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Unsupervised Self-Adaptive Auditory Attention
Decoding

Simon Geirnaert, Tom Francart, and Alexander Bertrand, Senior Member, IEEE

Abstract—When multiple speakers talk simultaneously, a hear-
ing device cannot identify which of these speakers the listener
intends to attend to. Auditory attention decoding (AAD) algo-
rithms can provide this information by, for example, reconstruct-
ing the attended speech envelope from electroencephalography
(EEG) signals. However, these stimulus reconstruction decoders
are traditionally trained in a supervised manner, requiring a
dedicated training stage during which the attended speaker is
known. Pre-trained subject-independent decoders alleviate the
need of having such a per-user training stage but perform
substantially worse than supervised subject-specific decoders that
are tailored to the user. This motivates the development of a
new unsupervised self-adapting training/updating procedure for
a subject-specific decoder, which iteratively improves itself on
unlabeled EEG data using its own predicted labels. This iterative
updating procedure enables a self-leveraging effect, of which
we provide a mathematical analysis that reveals the underlying
mechanics. The proposed unsupervised algorithm, starting from
a random decoder, results in a decoder that outperforms a
supervised subject-independent decoder. Starting from a subject-
independent decoder, the unsupervised algorithm even closely
approximates the performance of a supervised subject-specific
decoder. The developed unsupervised AAD algorithm thus com-
bines the two advantages of a supervised subject-specific and
subject-independent decoder: it approximates the performance
of the former while retaining the ‘plug-and-play’ character of the
latter. As the proposed algorithm can be used to automatically
adapt to new users, as well as over time when new EEG data
is being recorded, it contributes to more practical neuro-steered
hearing devices.

Index Terms—auditory attention decoding, neuro-steered hear-
ing devices, stimulus reconstruction, unsupervised training

I. INTRODUCTION

Auditory attention decoding (AAD) encompasses the process
of determining the auditory focus of attention using a person’s
brain activity. AAD algorithms are a paramount building
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block of so-called ‘neuro-steered hearing devices’ [2], [3].
This is because current hearing aids and cochlear implants
do not know the speaker or sound source a user intends
to attend to. However, this knowledge is crucial to assist
the user in cocktail party scenarios, where multiple speakers
are simultaneously active. Knowledge of the attended speaker
can then be exploited by noise suppression algorithms that
suppress unattended speakers and other background activity,
effectively enhancing the attended speaker.

Determining the auditory attention directly from the brain
activity (e.g., non-invasively recorded using magneto- or elec-
troencephalography (MEG/EEG)) has gained attention due to
the fundamental insight that the brain tracks the amplitude
envelope of the attended speech signal [4], [5]. Importantly,
this neural envelope tracking phenomenon is not only present
in normal-hearing subjects but also in hearing-impaired listen-
ers [6]–[8].

The main class of current AAD algorithms exploits this
neural envelope tracking by reconstructing the attended speech
envelope from the recorded EEG/MEG signals via a stimulus
reconstruction decoder [3], [9]. The reconstructed speech
envelope can then be compared through the Pearson cor-
relation coefficient with the speech envelopes of the active
speakers to determine which speaker is the attended one.
Alternatively, the aforementioned backward approach (i.e.,
reconstructing the speech envelope from the EEG) can be
interchanged with a forward approach (i.e., predicting the
EEG from the speech envelope). While this has the benefit of
interpretability, it performs worse than the backward decoder
approach [10], [11]. Originally, the stimulus reconstruction
decoder was computed based on a minimum mean-squared-
error cost function [9]. Later, this approach was extended
to various other linear and nonlinear stimulus reconstruction
approaches [3]. Furthermore, other AAD paradigms, such as
decoding the spatial focus of attention [12]–[14] (instead of
reconstructing the stimulus), have been proposed.

AAD decoders can be used in a subject-specific or subject-
independent way [9], trading practical applicability with better
performance:
• A subject-specific decoder is traditionally trained in a

supervised manner, requiring a cumbersome a priori
training stage in which data from the subject under test
are collected to train an AAD decoder. This popular
approach is thus less practical to implement on hearing
devices. However, it is known that this approach results
in the highest AAD performance for a given AAD
algorithm [9].

• A subject-independent decoder also requires labeled data,
but only of subjects other than the subject under test,

(c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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which allows to pre-train it. At test time, this subject-
independent decoder can be applied to the incoming data
of the new, unseen subject, without a priori requiring
information about the attention processing of that par-
ticular subject. As such, it could be used in a ‘plug-and-
play’ fashion, pre-installed on each neuro-steered hearing
device and thus leading to a generic hearing device.
However, this practical applicability comes at the cost of
a lower AAD performance, as the decoder fails to capture
the subject-specific differences in auditory processing [9].

Moreover, both decoders remain fixed during operation,
when new data of the subject under test comes in. They do
not adapt to changing conditions and situations and thus result
in suboptimal decoding results.

Except for the algorithm in [15], other AAD algorithms [3]
are supervised and very often subject-specifically trained.
In [15], a dynamic AAD algorithm is proposed, in which
a decoder is estimated for each speaker per new incoming
segment of data. These decoders are then applied again to
that same segment of data to determine the auditory atten-
tion. Although some labeled data is required to tune specific
hyperparameters, this algorithm is by design unsupervised.
However, this algorithm is substantially outperformed by all
other traditional (supervised) AAD algorithms [3].

We propose a fully unsupervised subject-specific AAD algo-
rithm, in which a stimulus reconstruction decoder is iteratively
updated on the EEG data and speech envelopes. This iterative
updating does not require ground-truth labels, i.e., knowledge
about which is the attended or unattended speaker. Instead,
the model updates itself based on its own predictions in the
previous iteration. We hypothesize that this results in a self-
leveraging effect. As such, it should automatically adapt to a
new subject, integrating the two major advantages of a subject-
specific and subject-independent decoder:

1) A higher performance than a subject-independent de-
coder.

2) Retaining the unsupervised ‘plug-and-play’ feature of
a subject-independent decoder, thus without requiring
knowledge about the labels during training.

Furthermore, such a self-adaptive algorithm could be applied
adaptively in time. As EEG and audio data are continuously
recorded, it adapts to changing conditions and situations.

In Section II, we introduce the proposed method to update
a stimulus reconstruction decoder in an unsupervised manner.
In Section III, the data, preprocessing, and performance eval-
uation are explained. In Section IV, we provide a recursive
mathematical model to track the iterations of the unsupervised
algorithm, with the aim to gain some insights into the mechan-
ics of the self-leveraging effect. The proposed method is then
tested on two separate datasets in Section V. Applications,
future work, and conclusions are discussed in Section VI.

II. UNSUPERVISED SELF-ADAPTIVE AAD

In Section II-A, we concisely revisit the traditional supervised
training of a stimulus reconstruction decoder for AAD. The
newly proposed unsupervised procedure is explained in Sec-
tion II-B.

A. Supervised training of a decoder

In the classical approach1 towards AAD (see, e.g., [3], [9],
[10], [16], [17]), a linear spatio-temporal filter D(l, c), referred
to as a decoder, reconstructs the attended speech envelope
sa(t) from the C-channel EEG signal X(t, c) by anti-causally
integrating EEG samples over L time lags, for each EEG
channel c ∈ {1, . . . , C}:

ŝa(t) =

C∑
c=1

L−1∑
l=0

D(l, c)X(t+ l, c), (1)

with l the time lag index and c the channel index.
Equation (1) can be rewritten in vector format as:

ŝa(t) = dTx(t),

where

x(t) =



x1(t)
...

x1(t+ L− 1)
x2(t)

...
xC(t+ L− 1)


∈ RCL×1

contains L lags, for each EEG channel. Similarly, the vector
d ∈ RCL×1 stacks all decoder coefficients D(l, c), across
channels and time lags. The decoder d is then found by
minimizing the squared error:

d̂ = argmin
d

||sa −Xd||22 , (2)

with sa =
[
sa(0) · · · sa(T − 1)

]T ∈ RT×1 and X =[
X1 · · · XC

]
∈ RT×CL a block Hankel matrix, with

Xc =


xc(0) xc(1) xc(2) · · · xc(L− 1)
xc(1) xc(2) xc(3) · · · xc(L)
xc(2) xc(3) xc(4) · · · xc(L+ 1)

...
...

...
...

xc(T − 1) 0 0 · · · 0

 ∈ RT×L.

Defining the sample autocorrelation matrix R̂xx ∈ RCL×CL

and sample cross-correlation vector r̂xsa ∈ RCL×1 as:

R̂xx =
1

T
XTX and r̂xsa =

1

T
XTsa, (3)

the solution of (2) is equal to:

d̂ =
(
XTX

)−1
XTsa

= R̂−1xx r̂xsa . (4)

This classical supervised training approach is summarized in
Figure 1.

Often, ridge regression is used to avoid overfitting when
only a limited amount of training data is available [3], [10],
[16], [17], such that the decoder is estimated as:

d̂ =
(
XTX+ λI

)−1
XTsa, (5)

1A MATLAB implementation of this AAD approach can be found in [16].
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EEG

Compute
autocorrelation matrix R̂xx

EEG + speech envelopes and ground-truth labels

Compute attended cross-correlation vector r̂xsa
using ground-truth labels

Compute decoder as in (4)

Apply decoder as in (1)

D(l, c)

EEG
X(t, c)

Predicted
envelope ŝa(t)

Correlate

Speech envelope s1(t)

Correlate

Speech envelope s2(t)

max Predicted
label

Supervised
training

Testing

Figure 1: A conceptual overview of the traditional supervised training approach of a stimulus reconstruction decoder and its application to new test data.

where the regularization parameter λ needs to be optimized,
e.g., through a cross-validation step. When sufficient training
data is available, the regularization can be omitted [17].

In practice, a labeled training set of K segments (for exam-
ple, corresponding to different trials in an experiment) of EEG
data and corresponding speech envelopes of the competing
speakers, {Xk, (s1k , s2k), yk}Kk=1, is available. Note that in
a practical system, these speech envelopes need to be ex-
tracted from the recorded speech mixtures in a hearing device,
for which various methods exist [2], [18]–[20]. The labels
yk ∈ {1, 2} indicate whether s1k or s2k is the attended speech
envelope. Per segment k, the attended speech envelope sak
thus corresponds to the speech envelope of the set (s1k , s2k)
that corresponds to label yk. Then (5) becomes:

d̂ =

(
K∑

k=1

XT
kXk + λI

)
︸ ︷︷ ︸

R̂−1
xx

−1 K∑
k=1

XT
k sak︸ ︷︷ ︸

r̂xsa

(6)

It is crucial to realize that the estimation of the decoder
in (6) is inherently a supervised problem, as the ground-truth
label yk needs to be known to select the attended speech
envelope sak in each trial k.

At test time, the estimated decoder d̂ is used to reconstruct
the attended speech envelope from a new EEG segment X(test).
Given two speech envelopes s

(test)
1 and s

(test)
2 , corresponding

to two competing speakers, the first speaker is identified as
the attended one if the sample Pearson correlation coefficient
between the reconstructed speech envelope ŝa = X(test)d̂ and
the first speaker is larger than with the second speaker, i.e.,

ρ
(
ŝa, s

(test)
1

)
> ρ
(
ŝa, s

(test)
2

)
, (7)

and vice versa. This is summarized in the ‘Testing’ part in
Figure 1. Note that, for the sake of an easy exposition, we
assume that there are two competing speakers, although all
proposed algorithms can be generalized to more than two
competing speakers.

B. Unsupervised training of a decoder

Assume the availability of a training set of K segments of EEG
data and speech envelopes, {Xk, (s1k , s2k)}Kk=1, but now with-
out knowledge of the attended speaker, i.e., the labels yk are
not available. Only the presented competing speech envelopes
(s1k , s2k) are known, of which one corresponds to the attended
speaker, while the other corresponds to the unattended one.
This means that training a decoder to reconstruct the attended
speech envelope boils down to an unsupervised problem. We
thus remove the requirement of subject-specific ground-truth
labels. However, we implicitly assume that it is important
for the training of the stimulus reconstruction decoder to
know which envelope corresponds to the attended speaker
and which one to the unattended speaker. In other words, we
assume that the attended and unattended speaker are encoded
differently in the brain. If this would not be the case, one could
simply train the decoder based on the sum of the envelopes
of both speakers. Such a training procedure would also be
unsupervised and would remove the necessity of determining
which speaker is attended during the training process. While
the assumption that both competing speakers are encoded
distinctly in the brain is already verified in the literature (e.g.,
see [5]), we also confirm it here in Section IV-B.

Figure 2 shows a conceptual overview of the proposed
unsupervised training procedure, in which a decoder is trained
in an unsupervised manner by iteratively (re)predicting the
labels and updating the decoder. The key idea is thus to replace
the ground-truth labels in the supervised training stage (top
part of Figure 1), with the predicted labels from the testing
stage (bottom part of Figure 1), and iterate a few times. Below,
we will explain each step of the algorithm, while we refer to
Algorithm 1 for a detailed summary.

In the first step, the autocorrelation matrix in (6) is estimated
using the subject-specific EEG data. This autocorrelation ma-
trix is independent of the ground-truth labels, which are only
required for the cross-correlation vector. It is thus always
possible to perform this update. If desired, the estimated and
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Algorithm 1 Unsupervised training or adaptation of a stimulus reconstruction decoder
Input: A training set of K segments of EEG data and speech envelopes {Xk, (s1k , s2k)}Kk=1; initial autocorrelation matrix
R

(init)
xx and cross-correlation vector r(init)

xsa ; regularization parameter λ and updating hyperparameters α and β; maximal number
of iterations imax
Output: A stimulus reconstruction decoder d̂

1: Compute/update the autocorrelation matrix and compute an initial decoder: R̂xx = (1− α)
(

K∑
k=1

XT
kXk + λI

)
+ αR

(init)
xx

d̂ = R̂−1xx r
(init)
xsa

2: while i ≤ imax and d̂ changes do
3: Predict the labels on the training set:

∀ k ∈ {1, . . . ,K} :

 ŝk = Xkd̂
spredk = argmax

s1k ,s2k

(ρ(ŝk, s1k) , ρ(ŝk, s2k))

4: Update the cross-correlation vector using the predicted labels and update the decoder: r̂xspred = (1− β)
K∑

k=1

XT
k spredk + βr(init)

xsa

d̂ = R̂−1xx r̂xspred

5: end while

Initial autocorrelation matrix and cross-correlation vector

Update autocorrelation matrix
(independent of ground truth) as in (8)

Update decoder based on
new autocorrelation matrix as in (4)

Predict labels (attended/unattended) as in (7)

Update cross-correlation vector
based on predicted labels as in (9)

Update decoder based on
new cross-correlation vector as in (4)

Figure 2: A conceptual overview of the iterative self-adaptive unsupervised
training procedure of a stimulus reconstruction decoder.

regularized autocorrelation matrix can be linearly combined
with an initially provided autocorrelation matrix R

(init)
xx , con-

trolled with the user-defined hyperparameter 0 ≤ α ≤ 1 (and
1− α):

R̂xx = (1− α)

(
K∑

k=1

XT
kXk + λI

)
+ αR(init)

xx . (8)

This hyperparameter can be interpreted as the amount of con-
fidence in the a priori available autocorrelation matrix R

(init)
xx .

This initial autocorrelation matrix can be estimated on, for
example, subject-independent data and can be considered as
an extra regularization term (e.g., as used in Tikhonov regular-
ization). If no such a priori autocorrelation matrix is available,
α is simply set to 0. Using the updated autocorrelation matrix,
the decoder is estimated in combination with an initially
provided cross-correlation vector r(init)

xsa . This cross-correlation
vector can again be estimated in a subject-independent manner
but could also be generated fully randomly. It is recommended
to normalize the initial autocorrelation matrix and cross-
correlation vector such that they have a Frobenius norm
equal to the estimated auto-/cross-correlation matrix/vector,
improving the interpretability of the hyperparameters.

Using the updated autocorrelation matrix (8) and the initial
cross-correlation vector r

(init)
xsa , we compute an initial decoder

d̂ according to (4). This initial decoder acts as a bootstrap to
initiate the iterative procedure to update the decoder weights.
Starting from this initial decoder, the labels of the training
segments are predicted based on the maximal sample Pearson
correlation coefficient between the reconstructed envelope
and the speech envelopes of the competing speakers. These
predicted labels are then used to select the attended speech
envelope spredk in each of the K segments, which is afterwards
used to update the cross-correlation vector. Note that it is cru-
cial that the updating is performed not using the reconstructed
envelope from the EEG, but with the speech envelope of
one of the two competing speakers identified/predicted as the
attended one. Again, some prior knowledge can be introduced
in the updating of the cross-correlation vector using an initially
provided cross-correlation vector r

(init)
xsa and hyperparameter
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0 ≤ β ≤ 1:

r̂xspred = (1− β)
K∑

k=1

XT
k spredk + βr(init)

xsa . (9)

The updated cross-correlation vector can then be used to re-
estimate the decoder. Multiple iterations of predicting the
labels and updating the decoder can be performed until the
decoder has converged or a maximal number of iterations has
been reached. It is expected that this iterative process initiates
a self-leveraging effect, in which the decoder leverages its
own predictions to improve. In Section IV, we provide a
mathematical analysis that explains the underlying mechanism
behind this self-leveraging effect and why it works.

Using the unsupervised updating scheme in Algorithm 1, a
stimulus reconstruction decoder can be trained. In Section V,
we evaluate this unsupervised algorithm using different hy-
perparameter settings and compare it to a supervised subject-
independent and supervised subject-specific decoder.

III. EXPERIMENTS AND EVALUATION METRICS

In this section, we provide all information on the data (Sec-
tion III-A), preprocessing and decoder settings (Section III-B),
and evaluation procedure and metrics (Section III-C) required
to replicate and reproduce all experiments and results. All
experiments are performed in MATLAB.

A. AAD datasets

We validate the proposed unsupervised AAD algorithm on two
separate datasets. The first one (Dataset I) consists of EEG
recordings of 16 normal-hearing subjects, attending to one out
of two competing speakers [17]. These competing speakers are
located at +/-90◦ along the azimuth direction. Per subject,
72min of EEG and audio data are available. This dataset is
available online [21].

The second dataset (Dataset II) consists of EEG recordings
of 18 normal-hearing subjects, attending to one out of two
competing speakers, located at +/-60◦ along the azimuth
direction [22]. Per subject, 50min of EEG and audio data are
available. Different acoustic room settings are used: anechoic,
mildly reverberant, and highly reverberant. This dataset is
available online as well [23]. Both datasets are recorded using
a 64-channel BioSemi ActiveTwo system.

B. Preprocessing and decoder settings

The preprocessing of the EEG and audio data is very similar
to [17]. The audio signals are first filtered using a gammatone
filterbank. From each subband signal, the envelope is extracted
using a power-law operation with exponent 0.6, after which
one final envelope is computed by summing the different
subband envelopes. Both the EEG data and speech envelopes
are filtered between 1–9Hz [24] and downsampled to 20Hz.
Note that we here assume that the clean speech envelopes
are readily available and need not be extracted from the
microphone recordings [3]. For Dataset II, the 50 s segments
are normalized such that they have a Frobenius norm equal to
one across all channels.

A maximum of imax = 10 iterations of predicting the labels
and updating the decoder is used, which in practice showed
to be sufficient (see also Section V).

In the design of the stimulus reconstruction decoder, L =
250ms is chosen [9], such that the filter spans a range
of 0–250ms post-stimulus. Furthermore, the regularization
parameter λ in (5), (6), and Algorithm 1 is analytically
determined using [25], which is the recommended state-of-
the-art method to estimate this regularization parameter [26].
Given data matrix X ∈ RT×p and sample autocorrelation
matrix S = XTX ∈ Rp×p, the proposed shrinkage estimator
Ŝ in [25] of the autocorrelation matrix becomes [27]:

Ŝ = (1− η)S+ η
Tr (S)
p

I, (10)

with

η = min


T∑

t=1

∣∣∣∣xtx
T
t − S

∣∣∣∣2
F

T 2
(

Tr
(
STS

)
− Tr(S)2

p

) , 1
 . (11)

Note that in our case, p = CL. The shrinkage formula in
(10) can easily be rewritten in the form of (5), (6) upon an
irrelevant scaling, in which case λ is set as:

λ =
η

1− η
Tr (S)
p

.

In [25], they show that (10) and (11) lead to a consistent
estimator that is asymptotically optimal w.r.t. a quadratic loss
function with the underlying unknown autocorrelation matrix.

C. Cross-validation and evaluation

For the supervised subject-specific decoder, a random ten-fold
cross-validation scheme is used to train and test the decoders.
The supervised subject-independent decoders are evaluated
using a leave-one-subject-out cross-validation scheme where a
decoder is trained on the data of all other subjects and tested
on the left-out subject. The proposed unsupervised subject-
specific decoder is tested in a random ten-fold cross-validation
manner as well, where the updating happens on the training set
(without knowledge of the labels) and the testing on the left-
out data. The partitioning of the data is performed on segments
of 60 s for Dataset I and 50 s for Dataset II. Per subject, the
continuous recordings are thus first split into these segments
and then randomly distributed over a training and test set. At
test time, the left-out 60/50 s segments are split into smaller
sub-segments, from hereon referred to as ‘decision windows’.
The accuracy is then defined as the ratio of correctly decoded
decision windows across all test folds. These shorter decision
windows are only used in the test folds, in order to evaluate the
trade-off between the AAD accuracy and the decision window
length [3], [28] (longer decision windows provide more accu-
rate correlation coefficients, yielding higher AAD accuracies at
the cost of slower decision-making). However, the prediction
and updating in Algorithm 1 are always performed on the
longer 60/50 s segments, in order to maximize the accuracy
of the unsupervised labels.
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To resolve the aforementioned trade-off between accuracy
and decision window length, the minimal expected switch du-
ration (MESD) was proposed in [28] as a performance metric
for AAD. The MESD represents the theoretical expected time
it takes to switch the gain in an optimal attention-steered gain
control system, following a switch in auditory attention. Such
a gain control system is modeled using a Markov chain model,
where the time it takes to step from one state (i.e., gain level)
to another is represented by the AAD decision window length
and where the step size between gain levels is optimized to
ensure stable operation within a pre-defined comfort region in
the presence of AAD errors. The expected switch duration can
then be computed by quantifying the expected number of steps
required to switch to the pre-defined comfort region associated
with the other speaker. This gain control system/Markov
chain model is optimized across decision window lengths to
minimize the time it takes to switch the gain from one source
to another while assuring a stable operation within the pre-
defined comfort region when the attention is sustained. Note
that this metric is computed based on a stochastic model of a
gain control system and is not evaluated using actual switches
in attention. However, it allows to easily and statistically
compare different decoders across different decision window
lengths based on a single (practically relevant) metric. As
such, it resolves the aforementioned accuracy-vs-decision-
time trade-off. The underlying mathematical principles and
definition of this metric can be found in [28]. To compute
the MESD, we used the publicly available MESD toolbox
from [29].

IV. UNSUPERVISED UPDATING EXPLAINED: A
MATHEMATICAL MODEL

Before extensively testing Algorithm 1 on the different
datasets in Section V, we attempt to demystify and explain
the hypothesized self-leveraging mechanism through a math-
ematical analysis of the recursion induced by the algorithm.
The busy reader can skip to Section V for the results.

A. Mathematical model
Assume that at iteration i < imax of Algorithm 1, we
obtain a decoder with an (unknown) AAD test accuracy of
pi ∈ [0, 100]%. This means that there is a probability of pi
that the reconstructed envelope using this decoder will have
a higher correlation with the attended envelope than with the
unattended envelope. Correspondingly, there is a 100% − pi
probability that the unattended envelope will show the highest
correlation. Assume for simplicity that α = 0 and β = 0.
Due to the linearity of the computation of the cross-correlation
vector (see (3)), the updated cross-correlation vector will then
be, on average, equal to:

r̂xspred,i+1 = pir̂xsa + (1− pi)r̂xsu , (12)

with r̂xsa the cross-correlation vector using all attended en-
velopes and r̂xsu the cross-correlation vector using all unat-
tended envelopes. Similarly, and again due to the linearity
in the computations, the corresponding updated decoder be-
comes:

d̂i+1 = pid̂a + (1− pi)d̂u, (13)

with d̂a the decoder trained with all attended speech envelopes
(which would correspond to the supervised subject-specific
decoder with accuracy pa) and d̂u the unattended decoder
that would be trained with all unattended speech envelopes.
This unattended decoder has an accuracy equal to pu on the
unattended labels and thus 100%− pu on the attended labels.
As a result, the reconstructed envelope using this updated
decoder is a linear combination of the reconstructed envelope
obtained using the (supervised) attended decoder (ŝa) and the
(supervised) unattended decoder (ŝu):

ŝpred,i+1 = piŝa + (1− pi)ŝu. (14)

The goal is now to find the AAD accuracy pi+1 of the
updated decoder d̂i+1 (13) in iteration i+1. We will propose
a mathematical model for the function pi+1 = φ(pi), which
determines the accuracy pi+1 of the updated decoder as
a function of the accuracy pi of the previous decoder. If
pi+1 > pi, this implies a self-leveraging effect in which the
accuracy improves from one iteration to the next. Given that
the speech envelope that exhibits the highest Pearson corre-
lation coefficient with the reconstructed envelope is identified
as the attended speaker, this implies that:

pi+1 = φ(pi) = P (ρ(ŝpred,i+1, sa) > ρ(ŝpred,i+1, su)) , (15)

with sa and su the speech envelopes of the attended and
unattended speaker. Using (14) and the definition of the
Pearson correlation coefficient of two random variables X and
Y :

ρ(X,Y ) =
E{(X − µX) (Y − µY )}

σXσY
,

with the mean µX/Y and standard deviation σX/Y , (15)
becomes:

φ(pi) = P (piσŝaρ(ŝa, sa) + (1− pi)σŝuρ(ŝu, sa)

> piσŝaρ(ŝa, su) + (1− pi)σŝuρ(ŝu, su))

= P (piσŝa (ρ(ŝa, sa)− ρ(ŝa, su))

> (1− pi)σŝu (ρ(ŝu, su)− ρ(ŝu, sa))).

(16)

To simplify this expression, and without loss of generality2,
we assume that both speech envelopes have a similar energy
content such that it is safe to assume that, on average,
σŝa = σŝu . Furthermore, ρ(ŝa, sa) , ρ(ŝa, su) , ρ(ŝu, su) , and
ρ(ŝu, sa) are independent of pi and can be considered as
random variables ρaa, ρau, ρuu, and ρua. These random vari-
ables represent the correlation coefficients between the re-
constructed envelopes using the attended/unattended decoders
and the speech envelopes of the attended/unattended speakers,
computed over a pre-defined window length. As such, (16)
becomes:

φ(pi) = P

(
ρaa − ρau >

1− pi
pi

(ρuu − ρua)

)
. (17)

Define now the new random variables R1 = ρaa − ρau ∼
N (µ1, σ) and R2 = ρuu − ρua ∼ N (µ2, σ). We assume

2This can always be obtained by normalizing the (reconstructed) envelopes.
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that these random variables are normally distributed3 with
known mean and equal standard deviation. These means and
standard deviation can be derived a priori from the supervised
subject-specific decoders and experiments (note that these
are not available in the unsupervised case, yet for analysis
and validation purposes, we can use a supervised setting
to estimate these). R1 represents the difference between the
correlation coefficients of both competing speakers when
using the (supervised) attended decoder, while R2 would be
used when making AAD decisions based on the (supervised)
unattended decoder. As the standard deviation of R1 and R2

is mostly determined by the noise, which is the same for the
attended and unattended decoder, we can assume that they
have the same standard deviation σ. This standard deviation
can be estimated across the mean-centered R̃1 = R1−µ1 and
R̃2 = R2 − µ2 variables.

Finally, we can define Z = R1 − 1−pi
pi

R2, which is again
normally distributed:

Z ∼ N (µz(pi), σz(pi)) ,

with

µz(pi) = µ1 −
1− pi
pi

µ2 and σz(pi) = σ

√
1 +

(1− pi)2
p2i

,

assuming that R1 and R2 are uncorrelated4. Equation (17) then
becomes equal to P (Z > 0), or equivalently:

φ(pi) =
1

σz(pi)
√
2π

+∞∫
0

e
− 1

2

(
x−µz(pi)
σz(pi)

)2

dx. (18)

By numerically evaluating (18) for pi ∈ [0, 100]%, we have
modeled the AAD accuracy pi+1 in iteration i + 1 as a
function of the AAD accuracy pi in iteration i. Note that
pi and pi+1 = φ(pi) refer here to the test accuracy, as
the model parameters will be computed from the correla-
tion coefficients resulting from applying the subject-specific
attended/unattended decoders to left-out test data.

Figure 3 shows the modeled curve φ(pi) where µ1, µ2, and
σ are estimated from Dataset I. The modeling is performed per
subject based on the correlation coefficients of the attended
and unattended decoders tested on 60 s decision windows
with ten-fold cross-validation. The modeled curves are then
averaged across all subjects to obtain one ‘universal’ updating
curve in Figure 3.

1) Verification of the φ(pi) model: The updating curve
in Figure 3 can be verified using simulations. Consider an
oracle that can produce any mixture (pi, 100%− pi) of correct
and incorrect labels. Using this oracle, we can perform a
sweep of pi values and compute a decoder based on this
particular ratio of correct and incorrect labels. For each pi,
the corresponding decoder can be applied to the test set to

3For none of the 16 subjects in Dataset I, the Kolmogorov-Smirnov test
indicates a deviation from a normal distribution, which provides empirical
support for this assumption, in addition to the validation of the final model
that we provide in Section IV-A1.

4For none of the 16 subjects in Dataset I, there is a significant correlation
between R1 and R2, which supports this assumption, in addition to the
validation of the final model in Section IV-A1.

0 50 90 100
0
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90
100

2 3 1 5 4
fixed point p∗
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1 − pu

modeled

simulated

pi [%]

φ(pi) [%]

Figure 3: The modeled updating curve, averaged over all subjects of Dataset
I, shows the accuracy φ(pi) after updating, starting from a decoder with
accuracy pi, and closely corresponds to the simulated curve. As a reference,
the identity line is added, where the updated accuracy is equal to the initial
accuracy.

evaluate pi+1, which should be approximately equal to φ(pi)
if the model is correct. The simulated curve shown in Figure 3
is generated using random ten-fold cross-validation, repeated
five times per subject, and averaged over subjects, folds, and
runs. As the simulated curve closely resembles the theoretical
curve, we can confirm that the assumptions are sensible and
that the theoretical updating curve (18) is valid and useful for
interpretation and analysis.

B. Explaining the updating

1) Analysis of the updating curve: In Figure 3, five
points/regions are indicated, which are discussed below:
• Point 1© corresponds to pi = p∗, i.e., the cross-over point.

For initial accuracy p∗, the updated accuracy remains
the same, i.e., φ(p∗) = p∗. This cross-over point thus
corresponds to the fixed/invariant point of φ(pi).

• Point 2© corresponds to pi = 0%, i.e., the decoder is
trained using only the unattended ground-truth labels and
is thus equal to d̂u. The updated accuracy then corre-
sponds to 100%−pu, as the unattended decoder is used to
predict attended labels. The unattended decoder generally
performs worse than the attended decoder, obtaining
accuracies below 100%, such that φ(0%) > 0%, ergo,
an increase in accuracy. This, furthermore, also confirms
that unattended speech envelope is encoded differently in
the brain than the attended speech envelope.

• Region 3© corresponds to 0% ≤ pi < p∗. In this
region, the accuracy increases after updating, i.e., φ(pi) >
pi. Even when using a majority of unattended speech
envelopes to train the attended decoder, the accuracy
increases. A possible explanation is that the resulting
correlation vector still conveys information about which
channels and which time lags are best suited to decode
speech from the EEG, albeit unattended speech. It seems
that there is still information to gain from unattended
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speech to compensate for the limited amount of attended
speech. However, when pi increases, the increase in
accuracy in general decreases (i.e., the distance to the
identity line decreases), possibly because there is less
and less information to gain from the unattended speech.
Furthermore, it is expected that the cross-correlation of
the EEG with the attended speech envelopes (r̂xsa ) is
on average larger than of the EEG with the unattended
speech (r̂xsu ). This reduces the relative weight of the
unattended cross-correlation vector (e.g., see (12)) and
could make the attended cross-correlation vector more
prominent in the estimated one, even when more unat-
tended labels are used, enabling the self-leveraging effect.

• Point 4© corresponds to pi = 100%, i.e., the decoder
corresponds to the supervised subject-specific decoder
from Figure 5a, with accuracy pa. As even the attended
decoder is not perfect, φ(100%) < 100%, which results
in a decrease in accuracy. This could be due to modeling
errors (limited capacity of a linear model), the low signal-
to-noise ratio of the stimulus-response in the EEG, and
a small amount of incorrect ground-truth labels, for
example, due to the subject’s attention wandering off to
the wrong speaker.

• Region 5© corresponds to p∗ < pi < 100%, where the
accuracy decreases after updating, i.e., φ(pi) < pi. The
presence of unattended labels does not add information
as in region 3©, suffering from the same limitations as in
point 4©.

Lastly, because of the linearity of (3), the point pi = 50%
reflects the case where one would train the decoder based
on the sum of both speech envelopes (i.e., across attended
and unattended speaker). As discussed in Section II-B, we
implicitly assume that the attended and unattended speech
envelopes are encoded differently in the brain. If not, the
unsupervised training of a decoder based on the sum of the
speech envelopes would result in a similar accuracy as the
proposed unsupervised training method. The updating curve
in Figure 3, however, shows that φ(50%) < φ(p∗). This
indicates that such an unsupervised decoder trained on the
sum of the speech envelopes performs worse than the proposed
unsupervised method. As such, it confirms the assumption that
both speech envelopes are encoded distinctly in the brain and
that the inclusion of the unattended envelope misdirects the
computation of the cross-correlation vector in (3).

2) A fixed-point iteration algorithm: Using the theoretical
model in Figure 3, we can explain the unsupervised AAD
algorithm in Algorithm 1 as a fixed-point iteration pi+1 =
φ(pi) on this curve. Before analyzing the uniqueness and
convergence properties based on the model (18), we first
provide an intuitive explanation of why there could only be
one fixed point p∗. First of all, it is safe to assume that
φ(0%) > 0%, as the unattended decoder is never perfect.
Furthermore, it is very unlikely that regions 3© and 5© in
Figure 3 would alternate, as this would mean that, when
using more attended labels to train the decoder, there is an
increase-decrease-increase of AAD accuracy (or the other way
around) with respect to the initial accuracy. This implies that
there is a unique fixed point. We show in a Supplementary

Material paper [1] that, based on the model (18), the existence,
uniqueness, and convergence of/to the fixed point are indeed
mathematically guaranteed when three reasonable conditions
on the accuracy pa of the (supervised) attended decoder and
the accuracy pu of the (supervised) unattended decoder (on
the unattended speech) are satisfied. Furthermore, we also
demonstrate in the Supplementary Material paper [1] that these
conditions are satisfied for all subjects in both datasets.

These fixed-point iteration properties are also intuitively
apparent from Figure 3 and hold in every example we have
encountered in practice so far. This means that we could
initialize the updating algorithm with any decoder, as we
would always arrive at the fixed point p∗. As a result, it
explains why the updating procedure is possible starting from a
random decoder. Figure 4 shows how the fixed-point paths (on
average across all folds) follow the theoretical model for three
representative subjects of Dataset I, starting from a random
decoder.

The fixed point p̂∗ based on the theoretical model (where
the means and standard deviation in (18) are computed per
subject individually) should thus give a good approximation
of the unsupervised AAD accuracy p∗. Across all 16 subjects
of Dataset I, on 60 s decision windows, the mean absolute
error between the predicted and actual unsupervised AAD
accuracy is 3.45%. We can thus accurately predict how well
the unsupervised updating will perform by computing the fixed
point of (18), where the parameters µ1, µ2, and σ in (18)
can be easily computed from the corresponding supervised
subject-specific decoders. Furthermore, as mentioned above,
the model (18) also allows showing convergence to this fixed
point when three reasonable conditions are satisfied (see the
Supplementary Material paper [1]).

V. RESULTS AND DISCUSSION

In this section, we extensively validate the unsupervised algo-
rithm on the two datasets and compare it with a supervised
subject-independent and supervised subject-specific decoder.

A. Random initialization

We first evaluate the proposed unsupervised algorithm using a
random initialization and without using any prior knowledge.
As such, in Algorithm 1, we set α = 0 and β = 0. The
cross-correlation vector r(init)

xsa is initialized at random from
a multivariate uniform distribution. Figure 5 shows for both
datasets the AAD accuracy as a function of decision window
length and the MESD values per subject for the supervised
subject-specific decoder, the subject-independent decoder, and
the proposed unsupervised subject-specific decoder (with ran-
dom initialization). The significance level in Figure 5a and 5b
is computed using the inverse binomial distribution as in [9].

As mentioned in Section I, it is clear that a supervised
subject-specific decoder outperforms a subject-independent
decoder on both datasets (Figure 5). A Wilcoxon signed-
rank test between the MESD values, with a Bonferroni-Holm
correction for multiple comparisons, confirms this (Dataset
I: n = 16, p = 0.0022, Dataset II: n = 18, p = 0.0030).
On both datasets, the proposed unsupervised subject-specific
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Figure 4: The fixed-point iteration paths followed by three representative subjects (a), (b), (c) from Dataset I closely follow the theoretical model. The predicted
fixed point p̂∗ from the theoretical model accurately predicts the actual fixed point p∗.
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Figure 5: (a) The unsupervised subject-specific decoder, with both types of initialization (random: rand-init, subject-independent information: SI-info) clearly
outperforms a subject-independent decoder, while approximating the performance of a supervised subject-specific decoder especially on short decision windows
(mean ± standard error of the mean (shading) across subjects). (b) The same trend occurs for Dataset II, although the unsupervised subject-specific decoder
with random initialization outperforms the subject-independent decoder less apparent. (c) The per-subject MESD values (each subject = one dot) of Dataset I,
with the median indicated with the black bar, confirm that the unsupervised subject-specific decoder outperforms the subject-independent decoder. The number
of outlying values that fell off the plot are indicated with (+x) (outliers are still included in the quantitative analysis). (d) The same for Dataset II as (c).
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decoder with random initialization outperforms the subject-
independent decoder as well (although less clearly on Dataset
II). Furthermore, it approximates the performance of the su-
pervised subject-specific decoder, especially for the shorter de-
cision window lengths. However, it does so without requiring
ground-truth labels and thus retains the ‘plug-and-play’ feature
of the subject-independent decoder. A Wilcoxon signed-rank
test between the MESD values, again with a Bonferroni-Holm
correction, shows a significant difference between the unsu-
pervised subject-specific decoder with random initialization
and the supervised subject-independent decoder on Dataset I
(n = 16, p = 0.0458), but not on Dataset II (n = 18, p =
0.5862). Lastly, there is a significant difference between the
supervised and unsupervised subject-specific decoder with
random initialization (Dataset I: n = 16, p = 0.0034, Dataset
II: n = 18, p = 0.0010).

Note that this last result is not per se a negative result: it
is not expected that an unsupervised subject-specific decoder,
updated starting from a completely random decoder, performs
as well as the supervised version. The most important result
is that the proposed unsupervised algorithm outperforms a
subject-independent decoder, even when starting from a ran-
dom decoder and while not requiring subject-specific ground-
truth labels as well. Furthermore, such an unsupervised al-
gorithm could be implemented on a generic hearing device,
which trains and adapts itself from scratch to a new user.

Convergence plots: Figure 6 shows the AAD accuracy as
a function of the iteration index for all subjects of Dataset I.
Computing a decoder with the subject-specific autocorrelation
matrix, but with a random cross-correlation vector, seems not
to perform better than chance (iteration 0). Surprisingly, even
after one iteration of predicting the labels using the decoder
after iteration 0, which performs on chance level, and updating
the cross-correlation vector, a decoder is obtained that on
average performs with ≈ 75% accuracy on 60 s decision
windows (see also Figure 3). This implies that even using
a random mix of attended and unattended labels results in
a decoder that performs much better than chance. In the
following iterations, the decoder keeps improving, settling
after 4-5 iterations. This matches the fixed-point iteration
interpretation of Section IV-B and Figures 3 and 4, explaining
the self-leveraging mechanism.

B. Subject-independent initialization/information

To use the information in the subject-independent decoder to
our advantage, we can put α 6= 0 and β 6= 0 in Algorithm 1.
By adding subject-independent information to the estimation
of both the autocorrelation matrix and the cross-correlation
vector, we can further improve the updating behavior when
starting from a random initialization (Section V-A). Especially
in the estimation of the cross-correlation vector, the subject-
independent cross-correlation vector, which is estimated using
ground-truth labels, can compensate for prediction errors.

The initial autocorrelation matrix R
(init)
xx and cross-

correlation vector r(init)
xsa are determined using the (supervised)

information of all other subjects. The hyperparameters α
and β are determined empirically. For Dataset I, α = 0 is
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Figure 6: The convergence plots for all subjects of Dataset I using a random
initialization, on 60 s decision windows, show that the AAD accuracy con-
verges to the final unsupervised subject-specific accuracy after 4-5 iterations.

chosen, i.e., no subject-independent information is used in the
autocorrelation estimation. Furthermore, β = 1

3 is chosen, i.e.,
the subject-independent cross-correlation is half as important
as the computed subject-specific one.

The results on Dataset I of this unsupervised subject-specific
decoder using subject-independent information are shown in
Figure 5a and 5c. Remarkably, the unsupervised procedure
here results in a decoder that very closely approximates the
supervised subject-specific decoder, without requiring subject-
specific ground-truth labels. Based on the MESD values,
there is no significant difference to be found between the
supervised and unsupervised subject-specific decoder with
subject-independent information (Wilcoxon signed-rank test
with Bonferroni-Holm correction: n = 16, p = 0.3259). For
6 subjects, the unsupervised decoder performs even better
than the supervised subject-specific one (see also Figure 5c).
Furthermore, note that using the subject-independent informa-
tion with respect to a random initialization and no further
information not only fixes poor updating results for some of
the outlying subjects but also improves on most other subjects
(12 out of 16).

For Dataset II, it turns out that α = 0.5 and β = 0.5, i.e., an
equal weight to the subject-specific and subject-independent
information, are good choices. Given that the unsupervised
subject-specific decoder with random initialization performs
worse than in Dataset I, it is not unexpected that a larger
weight β of the subject-independent information is required
to improve on the unsupervised procedure.

Figure 5b and 5d show the results on Dataset II of the
unsupervised procedure with subject-independent information
and with the aforementioned choices of the hyperparameters.
The usage of subject-independent information results here in
an even larger improvement over the random initialization
(e.g., both in MESD, for 15 out of 18 subjects, as spread
around the median in Figure 5d) and again closely approx-
imates the supervised subject-specific performance, without
requiring subject-specific ground-truth labels. However, based



CITATION INFORMATION: DOI 10.1109/JBHI.2021.3075631, IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 11

0 1 2 3 4 5 6 7 8 9 10
0

25

50

75

100
individual subject

mean

after autocorrelation update
after iteration 1subj.-indep. imax

Iteration i

Accuracy [%]

Figure 7: The convergence plots for all subjects of Dataset I using subject-
independent information, on 60 s decision windows, show that mostly the
autocorrelation update and the first iteration result in a substantial increase in
accuracy.

on the MESD values in Figure 5d, there is still a significant
difference to be found between the supervised and unsuper-
vised subject-specific performance (Wilcoxon signed-rank test
with Bonferroni-Holm correction: n = 18, p = 0.0498), albeit
very close to the significance level of 0.05. This indicates again
that the unsupervised procedure with subject-independent in-
formation closely approximates the supervised subject-specific
performance without ground-truth labels. Furthermore, the un-
supervised decoder has a higher performance for four subjects
(out of 18) relative to the supervised subject-specific decoder.
Lastly, there now is a clear significant difference between
the MESD values of the unsupervised procedure and the
subject-independent decoder (Wilcoxon signed-rank test with
Bonferroni-Holm correction: n = 18, p = 0.0030).

Using some information about other subjects, we can thus
adapt a stimulus reconstruction decoder that performs almost
as well as a supervised subject-specific decoder, but without
requiring ground-truth information about the attended speaker
during the training procedure.

Convergence plots: Figure 7 shows the AAD accuracy
as a function of the different steps of Algorithm 1 for all
subjects of Dataset I. It appears that fully replacing (i.e.,
α = 0) the autocorrelation matrix in the subject-independent
decoder with the subject-specific information, which is a fully
unsupervised step, already results in a substantial increase in
accuracy, despite the resulting mismatch between the auto-
and cross-correlation matrix/vector (‘after autocorrelation up-
date’ versus ‘subj.-indep.’ in Figure 7). Further updating the
cross-correlation vector with the predicted labels while using
subject-independent information with β = 1

3 results in a self-
leveraging effect, leading to a further increase in accuracy,
which converges after a few iterations similarly to Figure 6.

VI. OUTLOOK AND CONCLUSIONS

A. Applications and future work

The proposed unsupervised self-adaptive algorithm paves the
way for further extensions and applications. We presented a
batch-version of the algorithm, i.e., the updating is performed
on a large dataset of EEG and audio data. This enables
the ‘plug-and-play’ capabilities of a stimulus reconstruction
decoder for a new hearing device user. However, Algorithm 1
could be extended to an adaptive version, tailored towards the
application of neuro-steered hearing devices, where EEG and
audio data are continuously recorded. As a result, the stimulus
reconstruction decoder could automatically update itself in an
unsupervised manner when new data comes in and adapt to
changing conditions and situations (e.g., non-stationarities in
neural activity, changing electrode-skin contact impedances,
. . . ). The development of such an efficient, adaptive version
of the unsupervised procedure is left open as future work. Fur-
thermore, similarly to the supervised stimulus reconstruction
decoder and other AAD algorithms, the practical applicabil-
ity in more realistic listening scenarios, using the demixed
and potentially noise-corrupted speech envelopes, and using
wearable and miniaturized EEG devices, needs to be further
investigated. For a literature overview on the state-of-the-art
on those challenges, we refer to [3].

Note that the deployed stimulus reconstruction approach
performs worse on short decision window lengths (see Fig-
ure 5), making this algorithm less suitable for real-time decod-
ing of the auditory attention [3], [28]. However, the proposed
unsupervised updating of a stimulus reconstruction decoder
can still be used on a longer time scale to generate reliable
labels to train another, potentially more accurate, algorithm on
short decision windows (e.g., [13], [14]).

The aforementioned adaptive implementation of the un-
supervised procedure also potentially enables and improves
the success of neurofeedback effects in a closed-loop im-
plementation, of which preliminary studies have stressed the
importance for AAD [30]. The interplay of the subject and
the adaptive updating algorithm in a closed-loop system could
further improve the AAD performance, as the subject learns
to control the updating procedure.

B. Conclusion

We have shown that it is possible to train a subject-specific
stimulus reconstruction decoder for AAD using an unsu-
pervised procedure, i.e., without requiring information about
which speaker is the attended or unattended one. Training such
a decoder on the data of a particular subject from scratch,
even starting from a random decoder and without any prior
knowledge, leads to a decoder that outperforms a subject-
independent decoder. Unsupervised adaptation of a subject-
independent decoder, trained on other subjects, to a new
subject even leads to a decoder that closely approximates
the performance of a supervised subject-specific decoder.
The proposed updating algorithm thus combines the two
main advantages of a supervised subject-specific and subject-
independent decoder:
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1) It substantially outperforms a subject-independent de-
coder, approximating the performance of a supervised
subject-specific decoder.

2) It can be used in a ‘plug-and-play’ fashion, without
requiring ground-truth labels and potentially automati-
cally adapting to changing conditions without external
intervention.

Using a mathematical model for the updating procedure,
the unsupervised algorithm can be interpreted as a fixed-point
algorithm. This interpretation explains why there is a self-
leveraging effect, even when starting from a random decoder.
Furthermore, using this mathematical model, we are able to
accurately predict the accuracy of the unsupervised decoder
starting from the results of the supervised subject-specific
decoder.

The proposed unsupervised self-adaptive algorithm can be
used in an online and adaptive manner in a practical neuro-
steered hearing device, allowing the decoder to automatically
adapt to the non-stationary brain and changing environments
and conditions. Furthermore, it avoids having a cumbersome
a priori training stage for each new hearing device user, as it
automatically adapts to the new user. Lastly, the developed
method potentially enables stronger neurofeedback effects
when using a closed-loop system, which is paramount for the
successful application of AAD.
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Unsupervised Self-Adaptive Auditory Attention
Decoding: Supplementary Material

Simon Geirnaert, Tom Francart, and Alexander Bertrand, Senior Member, IEEE

In this supplementary material corresponding to the paper
‘Unsupervised Self-Adaptive Auditory Attention Decoding’
by Geirnaert et al. [1], we show convergence to a unique
fixed point of the fixed-point iteration on the updating model
(Equation (16) in the original paper [1])1. We hypothesize
that under three reasonable conditions on the accuracies of
the attended and unattended decoder, there exists a unique
fixed point p∗ to which the fixed-point iteration pi+1 = φ(pi)
converges, starting from any (possibly random) decoder. In
Section I, we first show that there always exists such a
fixed point, while in Section II we check the uniqueness of
and convergence to this fixed point under the hypothesized
conditions.

I. EXISTENCE

Consider the following fixed-point theorem, also known as
Brouwer’s fixed-point theorem [2]:

Theorem 1 (Brouwer’s fixed point theorem [2]). Any
continuous self map of a nonempty compact convex subset
of a Euclidean space has a fixed point.

As the function φ(pi) : [0, 100]% → [0, 100]% in (16) [1]
is a continuous function that maps its domain onto itself
and [0, 1] is a closed (thus, compact) convex subset of R,
Brouwer’s fixed point theorem assures that there exists at least
one fixed point.

II. UNIQUENESS AND CONVERGENCE

We evaluate the model in (16) [1] in a relevant range of the
parameters µ1, µ2, and σ, obeying three reasonable conditions,
to show the convergence to a unique fixed point.

A. Three conditions for convergence

Consider the supervised subject-specific attended decoder d̂a
with accuracy pa (on the attended labels) and supervised
subject-specific unattended decoder d̂u with accuracy pu (on
the unattended labels). We then a priori postulate the following
three intuitive and reasonable conditions on the accuracies pa
and pu (which will turn out to be satisfied for all subjects in
both datasets in [1]):
• pa−pu > 5%, i.e., the attended decoder needs to perform

5% better (on the attended labels) than the unattended
decoder (on the unattended labels). Given that the at-
tended speech envelope is typically better represented in
the EEG, we indeed expect a difference in performance

1This supplementary material has also been peer-reviewed together with
the original article in [1].

between both decoders. Moreover, this condition can
be linked to the expectation that the cross-correlation
between the EEG and attended speech envelope is on
average larger than with the unattended speech envelope,
serving as a possible explanation for the self-leveraging
effect (see Section IV-B in the original paper [1]).

• pu < 85%, i.e., the unattended decoder may not perform
better than 85% (on the unattended labels). If the unat-
tended decoder performs too well, then, again, the self-
leveraging effect may not be present for the same reason
as mentioned in the previous condition.

• pa > 100% − pu, i.e., the attended decoder is better at
predicting attended labels than the unattended decoder.
This assures that the starting point of the model curve
φ(0%) = 100% − pu (e.g., see Figure 2 in the original
paper [1]) is below the end point φ(100%) = pa.

In the following sections, we will use the model in (16) [1]
to show that there is convergence to a unique fixed point
when these three conditions are satisfied. However, it is noted
that these postulated conditions are conservative in the math-
ematical sense, i.e., they are ‘sufficient’ but not ‘necessary’
conditions. When they are not satisfied, there can still be
convergence to a unique fixed point.

Moreover, the three conditions are also intuitive and very
reasonable from a practical point of view, as they are satisfied
for all subjects in both datasets [1]; the minimum across all
subjects of pa − pu = 8.3% > 5%, the maximum across all
subjects of pu = 76.7% < 85%, and the minimum across all
subjects of pa + pu = 124% > 100%.

B. Convergence to a unique fixed point

Consider the following fixed-point theorem that provides suf-
ficient conditions for convergence to a unique fixed point of
the fixed-point iteration pi+1 = φ(pi) [3]:

Theorem 2. Let φ be a continuous function on [a, b], such
that φ(pi) ∈ [a, b],∀ pi ∈ [a, b], and suppose that φ′ exists
∀ pi ∈ [a, b] and that a constant 0 < α < 1 exists such that:

|φ′(pi)|≤ α,∀ pi ∈ [a, b],

then there is exactly one fixed point p∗ ∈ [a, b] and the fixed-
point iteration pi+1 = φ(pi) will converge to this unique fixed
point in [a, b].

We now evaluate the model φ(pi) in (16) [1] and its
derivative φ′(pi) to show convergence to a unique fixed point
based on Theorem 2 for the case where the conditions in
Section II-A are satisfied.
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Figure 1: (a) A subset of the evaluated φ(pi) for pi ∈ [0, 50]% and the minimum over all evaluated (µ1, µ2, σ) that obey the conditions are all above the
identity line, where φ(pi) = pi, which shows that φ(pi) > pi, ∀ pi ∈ [0, 50]%. (b) A subset of the evaluated |φ′(pi)| for pi ∈ [50, 100]%, together with
the maximum over all evaluated (µ1, µ2, σ) that obey the conditions.

The derivative φ′(pi) of the model in (16) can be computed
by hand or by using any symbolic math software and is equal
to:

φ′(pi) =
piσz(pi)

2µ2 + (1− pi)σ2µz(pi)√
2πp3iσz(pi)

3
e
− 1

2

(
µz(pi)

σz(pi)

)2

. (1)

To evaluate (16) [1] and its derivative (1), we take 300
equidistant samples of µ1 ∈ [−2, 2], 300 equidistant samples
of µ2 ∈ [−2, 2], and 100 equidistant samples of σ ∈ ]0, 4].
These intervals contain the complete range of parameters
concerning the difference in correlation coefficients R1 and
R2. From this parameter range, we select all combinations
of (µ1, µ2, σ) for which the three conditions of Section II-A
are satisfied. The connection between pa and pu (as used in
the three conditions) and the model parameters (µ1, µ2, σ) is
given by:

pa = P (R1 > 0) =
1

σ
√
2π

+∞∫
0

e−
1
2 (

x−µ1
σ )

2

dx and

pu = P (R2 > 0) =
1

σ
√
2π

+∞∫
0

e−
1
2 (

x−µ2
σ )

2

dx,

using the assumptions in Section IV-A in the original paper [1].
These connections can be derived from the updating model in
Equation (16) from the original paper [1] by setting pi =
100%, resp. pi = 0%, resulting in the decoder accuracy of the
supervised attended, resp. unattended decoder.

Figure 1a now shows a subset of φ(pi) for pi ∈ [0, 50]%,
for all evaluated (µ1, µ2, σ) that obey the three conditions,
together with the minimum over all these φ(pi). Similarly,
Figure 1b shows a subset of |φ′(pi)| for pi ∈ [50, 100]%, for all
evaluated (µ1, µ2, σ) that obey the three conditions, together
with the maximum over all these |φ′(pi)|. Both results are
required to show convergence to a unique fixed point using
Theorem 2:

• Result 1: From Figure 1a, it can be seen that φ(pi) >
pi,∀ pi ∈ [0, 50]%. This implies that there is no fixed
point within this interval and that the fixed-point iteration
will always diverge to the pi ∈ [50, 100]% interval. This
is because ∀ pi ∈ [0, 50]% : pi+1 = φ(pi) > pi, i.e.,
the new accuracy in the fixed-point iteration is always
larger than the previous one, such that, inevitably, at a
certain iteration, pi+1 > 50%. It thus suffices to show
that there is convergence to a unique fixed point for pi ∈
[50, 100]%, which is shown in the next result.

• Result 2: From Figure 1b, there are two possible cases,
which both individually can be shown to guarantee con-
vergence to a unique fixed point:

1) |φ′(pi)| < 1,∀ pi ∈ [50, 100]%. For all these
cases, we then numerically confirmed that φ(pi) ∈
[50, 100]%,∀ pi ∈ [50, 100]% such that all condi-
tions of Theorem 2 are fulfilled to show convergence
to a unique point.

2) ∃ x ∈ [50, 100]% : φ′(pi) ≥ 1,∀ pi ∈ [50, x]% and
|φ′(pi)|< 1,∀pi ∈ [x, 100]%. Since φ(50%) > 50%
(see Result 1) and since the derivative is positive, it
is guaranteed that φ(pi) > pi,∀ pi ∈ [50, x]%, i.e.,
there is no fixed point and the fixed-point iteration
diverges to the pi ∈ [x, 100]% interval (using a
similar reasoning as in Result 1). Furthermore, it
can again be numerically checked that φ(pi) ∈
[x, 100]%,∀ pi ∈ [x, 100]% to show that there is
a unique point to which there is convergence in this
interval (see Theorem 2).
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