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Abstract

Many problems require the selection of a subset of variables from a full set of optimization variables.

The computational complexity of an exhaustive search over all possible subsets of variables is,

however, prohibitively expensive, necessitating more efficient but potentially suboptimal search

strategies. We focus on sparse variable selection for generalized Rayleigh quotient optimization

and generalized eigenvalue problems. Such problems often arise in the signal processing field,

e.g., in the design of optimal data-driven filters. We extend and generalize existing work on

convex optimization-based variable selection using semidefinite relaxations toward group-sparse

variable selection using the `1,∞-norm. This group-sparsity allows, for instance, to perform sensor

selection for spatio-temporal (instead of purely spatial) filters, and to select variables based on

multiple generalized eigenvectors instead of only the dominant one. Furthermore, we extensively

compare our method to state-of-the-art methods for sensor selection for spatio-temporal filter

design in a simulated sensor network setting. The results show both the proposed algorithm

and backward greedy selection method best approximate the exhaustive solution. However, the

backward greedy selection has more specific failure cases, in particular for ill-conditioned covariance

matrices. As such, the proposed algorithm is the most robust currently available method for group-

sparse variable selection in generalized eigenvalue problems.
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1. Introduction

Variable selection is an important problem occurring in many mathematical engineering fields. Its

goal is to select the subset of variables - often corresponding to specific sensor signals or features

thereof - that have the largest impact on the optimization of a specific objective function. Such

methods are often used, e.g., to identify the most relevant sensor nodes in a sensor network, or to

find the optimal positions to place sensors in a predefined grid [1]. These sensor selection prob-

lems arise in many signal processing-related fields, including telecommunication, where antenna

placement is critical to the good functioning of a communication network [2, 3, 4, 5, 6, 7, 8, 9],

biomedical sensor arrays, e.g., in the context of electro-encephalography (EEG) channel selection or

optimal positioning of wearable sensors [10, 11, 12, 13], or wireless acoustic sensor networks, where

a microphone subset needs to be selected [14, 15]. The number of sensors is typically constrained

by practical factors such as fabrication cost, bandwidth, or physical setup limitations, necessitating

an appropriate selection of a limited number of sensors and their location.

In many signal processing applications, the objective function can be written as a generalized

Rayleigh quotient (GRQ), which corresponds to solving a generalized eigenvalue decomposition

(GEVD). Such GRQ- or GEVD-based objectives are encountered in various beamformer or filter

design problems, for example, to maximize the signal-to-noise ratio (SNR) [16, 17, 4, 13], or to

maximize discriminative properties of the output signals of a filterbank, e.g., in biomedical sensor

arrays [18, 19]. In these contexts, variable/sensor selection helps to reduce the computational

complexity and power requirements of processing pipelines, to reduce the risk of overfitting of

models, and to improve the overall setup.

In this paper, we focus on grouped variable selection in GRQ/GEVD problems, where the

goal is to select a subset of predefined groups of variables. For illustrative purposes, but without

loss of generality, we will introduce the problem in the context of sensor selection for data-driven

spatio-temporal filter design. In sensor networks, an intuitive grouping of the optimization vari-

ables is based on the finite impulse response (FIR) filter tap weights in each sensor. However,

various (other) types of groupings exist, such as a grouped selection across different filterbands

or output filters. Note that all presented methods are besides sensor networks applicable to any

other application containing (group-sparse) variable selection for GRQ optimization and GEVD

problems.
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In sensor selection, the goal is to identify the optimal subset of M out of C available sensors

where the choice of M typically leads to a tradeoff between the optimization objective and sat-

isfying some practical constraints. The exhaustive evaluation of all possible sensor combinations

is a computationally costly operation. The selection of M out of C sensors is of combinatorial

complexity C!
M ! (C−M)! , where each evaluation requires a new GEVD computation, which in itself

has a computational cost of O(M3). Therefore, computationally efficient methods are required

to solve the sensor selection problem. Two popular heuristic methods are found in the greedy

forward selection (FS) and backward elimination (BE) algorithms [10, 20], which are easily applied

to many selection problems, including the GEVD problem. However, their greedy nature strongly

reduces the combinatorial exploration space, which can result in a highly suboptimal selection.

Other approaches take the specific problem structure into account and combine optimization of

the objective (e.g., the GRQ) with finding a sparse set of sensors. A specific subclass among these

optimization-based approaches relaxes the sensor selection problem to a convex optimization prob-

lem, which can be solved with off-the-shelf convex optimization solvers [21]. More specifically for

the GEVD problem, [17] used the sparsity promoting `1-norm for a purely spatial beamformer (see

Section 3.5), which was extended in [2] to a spatio-temporal beamformer using the `1,∞-norm as

a group-sparse regularizer, albeit in a suboptimal manner (as we will show in Section 3.4). Other

approaches in radar beamforming employed the `1,2-norm as a group-sparse regularizer in combi-

nation with successive convex approximation [7, 8]. Furthermore, [2, 7, 8] only cover the case of a

single output filter (multiple-input single-output (MISO) filtering), i.e., a single generalized eigen-

vector is computed, while several GEVD-based signal processing techniques, such as the common

spatial patterns (CSP) filterbank, require the extraction of multiple eigenvectors (multiple-input

multiple-output (MIMO) filtering).

The main contributions of this work are as follows:

• We extend the GRQ/GEVD sensor selection for purely spatial filtering in [17] to spatio-

temporal filtering borrowing techniques from [16]. This necessitates the use of a group-sparse

regularizer. When a sensor is eliminated, all corresponding filter lags should be put to zero.

• We add the possibility to take multiple filters (i.e., multiple generalized eigenvectors) into ac-

count (MIMO), whereas previous work only focused on the dominant generalized eigenvector

(MISO). This requires consistent removal or zeroing of the filter coefficients corresponding
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to an eliminated sensor across all filters. This approach can be employed in various other

applications, where the notion of a shared selection exists.

• We provide an in-depth and statistical comparison of the proposed method with other state-

of-the-art sensor selection methods in GEVD problems, which is largely missing in the afore-

mentioned prior art.

The paper is structured as follows. First, the sensor selection problem for GEVD and GRQ

optimization is introduced in Section 2. Next, the convex optimization-based group-sparse sensor

selection is explained in Section 3. We then thoroughly compare the proposed method with other

(benchmark) sensor selection methods on simulated data in Section 4. In Section 5, we provide

an example of the developed method applied on real-world data, in the context of mobile epileptic

seizure monitoring. Finally, conclusions are drawn in Section 6.

1.1. Notation

Scalars, vectors, and matrices are denoted by a lowercase (x), bold lowercase (x), and bold upper-

case letter (X). The element of matrix X on the ith row and jth column is given by xij . Xt denotes

the transpose of a matrix X and Tr (X) denotes the trace of X. The N × N identity matrix is

denoted by IN , while 0N denotes an N ×N matrix with zeros. The `∞-norm of a vector (i.e., the

maximal absolute value) is written as ||x||∞, the `1-norm of a vector (i.e., the sum of the absolute

values) as ||x||1, the `2-norm of a vector (i.e., the square root of the sum of squared elements)

as ||x||2, and the max-norm of a matrix (i.e., the maximal absolute value across all elements) as

||X||max. X < 0 denotes that X is a positive semidefinite matrix. The Kronecker-delta is written as

δij (i.e., δij = 0 if i 6= j; δij = 1 if i = j). Finally, the Kronecker-product of matrices X ∈ RIx×Jx

and Y ∈ RIy×Jy is defined as:

X⊗Y =


x11Y · · · x1JxY

...
. . .

...

xIx1Y · · · xIxJxY

 ∈ RIxIy×JxJy .

2. Sensor selection for GEVD problems

Consider a setting with C sensors and two stationary zero-mean multi-sensor signals x1(t) ∈ RCL

and x2(t) ∈ RCL, where t denotes the sample (time) index and L denotes the group size as explained
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below. x1(t) and x2(t) could represent the C sensor signals measured during two different states

(e.g., EEG during movement of the left arm and movement of the right arm [19]), or they could

represent two signal components that are both simultaneously present in the sensor signals (e.g.,

target signal and noise). We assume that the entries of x1(t) and x2(t) are grouped in blocks

of L entries, each group corresponding to a single sensor. For example, a group could consist

of L frequency subbands or other features extracted from a single-sensor signal. For illustrative

purposes, but without loss of generality, we focus here on spatio-temporal filter design, in which

case the L entries of a group correspond to a delay line of length L. In this case, the vector

x1(t) ∈ RCL can be represented as x1(t) =
[
x1,1(t)

t x1,2(t)
t · · · x1,C(t)t

]t
where x1,c(t) =[

x1,c(t) x1,c(t− 1) · · · x1,c(t− L+ 1)
]t

represents the causal FIR filter taps corresponding to

the cth sensor (similarly for x2(t)).

The goal is to find a spatio-temporal filter represented by w ∈ RCL which optimally discrimi-

nates between the two signals x1(t) and x2(t). Optimal discrimination corresponds to maximizing

the energy of the output signal y1(t) = wtx1(t), while minimizing the energy of the output signal

y2(t) = wtx2(t). The optimal w is thus found by maximizing:

max
w∈RCL

E{(wtx1(t))
2}

E{(wtx2(t))2}
=

wtR1w

wtR2w
, (1)

where R1 = E{x1(t)x1(t)
t} ∈ RCL×CL and R2 = E{x2(t)x2(t)

t} ∈ RCL×CL are the corresponding

covariance matrices. Assuming ergodicity and given T samples of the signals x1(t) and x2(t), these

covariance matrices can be estimated as R1 = E{x1(t)x1(t)
t} ≈ 1

T

T−1∑
t=0

x1(t)x1(t)
t and similarly

for R2. The problem in (1) is known as a generalized Rayleigh quotient (GRQ) optimization.

In the case where x1(t) and x2(t) represent the target signal and noise components, respectively,

Equation (1) implies a maximization of the signal-to-noise ratio, resulting in a so-called max-SNR

filter [22]. In max-SNR filtering, the covariance matrices R1 and R2 thus correspond to the spatio-

temporal covariance matrices related to the target signal and the noise, respectively. In the CSP

framework [19], these covariance matrices correspond to the two signal classes that have to be

discriminated (e.g., left versus right hand movement).

Because of the scale-invariance of w in (1), we can arbitrarily set the output power depicted

in the denominator to wtR2w = 1. Using the method of Lagrange multipliers to solve (1) then

leads to a GEVD [23]:

R1w = λR2w.
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The optimal filter w corresponds to the generalized eigenvector (GEVc) corresponding to the

largest generalized eigenvalue (GEVl).

In various applications, the GRQ optimization of (1) for MISO filtering is generalized to MIMO

filtering, i.e., multiple output filters. In this MIMO case, the goal is to find a filterbank of K spatio-

temporal filters W ∈ RCL×K for which the sum of the energies of the multiple output signals is

maximally discriminative:

max
W∈RCL×K

Tr (WtR1W)

Tr (WtR2W)

s.t. WtR2W = IK ,

(2)

with Tr (·) denoting the trace operator and IK the K ×K identity matrix. The constraint in (2)

ensures that the K output channels are orthogonal to each other with respect to the signal com-

ponent x2(t). This constraint is added to obtain K different filters. By plugging this constraint in

the cost function in (2), we obtain:

max
W∈RCL×K

Tr (WtR1W)

s.t. WtR2W = IK .

(3)

The solution of (3) is now given by taking the K GEVcs corresponding to the K largest GEVls:

R1W = R2WΛ. (4)

This generalization to MIMO filters (K > 1) is crucial in classification tasks and discriminative

analysis as in the CSP framework or in Fisher’s discriminant analysis, where the data are projected

into a K-dimensional feature space instead of a one-dimensional space. The number of output filters

K then introduces a tradeoff between how much information from the original data is preserved

and the GRQ (2), which becomes smaller (worse) for larger K.

Our goal is to find the optimal subset of M ≤ C out of C sensors, with M ≥ K, for which

the ratio of traces in (2) is maximal. Note that eliminating a sensor means that all time lags

corresponding to that sensor need to be zero. Furthermore, the selected sensors must be consistent

across all K filters (i.e., columns of W) to be able to physically select only a few sensors. That is

why a group-sparse sensor selection is required, i.e., the filter weights are grouped per sensor across

time lags and filters, and whole groups are put to zero (i.e., eliminated) rather than the individual

elements in a group. In the next section, we present a convex optimization-based approach for this

sensor selection problem.
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3. Optimal group-sparse sensor selection

In this section, we generalize the optimal sensor selection and array design method of [17], which

focuses on GRQ optimization and GEVD for purely spatial filtering (i.e., L = 1) and for MISO

filtering (i.e., K = 1), to spatio-temporal filtering and MIMO filtering. Our derivation is based on

a similar `1,∞-norm regularization technique as proposed in [16] for multicast beamforming and

antenna selection. It is noted that during the consolidation of this work, a similar idea to introduce

group-sparsity in GEVD problems was published in [2] in the meantime, independently from our

work. The work in [2] establishes the L > 1 case, yet without generalizing to the K > 1 case as

also targeted here. Furthermore, our proposed generalization differs from [2] on another crucial

aspect, which will be pointed out throughout the derivation (see Section 3.4), and which makes

that [2] can not be treated as a special case of our proposed general framework. In Section 4, we

will also empirically compare with [2] for the K = 1 setting and demonstrate the superiority of our

generalization.

Before pursuing group sparsity in (3), let us first vectorize W ∈ RCL×K as w ∈ RCLK , with

wk, k ∈ {1, . . . ,K}, the kth spatio-temporal filter:

w =


w1

...

wK

 ,wk =


wk,1

...

wk,C

 , and wk,c =


wk,c,1

...

wk,c,L

 . (5)

The optimization problem in (3) then becomes:

min
w∈RCLK

wt (IK ⊗R2) w

s.t. wt
kR1wk′ = δkk′ , ∀k, k′ ∈ {1, . . . ,K},

(6)

with ⊗ the Kronecker-product and δkk′ the Kronecker-delta (i.e., δkk′ = 0, ∀k 6= k′; δkk′ = 1, ∀k =

k′). Notice that we changed the problem in (3) to a minimization problem to accommodate for

an easy introduction of the sparse regularization term. It can be shown that the solution of (3)

and (6) are the same up to an arbitrary scaling on each wk, which is irrelevant as generalized

eigenvectors are defined up to a scaling. Using the filter-selector matrix Sk ∈ RCL×CLK , where the

subscript indicates the selected coefficients of w:

Sk =

1 k-1 k k+1 K[ ]
0CL . . . 0CL ICL 0CL . . . 0CL
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with an identity matrix on the kth position to select the kth filter wk from w, i.e., Skw = wk, (6)

can be rewritten as:

min
w∈RCLK

wt (IK ⊗R2) w

s.t. wtSt
kR1Sk′w = δkk′ , ∀k, k′ ∈ {1, . . . ,K}.

(7)

3.1. Group-sparsity promoting regularization

The goal is now to introduce sparsity in (6) on the sensor level. This sparsity on the sensor level

corresponds to a group-sparse constraint on (6), as all lags of all output filters corresponding to

a particular sensor need to be set to zero. Therefore, as in [16], we deploy the convex sparsity-

promoting `1,∞-norm as a proxy for the optimal but non-convex `0-norm as a regularization term

in (6).

To simplify the notations in the remainder of the derivations, we define the permutation matrix

P ∈ RCLK×CLK that permutes the elements of w such that they are first ordered by sensor and

then by filter and lags (instead of first by filter as in (5)), resulting in w̃:

w̃ = Pw =


w̃1

...

w̃C

 and w̃c =


w1,c

...

wK,c

 . (8)

Using this notation, the `1,∞-norm on the sensor level is defined as:

||w||1,∞ =
C∑
c=1

||w̃c||∞ =

C∑
c=1

max
k=1,...,K

||wk,c||∞ , (9)

where ||w̃c||∞ corresponds to the maximal absolute value across all lags and filters corresponding

to sensor c. As the `1-norm induces sparsity, while the `∞-norm is only zero when all elements are

zero, the `1,∞-norm can be used to put groups of coefficients across lags and filters corresponding

to one sensor to zero. Furthermore, in [16], it is also shown that any sparsity-inducing norm can

be replaced with the squared norm without changing the regularization properties of the problem.

Therefore, the sensor selection problem with the group-sparse regularization term becomes:

min
w∈RCLK

wt (IK ⊗R2) w + µ

(
C∑
c=1

||w̃c||∞

)2

s.t. wtSt
kR1Sk′w = δkk′ , ∀k, k′ ∈ {1, . . . ,K},

(10)
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where the regularization parameter µ can be used to control the solution’s sparsity and thus the

number of sensors selected. Note that this is not yet a convex optimization problem due to the

quadratic equality constraints.

3.2. Semidefinite formulation and relaxation

To transform (10) into a convex semidefinite problem (SDP), we are using the following trick, as

suggested in [24, 16, 17]:

wt (IK ⊗R2) w = Tr (wt (IK ⊗R2) w)

= Tr ((IK ⊗R2) wwt)

= Tr ((IK ⊗R2) V) ,

where the second equality holds because of the cyclic property of the trace. Per definition, V =

wwt ∈ RCLK×CLK is thus a rank-1 positive semidefinite matrix. Similarly, the equality constraints

can be reformulated as:

Tr (R1Sk′VSt
k) = δkk′ , ∀k, k′ ∈ {1, . . . ,K}.

Using the following definition of Ṽ:

Ṽ = w̃w̃t = PVPt =


Ṽ11 · · · Ṽ1C

...
. . .

...

ṼC1 · · · ṼCC

 ,
the group-sparse regularization term in (10) can be reformulated similarly to [16]:(

C∑
c=1

||w̃c||∞

)2

=
C∑

c1=1

C∑
c2=1

||w̃c1 ||∞ ||w̃c2 ||∞

=
C∑

c1=1

C∑
c2=1

∣∣∣∣∣∣Ṽc1c2

∣∣∣∣∣∣
max

= Tr (1C1t
CU) , (11)

where the max-norm ||A||max = max
i,j
|aij | is the elementwise maximum over a matrix, 1C ∈ RC

denotes an all-ones vector of length C, and where U ∈ RC×C is equal to:

U =


∣∣∣∣∣∣Ṽ11

∣∣∣∣∣∣
max

· · ·
∣∣∣∣∣∣Ṽ1C

∣∣∣∣∣∣
max

...
. . .

...∣∣∣∣∣∣ṼC1

∣∣∣∣∣∣
max

· · ·
∣∣∣∣∣∣ṼCC

∣∣∣∣∣∣
max

 . (12)
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Using the definition of U in (12), we finally obtain:

min
V∈RCLK×CLK ,

U∈RC×C

Tr ((IK ⊗R2) V) + µTr (1C1t
CU)

s.t. Tr (R1Sk′VSt
k) = δkk′ ,∀k, k′ ∈ {1, . . . ,K},

U ≥ |Sk,lVSt
k′,l′ |,∀k, k′ ∈ {1, . . . ,K},

and ∀l, l′ ∈ {1, . . . , L},

V < 0, rank(V) = 1,

(13)

with the selector-matrix Sk,l ∈ RC×CLK selecting all coefficients across C sensors for a particular

filter k and lag l. The second constraint is an element-wise inequality, which ensures that each

element of U (i.e., for each pair of sensors) is larger than the corresponding element for the

corresponding pair of sensors across all filters and lags (expressed by the ∀ over the filter and

lag indices), and thus implements the max-norm operation. The last two constraints ensure the

equivalence between V and wwt.

However, (13) is still not a convex optimization problem due to the rank-1 constraint. Therefore,

we approximate (13) by relaxing the rank constraint, which is a technique known as semidefinite

relaxation (SDR) and results in an SDP [24]:

min
V∈RCLK×CLK ,

U∈RC×C

Tr ((IK ⊗R2) V) + µTr (1C1t
CU)

s.t. Tr (R1Sk′VSt
k) = δkk′ , ∀k, k′ ∈ {1, . . . ,K},

U ≥ |Sk,lVSt
k′,l′ |, ∀k, k′ ∈ {1, . . . ,K},

and ∀l, l′ ∈ {1, . . . , L},

V < 0.

(14)

This SDR results in practice in a good approximation of the underlying rank-1 solution, potentially

using a post-hoc rank-1 approximation of the solution. Note, however, that we are here not

interested in the optimal filter coefficients themselves, but only in the selected sensors, which can

be retrieved as the non-zero elements of the diagonal of U. Typically, the GEVD problem in (4)

is afterward recomputed given the selected sensors from (14).
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3.3. Iterative reweighting and algorithm

Similarly to [16, 17], the all-ones matrix 1C1t
C in (14) can be replaced with a reweighting matrix

B(i) ∈ RC×C to implement iteratively reweighted `1-norm regularization [25]. The optimization

problem in (14) can then be iteratively solved by updating B(i) as:

B(i+1)
c1c2 =

1

U
(i)
c1c2 + ε

. (15)

This iteratively reweighted `1-norm regularization procedure compensates for the inherent magnitude-

dependency of the `1-norm. Using the `1-norm as a proxy for the `0-norm introduces a too large

penalty on the elements that have a large magnitude, while it is only relevant to know whether

an element is equal to zero or not [25]. The parameter ε, which is set as 10% of the standard

deviation of the elements of U without sensor selection (as suggested in [25] and which can be

easily computed using the GEVD in (4)), avoids division by zero. Initially, B(1) is set to 1C1t
C ,

i.e., (14) is solved. This iterative reweighting procedure generally converges after a few iterations.

To find the optimal set of a specific number M of sensors, a binary search on the hyperparameter

µ of (14) can be performed. Once the optimal set of sensors is found, the corresponding spatio-

temporal filters W can be computed by taking the K GEVcs corresponding to the K largest GEVls

of the GEVD in (4), using the reduced covariance matrices R
(red)
1,2 ∈ RML×ML, i.e., by selecting the

rows and columns corresponding to the selected sensors. The complete algorithm, which is referred

to as GS-`1,∞ (GS for group-sparse) in the remainder of the paper, is summarized in Algorithm 13.

The convex optimization problem in (14) is solved using the CVX toolbox [26, 27] and MOSEK

solver [28].

Remark: It is noted that this algorithm can be easily extended to complex filter coefficients

(as often found in beamforming), as the objective function of (14) (with the transpose replaced

by Hermitian transpose) is a real-valued function, even though it is function of complex variables,

while the inequality constraints are also real. This is due to the use of the trace operator in

combination with Hermitian (conjugate symmetric) complex-valued matrices.

3An open-source toolbox with the MATLAB implementation of this group-sparse sensor selection algorithm can

be found online on https://github.com/AlexanderBertrandLab/gsl1infSensorSelection.
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Algorithm 1 Group-sparse sensor selection for GEVD (GS-`1,∞)

Input:

• R1,R2 ∈ RCL×CL: to-be-discriminated covariance matrices

• M : number of sensors to be selected

• K: number of filters/GEVcs to take into account

• µLB, µUB: lower and upper bounds of the binary search

• imax: maximal number of reweighting iterations

Output: Optimal subset of M sensors and corresponding filters/GEVCs W ∈ RML×K

1: Define ε as 10% of the standard deviation of the elements of U corresponding to the solution

with all sensors (as can be computed from the GEVD in (4)) and the tolerance τ as 10% of

the minimum across the diagonal of U corresponding to the solution with all sensors

2: while Not M sensors selected do

3: Initialize B(1) = 1C1t
C

4: µ = µLB + µUB−µLB
2

5: while U changes and i ≤ imax do

6: Solve

min
V∈RCLK×CLK ,U∈RC×C

Tr ((IK ⊗R2) V) + µTr
(
B(i)U

)
s.t. Tr (R1Sk′VSt

k) = δkk′ , ∀k, k′ ∈ {1, . . . ,K},

U ≥ |Sk,lVSt
k′,l′ |, ∀k, k′ ∈ {1, . . . ,K} and ∀l, l′ ∈ {1, . . . , L},

V < 0.

7: Update counter i

8: Update B(i+1) as:

B(i+1)
c1c2 =

1

U
(i)
c1c2 + ε

9: end while
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10: Determine the (number of) sensors M̂ selected by comparing the diagonal of U with the

tolerance τ :

11: for c = 1 to C do

12: if Ucc > τ then cth sensor selected

13: else if Ucc < τ then cth sensor eliminated

14: end for

15: Update the regularization parameter bounds as:

16: if M̂ > M then µLB = µ

17: else if M̂ < M then µUB = µ

18: end while

19: Compute optimal filters as the K GEVcs corresponding to the K largest GEVls of the GEVD

problem with reduced covariance matrices R
(red)
1,2 ∈ RML×ML:

R
(red)
1 W = R

(red)
2 WΛ

3.4. Special case I: MISO filtering

When taking only one filter into account for the sensor selection (i.e., K = 1; MISO filtering), the

SDR problem in (14) becomes:

min
V∈RCL×CL,
U∈RC×C

Tr (R2V) + µTr (1C1t
CU)

s.t. Tr (R1V) = 1,

U ≥ |SlVSt
l′ |,∀l, l′ ∈ {1, . . . , L},

V < 0,

(16)

with the selector-matrix Sl ∈ RC×CL selecting all sensor coefficients corresponding to the lth lag.

This simplified problem is very similar to the approach proposed in [2], which was independently

published during the consolidation of this work. However, the algorithm derived in [2] has a subtle -

yet crucial - difference with (16) in the inequality constraint U ≥ |SlVSt
l′ |, ∀l, l′ ∈ {1, . . . , L}. In [2],

a different inequality was proposed, which only takes the diagonal elements of the different blocks

of V into account, i.e., U ≥ |SlVSt
l |,∀l ∈ {1, . . . , L}, while we also take the off-diagonal elements

of each block of V into account (remember: the blocks of V correspond to sensors when K = 1, the
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elements per block to different combinations of lags (see (5))). While leading to fewer inequality

constraints and thus resulting in a decreased computational complexity, this relaxation in [2] alters

the solution and leads to a suboptimal sensor selection (as empirically shown in Section 4). The

reason is that the off-diagonal blocks also appear in the first constraint of (16), resulting in a

mismatch between both constraints. In the remainder of the paper, the variant of [2] is dubbed

‘GS-`1,∞-[2]’.

3.5. Special case II: purely spatial filtering

In case we do not only constrain to MISO filtering (K = 1), but also restrict w ∈ RC to a purely

spatial filter (i.e., L = 1), (16) is reduced to:

min
V∈RC×C ,U∈RC×C

Tr (R2V) + µTr (1C1t
CU)

s.t. Tr (R1V) = 1,

U ≥ |V|,

V < 0,

(17)

which is equivalent to the approach proposed in [17].

3.6. Computational complexity

The computational complexity of the proposed method can be computed from the complexity of

interior-point method solvers for quadratic problems with quadratic constraints that are relaxed

using semidefinite relaxation. In general, such problems with N2 variables and T quadratic con-

straints can be solved to an arbitrary small accuracy ε with a complexity ofO
(
max(N,T )4N0.5 log(1ε )

)
[24].

This leads to a complexity of O
(
(CLK)4.5 log(1ε )

)
for our proposed GS-`1,∞ algorithm (Algo-

rithm 1).

4. Benchmark study

We compare the proposed GS-`1,∞ method with other benchmark sensor selection methods on sim-

ulated sensor data with known ground-truth4. We use the value of the GRQ (2) as the performance

metric (higher is better).

4We provide an open-source MATLAB implementation of the benchmark study online on https://github.com/

AlexanderBertrandLab/benchmarkStudySensorSelection.
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Besides the exhaustive search, a random search, and the GS-`1,∞-[2] method, the proposed

GS-`1,∞ method is compared with three other sensor selection methods, which are introduced in

Section 4.1. For the random search, the final GRQ is the mean over 1000 random selections of

sensors for a given problem. The setup of the benchmark study is described in Section 4.2. The

aforementioned methods are compared using only one filter (MISO filtering) in Section 4.3 and

using multiple filters (MIMO filtering) in Section 4.4 (for those methods that allow for K > 1).

Finally, we provide a more in-depth comparison of the two best-performing algorithms, namely

the proposed GS-`1,∞ method and the backward greedy elimination method (see Section 4.1.1) in

Section 4.5.

4.1. Benchmark sensor selection methods

In this section, we briefly introduce other algorithms for sensor selection that will be included in

the benchmark study.

4.1.1. Greedy sensor selection methods

Greedy sensor selection methods - also dubbed ‘wrapper’ methods [10] - sequentially select or

eliminate those sensors that maximally increase or minimally decrease the objective, respectively.

While these greedy approaches are computationally more efficient than the method proposed in

Section 3, due to their sequential nature, the greedy mechanism can result in suboptimal selections,

as they are stuck with the selected or eliminated sensors from previous steps. The computational

complexity of these greedy methods is dominated by the GEVD computation performed at each

iteration, which is O
(
(CLK)3

)
[29]. The greedy selection can be applied in two directions (forward

or backward):

Forward selection (FS). The FS method starts from an empty set of sensors and sequentially adds

the sensor (i.e., group of KL variables) that maximally increases the objective (2). New sensors

are added until M out of C sensors are selected.

Backward elimination (BE). The BE method starts from the full set of sensors and sequentially

removes the sensor that minimally decreases the objective (i.e., the objective in (2)) until M out

of C sensors are selected. Many variations on the FS and BE method exist, mostly presented in

the context of feature selection for classification [20].
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4.1.2. The STECS method

We also compare with the spatio-temporal-filtering-based channel selection (STECS) approach

proposed for the GEVD problem in [30]. In the STECS method, initially proposed for K = 1, the

following optimization problem is solved [30] as a regularized proxy for (1):

min
w∈RCL

wtR2w +
1

wtR1w
+ µ ||w||1,2 , (18)

with the `1,2-norm, defined as ||w||1,2 =
C∑
c=1
||wc||2, enforcing the group sparsity over different

lags. The GRQ in (1) is split into the first two terms of (18) as it removes the scale-invariance of

w, while yielding an equivalent solution [30].

The c-th sensor is then selected if ||wc||2 is larger than a predefined tolerance τ , which is set as

10% of the minimum min
c∈{1,...,C}

||wc||2 of the solution with all sensors. The optimization problem

in (18) is solved using the line-search method proposed in [30]. The same settings as in [30] have

been used. Similarly to the proposed method in Section 3.3, we use a binary search method on

the regularization parameter µ to obtain the correct number of sensors M . Furthermore, the

authors propose to use the selected sensors with (18) for the first filter w ∈ RCL to recompute

the solution of W ∈ RCL×K for multiple filters with (4), which means the selection does not take

the full objective (2) into account. Lastly, note that the optimization problem (18) is non-convex,

resulting in potential convergence to non-optimal local minima.

Other sensor selection methods for GEVD problems (and in particular in biomedical applica-

tions for CSP problems) have been proposed as well [10], for example, based on filter coefficients

magnitude (e.g., [31]), or other variants of `1-norm regularization (e.g., [7, 8, 32, 33]). However,

we do not further consider these methods, as they are not designed for group-sparsity and/or

the MIMO case, or have been shown to be outperformed by at least one of the aforementioned

methods [30].

4.2. Setup

4.2.1. Simulation model

We assume a
√
C ×

√
C square grid of C sensors, each of which are measuring a mixture of N1

source signals to be maximized (i.e., contributing to x1(t) and the numerator of (2)) and N2

source signals to be minimized (i.e., contributing to x2(t) and the denominator of (2)) as well as
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contr. x1(t)

contr. x2(t)

Figure 1: An exemplary generated problem with C = 16 = 4 × 4 sensors, N1 = 2 random signals contributing to

x1(t), and N2 = 3 random signals contributing to x2(t). Each sensor measures a mixture of the underlying sources.

The brightness of the color represents the intensity of the signal as perceived by a sensor.

independent sensor noise. This simulated problem resembles point-source models as, for example,

found in sensor networks, microphone arrays, neural activity (EEG), and telecommunications. The

source signals contributing to x2(t) have a power that is approximately 150 times larger than the

source signals contributing to x1(t). An example is given in Figure 1. In the max-SNR filtering

case, one could think of the source signals contributing to x1(t) as target signals and source signals

contributing to x2(t) as noise signals. In that case, the GRQ can be interpreted as an SNR.

Each source signal is a bandpass-filtered white Gaussian signal in a random frequency band

between 1 and 9 Hz, sampled at 20 Hz. It originates from a random location within the grid of

sensors (drawn from a uniform distribution over the entire area) and propagates with an exponen-

tially decaying amplitude to the sensors. The spread of the exponential decay is set such that the

maximal attenuation is equal to a predefined attenuation of 0.5%. Furthermore, a source signal is

measured at each sensor with a time delay linear to the distance to that source signal, such that

the maximal delay is 100 ms (i.e., 2 samples). The sensor noise at each sensor is white Gaussian

noise with twice the maximal attenuation as amplitude.

4.2.2. Monte Carlo runs

For each experiment, i.e., for a given number of sensors C, number of lags L, and number of filters

K, 250 (for the K = 1 case) and 100 (for the K > 1 case) of the random problems in Section 4.2.1

are generated, and the results for each evaluated sensor selection method are averaged over these

different problems. For each of these Monte Carlo runs, unless specified otherwise, the number of
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µLB µUB imax max. it. binary search

GS-`1,∞ 10−5 100 15 20

GS-`1,∞-[2] 10−5 104 15 20

STECS 0 1016 / 200

Table 1: The chosen hyperparameters of the different optimization-based sensor selection methods.

signals N1 and N2 is randomized between 1 and 2C.

4.2.3. Hyperparameter choice

Table 1 shows the chosen hyperparameters for the different optimization-based sensor selection

methods. The binary search for the GS-`1,∞ (Algorithm 1), the GS-`1,∞-[2], and the STECS

method is aborted if no solution was found after a certain number of iterations. For STECS, this

number is taken much larger, which is possible due to its computational efficiency. However, this

early stopping criterion leads to a limited number of cases where no solution is found for a certain

M . To still produce a meaningful solution in those cases, a random extra sensor is added to the

solution obtained for M − 1 sensors, and the corresponding output GRQ (in dB) is computed.

However, when no solution is found for the lowest value of M and the previous solution to still

produce a meaningful solution correspondingly fails (because it relies on the solution of the lowest

M), the results for all methods for those M for which there is no solution in that particular run

are removed.

Furthermore, the hyperparameter µ for the GS-`1,∞ (Algorithm 1) and GS-`1,∞-[2] algorithm

is defined relative to the first target objective part of (16) (i.e., Tr (R2V)) for the solution with all

sensors.

4.2.4. Statistical comparison

To identify statistically significant differences based on hypothesis testing, we use a linear mixed-

effect model (LMEM) [34]. Such an LMEM allows the exploitation of all structure in the data

by modeling the obtained GRQ as a function of the method while taking the variation due to the

different Monte Carlo runs and the effect of a different number of selected sensors M into account as

random factors. The following LMEM is chosen based on the Akaike information criterion (AIC),
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which takes the model fit and complexity into account:

GRQ ∼ 1 + method + (M |run).

This notation is often used in LMEMs to reflect that the GRQ is modeled with the method as

a fixed effect, the number of selected sensors M as random slope (i.e., the GRQ can vary as a

function of M independently for each method), and the run as a random intercept. Per fixed term,

the estimated regression coefficients (β), standard errors (SE), degrees of freedom (DF), t-value,

and p-value are reported. If a significant effect between the different methods is found, we use

an additional Tukey-adjusted post-hoc test to assess the pairwise differences between individual

methods. The significance level is set to α = 0.05. All statistical analyses are performed using the

R software package and the nlme and emmeans packages.

In the statistical hypothesis testing, we limit the number of selected sensors to C
2 , as we consider

this lower half range much more relevant in the context of sensor selection than the upper half

range. Typically, one wants to drastically reduce the number of required sensors, i.e., below half

of the number of available sensors.

4.3. Comparison in the MISO case (K = 1)

First, we evaluate and compare the presented methods in the first special MISO case of Section 3.4,

where only one filter (first GEVc) is taken into account, i.e., K = 1. In this case, we can also

include the comparison with GS-`1,∞-[2], which was designed specifically for this case. We choose

C = 25, L = 3 and look for the optimal sensor selection for M ranging from 2 to 24. Figure 2

shows the output GRQs as a function of M for each separate method (mean over 250 Monte Carlo

runs ± the standard error on the mean). Table 2 shows the outcome of the statistical analysis,

for M ranging from 2 to 12 (see Section 4.2.4). All presented methods achieve significantly higher

(better) GRQ than random selection but lower (worse) GRQ than the optimal solution obtained

through an exhaustive search over all possible combinations (Table 2b).

The greedy sensor selection methods suffer from intrinsic limitations, i.e., they depend on

previous choices in their sequential procedure. For example, the FS method starts with a GRQ

close to optimal but diverges from the optimal exhaustive solution when M increases, and the

other way around for the BE method. However, the FS method achieves overall lower GRQ than

the BE method, which is also confirmed by the statistical testing in Table 2b. This could be due
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Fixed-effect term β SE DF t-value p-value

intercept −5.38 0.79 18729 −6.80 < 0.0001

method = exhaustive−BE 2.51 0.07 34.94 < 0.0001

method = exhaustive−FS 3.35 46.71 < 0.0001

method = exhaustive−STECS 5.48 76.30 < 0.0001

method = exhaustive−random 8.73 121.59 < 0.0001

method = exhaustive−GS-`1,∞-[2] 4.33 60.36 < 0.0001

method = exhaustive−GS-`1,∞ 1.83 25.46 < 0.0001

(a)

exhaustive BE FS STECS random GS-`1,∞-[2] GS-`1,∞

exhaustive / 2.51/∗ 3.53/∗ 5.48/∗ 8.73/∗ 4.33/∗ 1.83/∗
BE −2.51/∗ / 0.85/∗ 2.97/∗ 6.22/∗ 1.83/∗ −0.68/∗
FS −3.53/∗ −0.85/∗ / 2.13/∗ 5.38/∗ 0.98/∗ −1.53/∗
STECS −5.48/∗ −2.97/∗ −2.13/∗ / 3.25/∗ −1.15/∗ −3.65/∗
random −8.73/∗ −6.22/∗ −5.38/∗ −3.25/∗ / −4.40/∗ −6.90/∗
GS-`1,∞-[2] −4.33/∗ −1.83/∗ −0.98/∗ 1.15/∗ 4.40/∗ / −2.51/∗
GS-`1,∞ −1.83/∗ 0.68/∗ 1.53/∗ 3.65/∗ 6.90/∗ 2.51/∗ /

(b)

Table 2: (a) The LMEM fixed-effect outcomes for M = 2 to 12 when C = 25, L = 3,K = 1. (b) The pairwise

differences, showing the estimated difference between average GRQ (method in row − method in column)/p-value

per pair of methods (p-values < 0.0001 are indicated with ∗). Statistically significant differences are color coded.

Values in green/red indicate that the method in the row outperforms/is outperformed by the method in the column.
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Figure 2: The output GRQ (mean over 250 runs) as a function of M for the different sensor selection methods when

C = 25, L = 3,K = 1. The shading represents the standard error on the mean.

to the fact the FS method is limited to selecting one sensor at a time, which hampers its capacity

to probe combined effects of multiple sensors.

Furthermore, Figure 2 and Table 2b show that the GS-`1,∞-[2] method is outperformed by all

other methods, except by the STECS method. Our proposed method (significantly) outperforms

GS-`1,∞-[2] across all M . This is an effect of dropping the off-diagonal blocks of the inequality

constraints of (16). However, the gap between both methods becomes smaller for lower M (see

also Figure 2). Similarly, the STECS method is outperformed, especially for low M , by all other

methods, suffering from its non-convex objective function. This method achieves slightly higher

GRQ than the GS-`1,∞-[2] method for most larger M , but it achieves much lower GRQ for small M .

As a result, there is also a significant difference observed across all M between 2 and 12 between

the STECS and GS-`1,∞-[2] method (Table 2b).

A remarkable conclusion is that the greedy BE method significantly outperforms almost all other

state-of-the-art methods, including GS-`1,∞-[2] and STECS, which have not been benchmarked in

a group-sparse setting against BE in the corresponding original papers [2] and [30], respectively.

The only method that significantly outperforms the BE method is our proposed GS-`1,∞ algorithm.

Interestingly, although the BE method seems to perform slightly better for larger M , the GS-`1,∞
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method seems to perform better than the BE method for small M especially, explaining the

statistically significant difference. The gap between both methods is also larger for these small

M than for large M . From an application-based point of view, these smaller M - below half

of the total number of sensors C - are often targeted in practice. Indeed, sensor selection is

typically performed to substantially decrease the number of required sensors, not to remove only

a few sensors. Although the heuristic BE method is computationally much more efficient than

the optimization-based GS-`1,∞ method, it thus performs worse than the GS-`1,∞ method when

it most matters. Lastly, it is interesting to identify in how many and in which cases a sensor

selection method completely fails. For example, one could define a failure as more than 10 dB

difference with the exhaustive method. Using this rule, the fail rate for the BE method across all

runs and again for M between 2 and 12 is 3.71%, while this is 0.44% for the GS-`1,∞ method.

Thus, the BE method has almost 10 times more severe fail cases than the GS-`1,∞ method. While

these percentages might seem marginal at first sight, it should be taken into account that this

percentage is biased by the highly randomized simulated scenarios. After a closer look, these fail

cases turn out to mainly occur in cases where the covariance matrix R2 is ill-conditioned, which is

not necessarily a rare case in practical settings, for example, as found in miniaturized EEG sensor

networks [11]. In Section 4.5, we further analyze these particular fail cases and provide a more

extensive discussion.

4.4. Comparison in the MIMO case (K > 1)

Figure 3 and Table 3a show the results of 100 Monte Carlo simulations with C = 25, L = 2, and

K = 2, i.e., the more general case where K > 1. As the GS-`1,∞-[2] method was only proposed for

K = 1, it is not included in these simulations.

First of all, the results confirm that the proposed extension to MIMO filtering in Section 3 is

valid, as the GS-`1,∞ method still obtains GRQs close to those of the optimal exhaustive solution.

Furthermore, the results are in line with Section 4.3. The BE and GS-`1,∞ method again show a

statistically significant difference when evaluated across M between 2 and 12 (Table 3b), confirming

that the latter has the advantage for the more relevant low M . Finally, both methods significantly

outperform the other benchmark methods (except the exhaustive search).
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Fixed-effect term β SE DF t-value p-value

intercept −14.64 0.91 6393 −16.01 < 0.0001

method = exhaustive−BE 2.10 0.11 18.54 < 0.0001

method = exhaustive−FS 3.18 28.04 < 0.0001

method = exhaustive−STECS 5.35 47.15 < 0.0001

method = exhaustive−random 9.09 80.17 < 0.0001

method = exhaustive−GS-`1,∞ 1.51 13.36 < 0.0001

(a)

exhaustive BE FS STECS random GS-`1,∞

exhaustive / 2.10/∗ 3.18/∗ 5.35/∗ 9.09/∗ 1.51/∗
BE −2.10/∗ / 1.08/∗ 3.24/∗ 6.99/∗ −0.59/∗
FS −3.18/∗ −1.08/∗ / 2.17/∗ 5.91/∗ −1.66/∗
STECS −5.35/∗ −3.24/∗ −2.17/∗ / 3.75/∗ −3.83/∗
random −9.09/∗ −6.99/∗ −5.91/∗ −3.75/∗ / −7.58/∗
GS-`1,∞ −1.51/∗ 0.59/∗ 1.66/∗ 3.83/∗ 7.58/∗ /

(b)

Table 3: (a) The LMEM fixed-effect outcomes for M = 2 to 12 when C = 25, L = 2,K = 2 (GS-`1,∞-[2] is omitted

as it is only defined for K = 1). (b) The pairwise differences, showing the estimated difference between average

GRQ (method in row − method in column)/p-value per pair of methods (p-values < 0.0001 are indicated with

∗). Statistically significant differences are color coded. Values in green/red indicate that the method in the row

outperforms/is outperformed by the method in the column.
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Figure 3: The output GRQ (mean over 100 runs) as a function of M for the different sensor selection methods when

C = 25, L = 2,K = 2. The shading represents the standard error on the mean.

4.5. Comparison of GS-`1,∞ with BE

In this section, we zoom in on the comparison between the BE and GS-`1,∞ method, as these two

methods achieve the highest GRQ in the previous simulations. As explained in Section 4.1.1, the

BE method can suffer from its greedy sequential selection, where previously eliminated sensors

can not be recovered when selecting a lower number of sensors. This inherent disadvantage of the

BE method can lead to various fail cases (defined here as > 10 dB difference with the optimal

exhaustive solution). After closer inspection, we identified that the majority of the fail cases

(73.53% of all the fail cases in the previous simulations) corresponded to scenarios in which the

matrix R2 was ill-conditioned, i.e., where there was a large difference between the largest and

smallest eigenvalue(s).

To thoroughly test this case, we compare the BE method to the GS-`1,∞ method on the subset

of 60 simulations of Section 4.3 where 2 ≤ N2 ≤ 12, i.e., where the number of signals contributing

to x2(t) is less than half of the C = 25 sensors. These cases correspond to ill-conditioned covariance

matrices R2 in the denominator of the GRQ, where the smallest eigenvalues are determined solely

by white Gaussian sensor noise (see Section 4.2.1). The results are shown in Figure 4, where also

the performance of the exhaustive solution is shown as a reference. For large M , both methods

perform similarly to the exhaustive solution, with very little change in GRQ for increasing values

of M . When M decreases, both methods start to diverge from the exhaustive solution. However,
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Figure 4: While the BE and GS-`1,∞ method performs on par for large M , the GS-`1,∞ method starts to outperform

the BE method for smaller M in the ill-conditioned R2 covariance matrix case (mean ± standard error on the mean).

Fixed-effect term β SE DF t-value p-value

intercept 31.30 0.44 1259 71.47 < 0.0001

method = GS-`1,∞−BE 1.53 0.19 1259 8.20 < 0.0001

Table 4: The LMEM outcomes when including only the BE and GS-`1,∞ methods in the case with an ill-conditioned

covariance matrix R2 in the denominator (for M = 2 to 12).

the BE method achieves lower GRQ than the GS-`1,∞ method for smaller M . This is confirmed by

the LMEM including only those two methods, as there is again a significant effect of the method,

i.e., the GS-`1,∞ method outperforms the BE method (Table 4).

Figure 5 shows the differences in GRQ across all runs and M between 2 and 12 between the

BE/GS-`1,∞ method and the exhaustive solution when 2 ≤ N2 ≤ 12. The BE method has a heavier

tail with more outlying negative differences with the exhaustive solution than the GS-`1,∞ method.

Of all runs with 2 ≤ N2 ≤ 12, there is a fail rate of 11.52% for the BE method, while this is only

0.91% for the GS-`1,∞ method. To summarize, when there is an ill-conditioned covariance matrix

R2 in the denominator of the GRQ, the GS-`1,∞ method is more robust than the BE method.
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Figure 5: The BE method shows more outlying negative differences in GRQ (across all runs and M between 2 and

12) with the exhaustive solution than the GS-`1,∞ method when the covariance matrix in the denominator of the

GRQ is ill-conditioned.

5. Example of sensor selection on real-world data

The benchmark study in Section 4 was performed on simulated data, which allowed us to generate

a large number of simulations that are generic enough to apply to many sensor selection problems

that arise in different signal processing domains. In this section, we show an example of sensor

selection in the context of mobile epileptic seizure monitoring. More specifically, the task requires

to design a spatiotemporal filter that amplifies multi-channel EEG data during seizures while

maximally attenuating peak interferers [13]. The solution is found through max-SNR filtering and

can be solved using the GEVD framework described in this paper. More information about the

context, problem, and data can be found in [13].

In the following example, we investigate the effect of the reduction of EEG channels on subject

three of the study in [13], aiming to design a mobile EEG setup. The data contains 16 channels

(i.e., C = 16). Five time lags are used per channel (i.e., L = 5), while two output filters are

computed (i.e., K = 2).

Figure 6 shows the GRQ as a function of the number of selected channels for the GS-`1,∞ and

BE methods, which performed best in the benchmark study (see Section 4.3 to 4.5). The results

are in line with the benchmark study. Both methods obtain similar GRQ across the whole range of

selected channels, but the GS-`1,∞ method outperforms the greedy BE method for a low number

of channels M . This confirms that the developed method performs as expected, also on sensor
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Figure 6: The GS-`1,∞ method outperforms the BE method for a low number of channels also on an example with

real-world data collected on a patient with epilepsy (C = 16, L = 5,K = 2).

selection problems on real-world data.

6. Conclusion

In this paper, we proposed a group-sparse variable selection method using the `1,∞-norm for GRQ

optimization and GEVD problems applied in the context of sensor selection. This group-sparsity

does not only allow to extend spatial to spatio-temporal filtering but also to take multiple filters

(eigenvectors) into account and thus extend MISO to MIMO filtering. The latter is essential in

various other applications, such as selecting sensors across different filterbands in CSP applica-

tions [18, 19].

We have extensively compared the proposed GS-`1,∞ method with various other sensor se-

lection methods (greedy, optimization-based, . . . ). Remarkably, the simple greedy BE method

outperformed all methods from the state of the art, except the proposed GS-`1,∞ method. While

the heuristic BE method is computationally more efficient, it performs worse than the GS-`1,∞

method for smaller numbers of selected sensors, and with a higher probability to completely fail.

We have shown that one specific fail case of the BE method is when the covariance matrix in the

denominator of the GRQ is ill-conditioned.

As the BE method is less robust than the proposed GS-`1,∞ method, the latter is the preferred

27



choice when performing variable selection, in particular if the number of desired variables is small

compared to the total number of variables.
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