Unsupervised Self-Adaptive Auditory Attention Decoding: Supplementary Material

Simon Geirnaert, Tom Francart, and Alexander Bertrand, Senior Member, IEEE

In the supplementary material, we show convergence to a unique fixed point of the fixed-point iteration on the updating model (Equation (16) in the original paper). We hypothesize that under three reasonable conditions on the accuracies of the attended and unattended decoder, there exists a unique fixed point p^* to which the fixed-point iteration $p_{i+1} = \phi(p_i)$ converges, starting from any (possibly random) decoder. In Section I, we first show that there always exists such a fixed point, while in Section II we check the uniqueness of and convergence to this fixed point under the hypothesized conditions.

I. EXISTENCE

Consider the following fixed-point theorem, also known as Brouwer's fixed-point theorem [1]:

Theorem 1 (**Brouwer's fixed point theorem [1]**). Any continuous self map of a nonempty compact convex subset of a Euclidean space has a fixed point.

As the function $\phi(p_i): [0, 100]\% \rightarrow [0, 100]\%$ in (16) is a continuous function that maps its domain onto itself and [0, 1] is a closed (thus, compact) convex subset of \mathbb{R} , Brouwer's fixed point theorem assures that there exists at least one fixed point.

II. UNIQUENESS AND CONVERGENCE

We evaluate the model in (16) in a relevant range of the parameters μ_1, μ_2 , and σ , obeying three reasonable conditions, to show the convergence to a unique fixed point.

A. Three conditions for convergence

Consider the supervised subject-specific attended decoder \mathbf{d}_a with accuracy p_a (on the attended labels) and supervised subject-specific unattended decoder \mathbf{d}_u with accuracy p_u (on the unattended labels). We then a priori postulate the following three intuitive and reasonable conditions on the accuracies p_a and p_u (which will turn out to be satisfied for all subjects in both datasets):

• $p_a - p_u > 5\%$, i.e., the attended decoder needs to perform 5% better (on the attended labels) than the unattended decoder (on the unattended labels). Given that the attended speech envelope is typically better represented in the EEG, we indeed expect a difference in performance between both decoders. Moreover, this condition can be linked to the expectation that the cross-correlation between the EEG and attended speech envelope is on

average larger than with the unattended speech envelope, serving as a possible explanation for the self-leveraging effect (see Section IV-B in the original paper).

- $p_u < 85\%$, i.e., the *unattended* decoder may not perform better than 85% (on the unattended labels). If the unattended decoder performs too well, then, again, the selfleveraging effect may not be present for the same reason as mentioned in the previous condition.
- $p_a > 100\% p_u$, i.e., the attended decoder is better at predicting attended labels than the unattended decoder. This assures that the starting point of the model curve $\phi(0\%) = 100\% p_u$ (e.g., see Figure 2 in the original paper) is below the end point $\phi(100\%) = p_a$.

In the following sections, we will use the model in (16) to show that there is convergence to a unique fixed point when these three conditions are satisfied. However, it is noted that these postulated conditions are conservative in the mathematical sense, i.e., they are 'sufficient' but *not* 'necessary' conditions. When they are not satisfied, there can still be convergence to a unique fixed point.

Moreover, the three conditions are also intuitive and very reasonable from a practical point of view, as they are satisfied for all subjects in both datasets; the minimum across all subjects of $p_{\rm a} - p_{\rm u} = 8.3\% > 5\%$, the maximum across all subjects of $p_{\rm u} = 76.7\% < 85\%$, and the minimum across all subjects of $p_{\rm a} + p_{\rm u} = 124\% > 100\%$.

B. Convergence to a unique fixed point

Consider the following fixed-point theorem that provides sufficient conditions for convergence to a unique fixed point of the fixed-point iteration $p_{i+1} = \phi(p_i)$ [2]:

Theorem 2. Let ϕ be a continuous function on [a, b], such that $\phi(p_i) \in [a, b], \forall p_i \in [a, b]$, and suppose that ϕ' exists $\forall p_i \in [a, b]$ and that a constant $0 < \alpha < 1$ exists such that:

$$|\phi'(p_i)| \le \alpha, \forall p_i \in [a, b],$$

then there is exactly one fixed point $p^* \in [a, b]$ and the fixedpoint iteration $p_{i+1} = \phi(p_i)$ will converge to this unique fixed point in [a, b].

We now evaluate the model $\phi(p_i)$ in (16) and its derivative $\phi'(p_i)$ to show convergence to a unique fixed point based on Theorem 2 for the case where the conditions in Section II-A are satisfied.

The derivative $\phi'(p_i)$ of the model in (16) can be computed by hand or by using any symbolic math software and is equal to:

$$\phi'(p_i) = \frac{p_i \sigma_z(p_i)^2 \mu_2 + (1 - p_i) \sigma^2 \mu_z(p_i)}{\sqrt{2\pi} p_i^3 \sigma_z(p_i)^3} e^{-\frac{1}{2} \left(\frac{\mu_z(p_i)}{\sigma_z(p_i)}\right)^2}.$$
 (1)

⁽c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

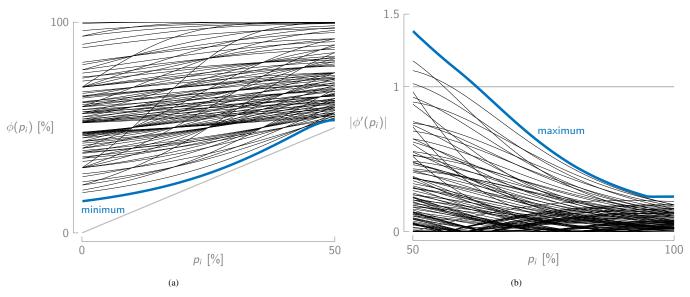


Figure 1: (a) A subset of the evaluated $\phi(p_i)$ for $p_i \in [0, 50]\%$ and the minimum over all evaluated (μ_1, μ_2, σ) that obey the conditions are all above the identity line, where $\phi(p_i) = p_i$, which shows that $\phi(p_i) > p_i, \forall p_i \in [0, 50]\%$. (b) A subset of the evaluated $|\phi'(p_i)|$ for $p_i \in [50, 100]\%$, together with the maximum over all evaluated (μ_1, μ_2, σ) that obey the conditions.

To evaluate (16) and its derivative (1), we take 300 equidistant samples of $\mu_1 \in [-2, 2]$, 300 equidistant samples of $\mu_2 \in [-2, 2]$, and 100 equidistant samples of $\sigma \in]0, 4]$. These intervals contain the complete range of parameters concerning the difference in correlation coefficients R_1 and R_2 . From this parameter range, we select all combinations of (μ_1, μ_2, σ) for which the three conditions of Section II-A are satisfied. The connection between p_a and p_u (as used in the three conditions) and the model parameters (μ_1, μ_2, σ) is given by:

$$p_{a} = P(R_{1} > 0) = \frac{1}{\sigma\sqrt{2\pi}} \int_{0}^{+\infty} e^{-\frac{1}{2}\left(\frac{x-\mu_{1}}{\sigma}\right)^{2}} dx \text{ and}$$
$$p_{u} = P(R_{2} > 0) = \frac{1}{\sigma\sqrt{2\pi}} \int_{0}^{+\infty} e^{-\frac{1}{2}\left(\frac{x-\mu_{2}}{\sigma}\right)^{2}} dx,$$

using the assumptions in Section IV-A in the original paper. These connections can be derived from the updating model in Equation (16) from the original paper by setting $p_i = 100\%$, resp. $p_i = 0\%$, resulting in the decoder accuracy of the supervised attended, resp. unattended decoder.

Figure 1a now shows a subset of $\phi(p_i)$ for $p_i \in [0, 50]\%$, for all evaluated (μ_1, μ_2, σ) that obey the three conditions, together with the minimum over all these $\phi(p_i)$. Similarly, Figure 1b shows a subset of $|\phi'(p_i)|$ for $p_i \in [50, 100]\%$, for all evaluated (μ_1, μ_2, σ) that obey the three conditions, together with the maximum over all these $|\phi'(p_i)|$. Both results are required to show convergence to a unique fixed point using Theorem 2:

Result 1: From Figure 1a, it can be seen that φ(p_i) > p_i, ∀ p_i ∈ [0, 50]%. This implies that there is no fixed point within this interval and that the fixed-point iteration will always diverge to the p_i ∈ [50, 100]% interval. This is because ∀ p_i ∈ [0, 50]% : p_{i+1} = φ(p_i) > p_i, i.e., the new accuracy in the fixed-point iteration is always

larger than the previous one, such that, inevitably, at a certain iteration, $p_{i+1} > 50\%$. It thus suffices to show that there is convergence to a unique fixed point for $p_i \in [50, 100]\%$, which is shown in the next result.

- **Result 2**: From Figure 1b, there are two possible cases, which both individually can be shown to guarantee convergence to a unique fixed point:
 - 1) $|\phi'(p_i)| < 1, \forall p_i \in [50, 100]\%$. For all these cases, we then numerically confirmed that $\phi(p_i) \in [50, 100]\%, \forall p_i \in [50, 100]\%$ such that all conditions of Theorem 2 are fulfilled to show convergence to a unique point.
 - 2) $\exists x \in [50, 100]\% : \phi'(p_i) \ge 1, \forall p_i \in [50, x]\%$ and $|\phi'(p_i)| < 1, \forall p_i \in [x, 100]\%$. Since $\phi(50\%) > 50\%$ (see Result 1) and since the derivative is positive, it is guaranteed that $\phi(p_i) > p_i, \forall p_i \in [50, x]\%$, i.e., there is no fixed point and the fixed-point iteration diverges to the $p_i \in [x, 100]\%$ interval (using a similar reasoning as in Result 1). Furthermore, it can again be numerically checked that $\phi(p_i) \in [x, 100]\%, \forall p_i \in [x, 100]\%$ to show that there is a unique point to which there is convergence in this interval (see Theorem 2).

REFERENCES

- J. M. Borwein and A. S. Lewis, *Convex Analysis and Nonlinear Opti*mization: Theory and Examples, 2nd ed. Springer-Verlag New York, 2006.
- [2] Walter Gautschi, Numerical Analysis. Birkhäuser Basel, 2012.