Section V-
A), the group size (Section V-B), and the number of EEG
channels (Section V-C). In Section V-D, we investigate how
the interaction of these three variables can influence the
comparison. While the former experiments are driven from
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the perspective of using the stimulus-informed version to help
the estimation of the neural decoders, in Section V-E, we
take the alternative perspective of using SI-GCCA to steer
the estimation of components towards the chosen stimulus
representation.

In Section V-F, we then investigate and explain the perfor-
mance on the video dataset.

A. Amount of training data

In this experiment, we vary the amount of available training
data on the speech dataset from 1min to 50min while keeping
the other variables fixed, as explained in Section IV-C. Per
amount of training data, 50 Monte Carlo runs of randomly
picking the training trials are performed. Investigating different
(smaller) amounts of training data is especially relevant, for
example, in a time-adaptive context, when the decoder has
to be updated regularly to cope with the non-stationarities in
the data [4]. Figure 3a-i shows the ISC as a function of the
amount of training data only for the first component, whereas
Figure 3a-ii shows the ISC per component when using 15min
of training data. Figure 3a-iii shows the SCavg of the average
decoded subspace S as a function of the amount of training
data when using all Q = 32 components. The no regularization
(‘noReg’) case refers to µ = 0 in (1) (for GCCA) and (4) (for
corrCA), whereas the regularized case (‘reg’) refers to the case
with µ selected based on the validation set performance.

From Figure 3a-i, we learn that SI-GCCA outperforms
GCCA, especially when a smaller amount of training data
is available. Firstly, it can be seen that traditional GCCA
without any regularization or side-information heavily suffers
from overfitting in this case: only when more than 35min
of training data are available, a significant ISC is found. With
diagonal loading, this overfitting effect can be counteracted by
using the prior information that norms of the neural decoders
should be limited, leading to a significant ISC already with
5min of training data. However, a smarter way of introducing
side information seems to be using the stimulus as proposed
in the SI-GCCA algorithm: especially for smaller amounts of
training data, this outperforms GCCA, leading to significant
ISCs for 3min of training data. Note that from a numerical
perspective, the ℓ2-norm regularization and stimulus informa-
tion are different: in the former, no additional parameters need
to be estimated when using this prior information, whereas
in SI-GCCA, additional parameters are introduced in the
problem. When increasing the amount of training data, the
difference between SI-GCCA and GCCA versions becomes
smaller as the additional side-information introduced by the
stimulus is outweighed by the large amount of training data,
effectively compensating for the high dimensionality of the
problem.

Another effective way of coping with the smaller amount
of training data is by drastically decreasing the dimensionality
of the estimation problem as in the (SI-)corrCA problems.
However, there seems to be no additional benefit from the
SI-corrCA method w.r.t. corrCA with diagonal loading for
extremely low amounts of training data. The corrCA reg-
ularization technique proves to be very effective for very

low amounts of training data: below 10min, it outperforms
SI-GCCA. However, the flip side is that the performance
quickly saturates when the amount of training data increases.
(SI-)corrCA clearly suffers from its inability to model subject
differences w.r.t. (SI-)GCCA, leading to vastly lower ISCs.

Figure 3a-ii additionally shows that SI-GCCA mainly boosts
the ISC for the most significant components, whereas in
(SI-)corrCA, more significant components can be found -
the ISC is more spread out. In principle, the components
cannot be compared between methods one-to-one, as they
might represent different activities and only jointly form the
basis for the subspace. Therefore, Figure 3a-iii makes it
easier to compare across different components, as here the
average subspaces across methods are compared in terms of
their SCavg. As expected because of the design of the SI-
GCCA method, it is more effective as a preprocessing tool
for stimulus decoding, yielding higher stimulus correlations.

B. Group size
In this experiment, we vary the group size from 2 to 19 on
the speech dataset while keeping the other variables fixed.
Similarly as before, 50 Monte Carlo runs of randomly picking
the training trials and the group of subjects for a specific group
size are performed. This experiment emulates situations where
the group size is limited.

Figure 3b-i shows an even clearer effect of the stimulus
information w.r.t. the uninformed counterparts when the group
size is limited, not only for SI-GCCA but now also for SI-
corrCA. The stimulus side-information effectively compen-
sates when less information is available due to a smaller group
size, leading to a significant5 ISC already for 3 subjects in
the case of SI-GCCA and only a minor decrease in ISC.
Moreover, the corrCA variants are now outperformed each
time by a GCCA counterpart, as sufficient (40min) training
data is available (see Figure 3a-i).

In Figure 3b-ii, it can again be seen that the stimulus
information mainly boosts the most significant components,
while SI-GCCA/SI-corrCA are also more effective preprocess-
ing tools w.r.t. the stimulus-uninformed traditional versions, as
seen in Figure 3b-iii.

C. Number of channels
In this experiment, we vary the number of channels from 2 to
128 in steps of 9 on the speech dataset. Similarly as before, 50
Monte Carlo runs of randomly picking the training trials and
the EEG channels (randomly chosen) for a specific number
of channels are performed. As such, we vary the number of
parameters to be estimated and the available information.

Figure 3c-i and 3c-iii very clearly show the effect of
overfitting on the GCCA method when the number of channels
increases, when not using any regularization method or side-
information. However, there seems to be no difference between
the stimulus-informed and -uninformed (but regularized with
diagonal loading) versions in Figure 3c-i and 3c-ii when

5Note that the significance level decreases with an increasing group size,
as when more subjects are available, more pairwise correlations are averaged
in the ISC (16), suppressing more potential spurious correlations.
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Fig. 3: (-i) The ISC as a function of the amount of training data (a-i), group size (b-i), and number of channels (c-i) for the first component on the speech
data, when using 64 channels and all 19 subjects (mean ± standard deviation across runs). (a-i) For smaller amounts of training data, the SI-GCCA algorithm
outperforms the GCCA algorithms, whereas the corrCA versions perform best for extremely low amounts of training data. (b-i) The stimulus-informed versions
outperform the uninformed traditional versions for smaller group sizes. (c-i) GCCA clearly overfits without any regularization. (-ii) The ISC across components,
for 15min of training data (a-ii), group size 5 (b-ii), and 38 (random) channels (c-ii), showing mainly an effect of the inclusion of the stimulus on the most
significant components. (-iii) The SCavg of the average subspace with Q = 32 components as a function of the amount of training data (a-iii), group size
(b-iii), and number of channels (c-iii), showing how the stimulus information leads to a better preprocessor (a-iii and b-iii) and again how GCCA without
any regularization overfits when using many EEG channels (c-iii).

varying the number of channels. While SI-GCCA results in
a slight improvement w.r.t. GCCA for the SC (Figure 3c-iii),
the stimulus seems to not help in this situation in terms of the
ISC, especially when the other variables (amount of training
data and group size) are equal to the (relatively large) default
values. However, in Section V-D, we investigate what happens
when these three variables interact, and we will show that the
number of channels can have an influence when less ideal
variable values are used.

D. Interaction of variables

In the previous experiments, only one variable is varied each
time, while the other variables are taken constant at their
default values as explained in Section IV-C. As such, the
previous results are, in a certain sense, still quite conservative,
as two of the three variables are each time taken to be quite
ideal in the sense that they already lead to data-rich settings,
even when the third variable is set to a low value. In this
section, we explore how these variables interact and influence
the comparison by taking less ideal values for all three
variables, which can easily occur in a practical application.
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Fig. 4: Both SI-GCCA and SI-corrCA clearly outperform their uninformed
counterparts across various numbers of channels when only 15min of training
data and 6 subjects are available (first component).

More specifically, as a representative example, we choose the
amount of training data equal to 15min, the group size equal
to 6, and vary the number of channels from 2 to 65 in steps
of 9 on the speech dataset.

Figure 4 shows how this interaction between variables
favors even more the stimulus-informed versions w.r.t. the
stimulus-uninformed GCCA variants across multiple numbers
of channels. Only when using the stimulus, a significant ISC
can be obtained when using more than 30 channels. Moreover,
similarly to small group sizes in Figure 3b-i, SI-corrCA
substantially outperforms corrCA with diagonal loading. This
particular instance showcases how in non-ideal, practical use
cases, where the amount of training data and the group size
is limited, our newly proposed SI-GCCA/corrCA algorithms
can lead to a substantial benefit.

E. Steering the GCCA estimation

In Sections V-A to V-D, we have shown how SI-GCCA
is superior when the available information to estimate the
correlated components is limited, e.g., because the amount
of training data or group size is limited. Interpreted broadly
(not numerically), SI-GCCA can be seen as a task-informed
regularization technique that allows to introduce additional
available information when estimating correlated components
from stimulus-synchronized EEG activity. In this section, we
want to put forward an alternative interpretation of SI-GCCA,
i.e., using the stimulus to steer the estimation of the correlated
components towards the stimulus. This alternative perspective
connects with employing (SI-)GCCA, e.g., as a preprocessor
for stimulus decoding [23] or to use the ISC as a proxy
for attentional engagement to the content of one particular
stimulus, for example, the teacher’s voice in a classroom [5].

From Figure 3c-i and 3c-iii, it can already be seen that for a
similar ISC, SI-GCCA can still lead to higher SC w.r.t. GCCA.
This already indicates that while the extracted components per
subject are almost equally well correlated with one another,
the ones extracted by SI-GCCA are still more related to the
stimulus (feature) than for GCCA, in other words, SI-GCCA
steers these components more towards the stimulus. Whereas
Figure 3c-iii shows only the SC for the average subspace,
we further investigate whether this steering behavior is also
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Fig. 5: (a) The ISC between SI-GCCA and GCCA with diagonal loading
is very similar across components when using 40min of training data, all
19 subjects, and the default 64 channels. Mostly for components 6 to 8, SI-
GCCA leads to a higher SCavg than GCCA. (b) For all individual subjects,
the SC when using the first 11 components extracted with (SI-)GCCA is
higher for SI-GCCA than GCCA (Wilcoxon signed-rank test: n = 19, p-
value < 0.001). This effect is even more amplified when working with the
11-dimensional average subspace.

present on an individual level, per component and subject.
Therefore, we more closely compare SI-GCCA and GCCA
with diagonal loading for 40min of training data, using all 19
subjects and the default 64 EEG channels.

As could be seen already in Figure 3a-i for the default
settings and is now confirmed in Figure 5a, especially for the
most significant components, there is hardly any difference in
terms of ISC. When summing the ISCs across all components,
GCCA and SI-GCCA lead to the same cumulative ISC of
0.335, and no significant difference can be found across
components (Wilcoxon signed rank test, n = 32, p-value=
0.24). However, when we have a look at the SC per individual
component in Figure 5a, SI-GCCA almost always leads to a
higher or comparable SC than GCCA, even when the ISC
is lower (e.g., for component 4, 5, 6). This is specifically
noticeable for components 6 to 8. Moreover, in Figure 5b,
we show the SC when using the 11-dimensional subspace (all
components beyond the 11th are not significant in Figure 5a)
from (SI-)GCCA, per individual subject and also for the
average subspace. For all subjects, the SC is higher for the
SI-GCCA method compared to the GCCA method, showing
a significant improvement across subjects (Wilcoxon signed-
rank test: n = 19, p-value < 0.001). Furthermore, this effect is
amplified when using the average subspace. This shows how
SI-GCCA can also be used to steer the correlated components
to be more correlated with the stimulus and shows its benefit
as a preprocessor to boost the SNR before stimulus decoding,
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both on an individual and group level.

F. Analysis of video data with object-based optical flow
and the effect of the specific stimulus representation

In this section, we evaluate and compare SI-GCCA with
GCCA on the video dataset.

In Figure 6a, the ISC is shown as a function of group
size when using 40min of training data and all 64 EEG
channels. From Figure 3b-i, we would expect from the speech
dataset that the stimulus information would especially help
for group sizes below 10. However, Figure 6a shows hardly
any difference between SI-GCCA and GCCA, indicating that
the stimulus does not improve the estimation of the correlated
components (but also does not deteriorate it). An explanation
can be found in Yao et al. [13], where it is shown that the
object-based optical flow only explains 6.9% of the variance
present in the correlated components across the EEG’s of the
different subjects. A large proportion of the variance in the
stimulus-related neural responses is thus not yet explained,
such that using this specific video feature in SI-GCCA has only
a minor effect on the estimated correlated components in terms
of maximizing the ISC. To strengthen this conclusion, we
have performed a similar experiment as in [13] to quantify the
variance explained in the GCCA components for the speech
dataset when using the speech envelope as a feature. When re-
gressing out the speech envelope per subject and re-estimating
GCCA (more details in [13]), we find that the speech envelope
explains around 40.6% of all correlated activity, explaining
why SI-GCCA performs much better on the speech dataset.
This observation entails an important limitation when using
our proposed SI-GCCA method: its impact is bound to the
specific chosen stimulus representation(s).

However, even when the stimulus representation does not
explain much of the correlated neural (stimulus-related) ac-
tivity as is the case here for object-based optical flow in
the video dataset, SI-GCCA can still be used to steer the
correlated components towards that specific stimulus repre-
sentation. We highlight this point by comparing the ISC on
the video dataset for group size 4 with the SCavg across all
components. While Figure 6b shows hardly any difference in
ISC per individual correlated components, the subspaces of
increasing dimension are clearly much more related to the
object flow feature, already starting from a one-dimensional
subspace. This improved SC does not reduce the correlation
across subjects, as the ISC remains the same between both
methods. This shows that SI-GCCA extracts equally corre-
lated components as GCCA (across subjects), but the former
extracts components that better capture the temporal dynamics
in the optical flow related to the moving object in the video.

VI. CONCLUSION

In this paper, we proposed a new algorithm for the group
analysis of stimulus-following neural responses within a group
of people attending to the same natural stimulus. Our proposed
framework allows to take the stimulus itself into account when
estimating the correlated components across subjects with
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Fig. 6: (a) The ISC as a function of group size with 40min of training
data and 64 EEG channels for the video dataset. There is no benefit from the
stimulus-informed version. (b) There is hardly any difference when comparing
the ISC between SI-GCCA and GCCA across components for group size 4.
However, SI-GCCA clearly leads to a higher SCavg using increasing subspace
dimension, showing its capability to steer the estimation of the correlated
components towards the stimulus representation.

GCCA and its subject-generic variant corrCA. This stimulus-
informed GCCA framework can still be solved as a GEVD,
inheriting this attractive property from MAXVAR-GCCA.

We compared our newly proposed SI-GCCA algorithms
with the traditional stimulus-uninformed versions on a speech
and video dataset, using the speech envelope and object-
based optical flow as exemplary stimulus representations. We
demonstrated the superiority of using the stimulus as side-
information when the amount of training data or group size is
limited, even more so when these different variables interact,
also with the number of channels. This shows its practical
relevance, for example, in situations where the training set
size is limited, e.g., in a context of time-adaptive, online
processing, or when the group size is limited, e.g., as deter-
mined by the application. Using the video dataset, we showed
that a limitation of SI-GCCA, besides the requirement of
having access to the stimulus, is its dependency on the specific
stimulus representation.

Besides using SI-GCCA to introduce the stimulus as valu-
able side-information to robustify the estimation of correlated
components across a group of subjects when the available
estimation data is a priori limited, it can also be used to
steer the correlated components explicitly in the direction
of the stimulus (features). To this end, we showed that a
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higher stimulus correlation can be obtained when using SI-
GCCA versus the traditional uninformed GCCA, without any
significant reduction in the ISC.

To sum up, the proposed SI-GCCA algorithm can be
employed for various purposes in the group decoding of
stimulus-following neural responses, e.g., to avoid overfitting
and compensate for limited available information, or to steer
the design of the neural decoders towards a specific stimulus
representation. As such, it can enable various applications,
ranging from more fundamentally-oriented (e.g., preprocessing
and dimensionality reduction) to application-specific (e.g.,
quantifying attention in the classroom).
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