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Abstract—Energy efficiency is crucial for a wireless sensor
network (WSN) since its nodes are generally powered by energy
sources of limited capacity, such as batteries. The bit depth
used to quantize the sensor signal samples heavily influences
energy consumption, as it strongly impacts the amount of
information to be transmitted between the sensor nodes. Bit depth
allocation problems seek to assign a certain bit depth to each
sensor signal such that energy consumption is minimized while
respecting a performance constraint. For multi-channel signal
estimation tasks these problems are generally non-convex, and
they are often solved through simplifying assumptions or through
convex relaxation. However, for linear minimum mean squared
error (MMSE) estimation, we show how the matrix inversion
lemma allows to transform the MMSE constraint into a convex
constraint, which can then be interpreted as a constraint on the
excess MMSE due to quantization. As a result, as long as the cost
function representing energy consumption is convex, this class of
bit depth allocation problems is convex, i.e., if the bit depth
variable is relaxed to a real-valued variable. This guarantees
global optimality up to discretization of the obtained solution.

Index Terms—Bit depth allocation, energy efficiency, signal
estimation, wireless sensor networks

I. INTRODUCTION

A wireless sensor network (WSN) is a collection of sensor

nodes which exchange their observations of a physical phe-

nomenon using wireless communications. The energy budget

of the sensor nodes is usually limited since they are typically

powered by batteries, which may be difficult to replace or

recharge. As a consequence, energy efficiency is crucial in the

design of algorithms for WSNs. In particular, data exchange

through wireless communications is generally more expensive

than data processing at the sensor nodes [1]. One parameter

that heavily affects the amount of data to be exchanged

between the sensor nodes is the bit depth used to quantize

the sensor signal samples. The goal of a bit depth allocation

problem is to optimize the bit depth of each sensor signal such

that the total communication energy consumption is minimized

while respecting a performance constraint depending on the

task assigned to the WSN. We focus on multi-channel signal

estimation, which has applications in, e.g., speech enhance-
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ment for wireless acoustic sensor networks [2]–[5] and artifact

removal in electroencephalography (EEG) networks [6].

Previous work in bit depth allocation problems for WSNs

has been conducted for a variety of estimation algorithms.

The works presented in [7], [8] propose several solutions to

this class of problems in a WSN whose task is linear MMSE

estimation. However, the authors assume that the noise sensor

signal components are spatially uncorrelated, which precludes

its use in many practical applications where noise is spatially

correlated, e.g., when localized noise sources are present. The

effect of noise correlation is studied in [9], although for a

suboptimal estimator. Spatial correlation of the desired sensor

signal components following a specific mathematical model is

considered in [10], where the noise sensor signal components

are again assumed uncorrelated. In [11], [12] several bit depth

allocations problems are solved for multihop WSNs where

each node averages the estimators from its neighbours instead

of computing the true linear MMSE estimator. In [13], [14]

a greedy bit depth allocation algorithm is proposed, but its

convergence speed is low when steps of one bit must be used.

In [15], a bit depth allocation problem based on a linearly

constrained minimum variance (LCMV) estimator is solved

through convex relaxation of the minimum variance constraint,

thereby loosing guarantees on the optimality of the solution.

In this paper we focus on bit depth allocation problems

based on a linear MMSE signal estimation task for a WSN,

with a general signal model that considers correlated noise

components across the different sensor nodes. We assume a

centralized architecture where all sensor signals are transmit-

ted to a fusion centre (FC). We show that, while a constraint

on MMSE is non-convex in general, it can be transformed into

a convex constraint using a similar strategy as in [15], which

can then be interpreted as a constraint on the excess MMSE

due to quantization. Therefore, as long as the cost function

representing energy consumption is convex, this class of bit

depth allocation problems is convex. This guarantees global

optimality of the solution up to discretization.

The remaining of the paper is organized as follows. In

Section II we formulate the bit depth allocation problem. In

Section III we transform the MMSE constraint into a convex

constraint. In Section IV we provide numerical simulations.

Finally, we present our conclusions in Section V.

II. BIT DEPTH ALLOCATION BASED ON MMSE

A. Signal model

We consider a WSN composed of K sensors (channels),

where the set of sensors is denoted by K = {1, . . . ,K}.
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The signal samples collected by the k-th sensor are denoted

by yk[t], where t ∈ N denotes the discrete time index. For

conciseness, we will omit the time index in the subsequent

sections unless referring to a specific signal sample. We as-

sume that the signals yk are complex-valued in order to allow

frequency domain descriptions such as, e.g., the short-time

Fourier transform (STFT). Furthermore, all sensor signals are

assumed to be realizations of short-term wide-sense stationary

and short-term ergodic stochastic processes.

The sensor signal yk is modelled as the combination of

a desired signal component xk and an undesired zero-mean

noise component vk, which can be expressed as

yk = xk + vk, k ∈ {1, . . . ,K}, (1)

where we assume that E{xkv
∗

m} = 0 ∀k,m ∈ K, where E{·}
is the expectation operator. The sensor signals can be stacked

in the K × 1 vector y = [y1, . . . , yK ]T . The K × 1 vectors

x and v are defined in a similar way. We remark that no

statistical distribution, Gaussian or otherwise, is assumed on

the sensor signals yk or their components xk, vk.

B. Linear MMSE estimation

For the sake of simplicity, we assume a centralized architec-

ture for the WSN where all sensors send their signal samples

to a fusion centre (FC), which then has access to the complete

set of sensor signals y.

The goal of the WSN is to estimate a desired signal d, which

corresponds to any one of the unobservable desired signal

components, i.e., d = xk for some k, by applying the linear

MMSE estimator to the sensor signals y. The linear MMSE

estimator ŵ is found by minimizing the mean squared error

cost function, i.e.,

ŵ = arg min
w

E
{

|d−wHy|2
}

, (2)

where (·)H denotes the conjugate transpose. Assuming that

the sensor signal correlation matrix Ryy = E
{

yyH
}

has full

rank1, the unique solution to (2) is given by

ŵ = R−1
yy ryd , (3)

where ryd = E{yd∗}. The estimate of the desired signal d is

then given by

d̂ = ŵHy . (4)

The linear minimum mean squared error is given by

E
{

|d− ŵHy|2
}

= Pd − rHydR
−1
yy ryd . (5)

where Pd = E{|d|2} is the desired signal power.

Using the assumption of short-term ergodicity, the matrix

Ryy can be estimated through sample averaging, e.g., using

a sliding window or a forgetting factor. As the desired signal

d is not observable, sample averaging is impossible for ryd,

and hence its estimation has to be done indirectly through

strategies specific to each application. In cases where the

desired source signal has an ‘on-off’ behaviour, as in speech

1This assumption is typically satisfied in practice due to the presence of a
noise component in each sensor that is independent of other sensor signals.

[3]–[5] or EEG signal enhancement [6], the noise correlation

matrix Rvv = E{vvH} can be estimated during periods when

the desired source is inactive, which allows to obtain ryd from

the estimates of Rvv and Ryy [3]. More refined data-driven

techniques to estimate ryd have been studied in [16], [17].

C. Uniform quantization

In practical applications of WSNs, the samples of each

sensor signal yk are quantized prior to their transmission using

a certain bit depth bk, which introduces a quantization error

ek
2. The uniform quantization of yk with bk bits can be

expressed as

Q(yk) = ∆bk

(⌊

yk
∆bk

⌋

+
1

2

)

, (6)

where ⌊·⌋ denotes the floor function and ∆bk = Dk/2
bk . The

parameter Dk is the dynamic range of the sensor signal yk,

which is typically selected to be a few standard deviations

around its mean or 2max(|yk|). Since the dynamic range is

specific to each sensor signal, it needs to be communicated to

the FC. The quantization error is then defined as

ek = Q(yk)− yk . (7)

The mathematical properties of the quantization error ek have

been thoroughly studied [18]–[20]. It has been shown that

the quantization error is zero mean, and that yk and ek
are uncorrelated under certain technical conditions on the

characteristic function of yk [18]. Under the same conditions,

the power of the quantization error is given by

pk = E{|ek|
2} =

∆2
bk

12
=

D2
k

12

1

22bk
. (8)

Following the uniform quantization model, we can express

the quantized sensor signal samples of the k-th sensor as

yk,e = yk + ek , (9)

which can then be stacked in the K × 1 vector

ye = [y1,e, . . . , yK,e]
T = y + e , (10)

where e = [e1, . . . , eK ]T . Using the statistical properties of

ek we can find the second-order statistics of the quantized

sensor signals. As ek is assumed to be uncorrelated with d,

the cross-correlation remains unchanged, i.e.

ryed = E {(y + e)d∗} = ryd . (11)

Similarly, the quantized sensor signal correlation matrix is

given by

Ryeye
= E

{

(y + e)(y + e)H
}

= Ryy +Ree , (12)

where Ree is the error correlation matrix, given by

Ree = E
{

eeH
}

= diag(p) , (13)

where p = [p1, . . . , pK ]T is the K × 1 vector collecting the

quantization error powers. Note that (12) and the diagonal

structure of Ree in (13) follow from the assumptions that the

quantization errors ek are uncorrelated with every sensor signal

ym and every other quantization error en, ∀m,n ∈ K, n 6= k.

2Note that yk could be already quantized, e.g., when it is acquired by
the analog-to-digital converter of the k-th sensor. In that situation, ek would
represent the error from changing the bit resolution of yk .
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D. Bit depth allocation

The bit depth used to quantize each signal yk affects the

energy spent in communicating its samples to the FC, and

comes with a performance penalty in terms of mean squared

error (MSE). Using (3), (11) and (12) we can find the optimal

linear MMSE estimator for the quantized sensor signals ye as

ŵe = arg min
w

E
{

|d−wHye|
2
}

= R−1
yeye

ryd . (14)

The MMSE corresponding to a specific set of bit depths b =
[b1, . . . , bK ]T , denoted by J(b), can be found from (5) as

J(b) = E
{

|d− ŵH
e ye|

2
}

= Pd − rHydR
−1
yeye

ryd , (15)

where Ryeye
depends on b through (8), (12) and (13).

The bit depth allocation problem with an MMSE constraint

can be then formulated as

min
b

K
∑

k=1

(Ek(bk))
q

s.t. Pd − rHydR
−1
yeye

ryd ≤ η (16)

bk ∈ Z+, bk ≤ bmax, ∀k,

where Ek(bk) is a function modelling the energy spent in

communicating the k-th sensor signal quantized using bk bits

to the FC, bmax is the maximum bit depth allowed, η is a user-

defined threshold on the allowed MSE, and Z+ is the set of

non-negative integers. Note that the cost function in (16) is the

q-th power of the Lq-norm of the sensor energy consumption

vector E = [E1, . . . , EK ]T , where q ≥ 1 is an integer.

The L1-norm corresponds to the total energy consumption,

while the L∞-norm corresponds to the maximum sensor

energy consumption. Other values of q correspond to trade-

offs between these two criteria [7], [11], [12], [15], [21]. As

exhaustive integer search is impractical for all but the smallest

of problems, we relax the bit depths bk to be non-negative

real numbers, i.e., bk ∈ R+. The solution then needs to be

transformed back to Z+, e.g., through rounding as in [7], [11],

[12], randomized rounding [15] or a greedy heuristic [10]. In

Section III-B we provide details on suitable energy models.

III. CONVEX FORMULATION OF THE PROBLEM

The MMSE constraint in (16) can be written using (12) as

Pd − rHyd (Ryy +Ree)
−1

ryd ≤ η . (17)

Unfortunately (17) is not convex but, as we show in the

following, can be transformed into a convex constraint. To this

end, we transform the constraint into a linear matrix inequality,

based on a similar strategy as in [15] for LCMV estimation.

However, [15] required an additional convex relaxation on the

constraints to finally end up with a convex problem, which

turns out to not be necessary for the MMSE framework.

A. Transformation into a convex constraint

We begin with applying a special case of the Woodbury

identity [22], which states that

(R+D)
−1

= R−1 −R−1
(

R−1 +D−1
)

−1
R−1, (18)

where R and D are invertible matrices of the same dimen-

sions. Applying (18) to (17) we obtain

Pd − rHyd

(

R−1
yy −R−1

yy

(

R−1
yy +R−1

ee

)

−1
R−1

yy

)

ryd ≤ η,

(19)

where we note that Ree = diag(p) following (13) and, being a

diagonal square matrix with all non-zero entries, is invertible3.

Expanding and rearranging (19) we find

rHydR
−1
yy

(

R−1
yy +R−1

ee

)

−1
R−1

yy ryd ≤ η −
(

Pd − rHydR
−1
yy ryd

)

,
(20)

where the left-hand term represents the excess MMSE due to

quantization, and the right-hand term represents the difference

between the user-defined threshold η and the MMSE obtained

when all sensor signals y are quantized at maximum resolution

(bmax or higher), following (5). By using the Schur complement

lemma [23] we can express (20) as
[

R−1
yy +R−1

ee R−1
yy ryd

rHydR
−1
yy η̄

]

� 0 (21)

where η̄ = η −
(

Pd − rHydR
−1
yy ryd

)

is the threshold on the

excess MMSE due to quantization. Following (8) and (13),

the expression for R−1
ee is

R−1
ee = diag

(

p−1

1 , . . . , p−1

K

)

= diag

(

12
22b1

D2
1

, . . . , 12
22bK

D2
K

)

.

(22)

As R−1
ee is linear in 22bk , (21) constitutes a linear matrix

inequality (LMI) in the variable uk = 22bk , equivalent to

R0 +
K
∑

k=1

uk

12

D2
k

Ekk � 0 , (23)

where Ekk is the (K + 1) × (K + 1) matrix with all zero

elements except the k-th element of its diagonal, which is

equal to one, and

R0 =

[

R−1
yy R−1

yy ryd
rHydR

−1
yy η̄

]

. (24)

It is well known that LMIs define convex sets [23], thus

showing that the MMSE constraint in (23) is convex after the

relaxation bk ∈ R+ mentioned in Section II-D.

B. Implications for bit depth allocation problems

The bit depth allocation problem (16) can be expressed as

min
u

K
∑

k=1

(

Ẽk(uk)
)q

s.t. R0 +
K
∑

k=1

uk

12

D2
k

Ekk � 0 (25)

1 ≤ uk ≤ 22bmax , ∀k ∈ {1, . . . ,K},

where Ẽk(uk) = E(2−1log2uk). Since q ≥ 1, a sufficient

condition for the convexity of the problem is that Ẽk(uk)

3The case where one or more entries of Ree are zero requires a version
of the matrix inversion lemma (18) where D is not an invertible matrix.
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Figure 2. Energy savings of the proposed bit depth allocation method with
respect to homogeneous allocation (same bit depth for every sensor).

are convex and non-negative ∀k ∈ K. It can then be solved

through efficient convex optimization methods such as the

interior point method [23]. The k-th optimal bit depth b∗k can

be recovered by b∗k = round
(

2−1log2u
∗

k

)

.

The function Ek(bk) = ρk
(

2αbk − 1
)

, α > 0, can be used

as a generic model for additive white Gaussian noise (AWGN)

communication channels between each sensor and the FC,

which contains many energy models used in the literature

as special cases. For example, in [11], [12], [21] the model

is based on channel capacity leading to α ≥ 1, in [7] the

assumption is made that the QAM constellation scales with

the bit depth bk leading to α = 1, and in [15] it is again

based on channel capacity with α = 2. The factors ρk ≥ 0 are

specific to the communication channel model of each of these

works. Using this generic function for Ek(bk), the condition

for the convexity of the cost function in (25) is

q ≥ 2α−1 ≥ 1 . (26)

The derivation is provided in the Supplementary Material.

IV. SIMULATIONS

We consider toy scenarios in a two dimensional 5×5 m area

where the positions of a single desired source, noise sources

and sensors are randomly generated in 100 independent Monte

Carlo runs. All source signals consist of 105 samples of

complex Gaussian white stochastic processes with zero mean

and unit variance. We use a narrow-band propagation model

where each source is observed at each sensor with a power at-

tenuation factor inversely proportional to the distance between

the corresponding source and the sensor, and a phase delay

generated from a uniform distribution in [−π, π]. Besides,

independent AWGN is also present in each sensor signal, with

zero mean and a variance of 10−3 times the power of the

corresponding sensor signal. The second-order statistics Ryy

and ryd are estimated by averaging over all the signal samples.

As our interest lies in observing the effects of quantization,

we compute ryd assuming knowledge of the desired signal d
(the desired source as observed in the sensor with the highest

SNR) to avoid estimation errors. The energy model is taken

to be Ek(bk) = ρk
(

2bk − 1
)

, as described in (25), where we

choose ρk = r2k, where rk is the distance between the k-th

sensor and the FC, and q = 2 for simplicity.

Figure 1 depicts, in a representative scenario with K = 4
sensors and two noise sources, the resulting total energy and

MMSE from the bit depth allocation (25) for different thresh-

olds η, solved using the CVX package [24], [25]. Besides, it

also depicts those magnitudes resulting from every bit depth

combination from bmax = 12 to 0 bits, from homogeneous

allocation, i.e., where every sensor uses the same bit depth,

and from the greedy method in [13], [14]. It can be observed

that our proposed method finds solutions that are equal or at

least very close to the optimal bit depth allocation. The small

deviations are due to (a) the discretization of the solution of

(25), and (b) some possible mismatch with the quantization

model used in (17). Our method performs better than [13],

[14] in some regions, while performing at least as good in the

rest. Furthermore, also the computation time is much lower (on

100 Monte Carlo runs with K = 32 sensors, the ratio between

the computing times tgreedy/tproposed is 64.23 on average, with

a standard deviation of 63.69).

We are now interested in the energy savings with respect to

homogeneous allocation, given by

ξ = 100 · (1− Eopt/Ehomog) , (27)

where Eopt and Ehomog are the total communication energy

across all sensors corresponding respectively to the solution

of (25) and to homogeneous allocation. Figure 2 shows the

energy savings ξ from 100 scenarios with different numbers

of sensors and three noise sources where, in each scenario,

(25) is solved with the same MMSE threshold η as the

corresponding homogeneous allocation, from 12 to 2 bits. It

can be readily observed that the energy savings are significant

in most scenarios.

V. CONCLUSIONS

We have studied a bit depth allocation problem for multi-

channel signal estimation in a WSN, which aims at minimizing

the energy consumption while satisfying an MMSE constraint.

We have shown how, for uniform quantization, an application

of the matrix inversion lemma allows to transform the a priori

non-convex MMSE constraint into a convex constraint even in

the presence of correlated noise. As long as the energy model

is also convex, this guarantees the global optimality of the

solution up to discretization. Finally, we have demonstrated

through numerical simulations that our method indeed finds

the (near-) optimal solution, and that significant energy savings

can be achieved with respect to a homogeneous allocation.
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Supplementary text material

Proof of the condition (26): The cost function of (25) for Ek(bk) = ρk
(

2αbk − 1
)

, α > 0,

q ≥ 1, ρk ≥ 0 ∀k, is given by

Eα,q(b1, . . . , bK) =

K
∑

k=1

(E(bk))
q
, (28)

We want to find the values of α and q for which
(

Ẽk(uk)
)q

=
(

Ek

(

2−1log
2
uk

))q
is convex, which

implies the convexity of Ẽα,q(u1, . . . , uK) since the latter would be a sum of convex functions. In the

following we drop the index k in order to ease the notation. We define

f(u) = ρq
(

u
α

2 − 1
)q

, Domf = {u ∈ R : u ≥ 1} , (29)

which is equal to
(

Ẽk(uk)
)q

for any index k. We know that f(u) is convex on Domf if and only if

its second derivative f ′′(u) is non-negative1 in Domf , i.e., f ′′(u) ≥ 0 , ∀u ≥ 1. The first derivative

f ′(u) is given by

f ′(u) = ρqq
α

2

(

u
α

2 − 1
)q−1

u
α

2
−1 . (30)

The second derivative f ′′(u) is then given by

f ′′(u) = ρqq
α

2

{

(q − 1)
(

u
α

2 − 1
)q−2 α

2
uα−2 +

(

u
α

2 − 1
)q−1

(α

2
− 1

)

u
α

2
−2

}

(31)

= ρqq
α

2

(

u
α

2 − 1
)q−2

{

(q − 1)
α

2
uα−2 +

(

u
α

2 − 1
)

(α

2
− 1

)

u
α

2
−2

}

(32)

= ρqq
α2

4

(

u
α

2 − 1
)q−2

{

(q − 1)uα−2 +

(

1−
2

α

)

(

uα−2 − u
α

2
−2

)

}

(33)

= ρqq
α2

4

(

u
α

2 − 1
)q−2

uα−2

{

(q − 1) +

(

1−
2

α

)

(

1− u−
α

2

)

}

. (34)

Note that in (34) all the factors to the left of the curly braces are strictly positive for u ≥ 1 and any

α > 0 and q ≥ 1. Then the condition for the convexity of f(u) in (29) can be written as

∀u ∈ Domf : (q − 1) +

(

1−
2

α

)

(

1− u−
α

2

)

≥ 0 . (35)

Since u ≥ 1, it follows that 0 ≤ 1 − u−
α

2 < 1 , ∀α > 0. Therefore, as α > 0 and q ≥ 1, condition

(35) is equivalent to

(q − 1) +

(

1−
2

α

)

≥ 0 , (36)

which is equivalent to

q ≥
2

α
, (37)

which is the condition for the convexity of Ẽα,q(u1, . . . , uK), the cost function of (25).

1The requirement of Domf being convex is already satisfied by u ≥ 1.


