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Abstract—We consider a distributed signal estimation problem
in a wireless sensor network where each node aims to estimate a
node-specific desired signal using all sensor signals available in
the network. In this setting, the distributed adaptive node-specific
signal estimation (DANSE) algorithm is able to learn optimal
fusion rules with which the nodes fuse their sensor signals,
as the fused signals are then transmitted between the nodes.
Under the assumption of transmission without errors, DANSE
achieves the performance of centralized estimation. However,
noisy communication links introduce errors in these transmitted
signals, e.g., due to quantization or communication errors. In
this paper we show fusion rules which take additive noise in
the transmitted signals into account at almost no increase in
computational complexity, resulting in a new algorithm denoted
as ‘noisy-DANSE’ (N-DANSE). As the convergence proof for
DANSE cannot be straightforwardly generalized to the case with
noisy links, we use a different strategy to prove convergence of N-
DANSE, which also proves convergence of DANSE without noisy
links as a special case. We validate the convergence of N-DANSE
and compare its performance with the original DANSE through
numerical simulations, which demonstrate the superiority of N-
DANSE over the original DANSE in noisy links scenarios.

Index Terms—Wireless sensor networks, signal estimation,
noisy links, quantization

I. INTRODUCTION

A wireless sensor network (WSN) consists of a set of nodes
which collect information from the environment using their
sensors, and which are able to exchange data over wireless
communication links. The goal of the network is usually
to infer information about a physical phenomenon from the
sensor data gathered by the nodes.

A common paradigm for sensor data fusion in WSNs is the
centralized approach, where the sensor data are transmitted to
one node with a large energy budget and high computational
power, usually called the fusion centre. However, wireless
communication is often expensive in terms of energy and
bandwidth, and nodes that are powered by batteries need to
carefully manage their own energy budget to allow the network
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to function for a reasonable lifetime [1]. Distributed processing
is an alternative paradigm where the computational task is
divided among the nodes, as opposed to being carried out
single-handedly by a fusion centre. Instead of transmitting
their raw sensor data, nodes only transmit the results from
their local computations, which allows for a reduction in the
amount of data exchanged among nodes.

Here we focus on signal estimation, where the goal of
each node is to continuously estimate a desired signal for
each sample time at the sensors through a spatio-temporal
filtering of all of the sensor signals available in the network.
We assume that the desired signals are node-specific, yet
all the desired signals from the different nodes are assumed
to span a low-dimensional signal subspace, which defines a
latent ‘common interest’. A particular instance is where all
the nodes estimate a local (node-specific) observation(s) of the
same source signal(s). This is important in several applications
where preserving spatial information is necessary, such as
localization [2]–[5], speech enhancement in binaural hearing
aids [6]–[8] and per-channel artifact removal in electroen-
cephalography (EEG) sensor networks [9].

Several algorithms have been designed for node-specific
signal estimation that allow every node to learn the optimal
fusion rules to fuse their own sensor signals and then transmit
them to the other nodes. Under the assumption that the fused
signals are transmitted without errors, every node converges to
the centralized linear minimum mean squared error (MMSE)
estimate of its node-specific desired signal. These algorithms
are generally classified under the DANSE acronym, which
stands for distributed adaptive node-specific signal estimation.
The original DANSE algorithm has been designed for fully
connected network topologies [10], [11] and then extended to
tree topologies [12], hybrid (tree plus clique) topologies [13]
and eventually for any network topology [14]. For low SNR
and non-stationary conditions, a low rank covariance matrix
approximation based on a generalized eigenvalue decomposi-
tion (GEVD) has been incorporated into the DANSE algorithm
[15], which also relaxes the assumptions on the desired signals
spanning a low-dimensional subspace.

The transmission of linearly fused sensor signals allows the
DANSE algorithm to significantly reduce the data exchange
in the WSN while converging to the same node-specific



2

desired signal estimates as the centralized approach. However,
noise can be introduced in the transmitted signals when the
communication links are noisy, for instance as a result of
quantization of the fused signals [16] prior to transmission,
or communication errors.

The effect of noisy links in WSNs has been studied ex-
tensively in the context of parameter estimation, where the
estimation variable is a parameter vector of fixed dimension,
which is generally assumed to be static or slowly varying
over time. This allows for an iterative refinement process
where intermediate estimates are exchanged between the nodes
until convergence to a steady state regime is achieved. The
distributed consensus-based estimation framework with noisy
links has been studied in [17] for deterministic parameters
and in [18] for random parameters, where the authors show
the resilience of their algorithms to additive noise result-
ing from quantization and/or communication processes. The
convergence of distributed consensus with dithered quantized
observations and random link failures has been considered
in [19]. The design of a quantizer whose quantization levels
are progressively adapted to ensure the convergence of a
distributed consensus algorithm has been studied in [20]. In the
context of diffusion-based approaches to parameter estimation,
the effect of noisy links has also been the subject of study.
A study of diffusion adaptation with noisy links has been
presented in [21], where the authors derive an optimal strategy
for adjusting the combination weights for two-node networks.
The effect of noisy links in the steady-state performance
of diffusion least-mean-square (LMS) adaptive networks has
been analyzed in [22], where convergence can still be proven
but the performance is shown to depend non-monotonically
on the step size. A similar analysis for the steady state for
partial diffusion recursive LMS adaptation with noisy links is
provided in [23]. More recently, a variable step-size diffusion
LMS algorithm that explicitly takes into account the link
noise has been proposed in [24]. Distributed estimation of a
Gaussian parameter subject to unknown multiplicative noise
and additive Gaussian noise has been studied in the context
of quantization in a WSN with centralized architecture [25],
where an analysis of different bit rate allocation methods is
also provided.

In contrast to parameter estimation, in signal estimation
a time series corresponding to the sensor sample times is
estimated such that the dimension of the estimation variable
grows with every new frame of sensor signal samples [7], [10],
[26]–[28]. One possible approach is to treat each new frame
of sensor signal samples as a new parameter vector to be esti-
mated [27], [29]. However, starting a new iterative parameter
estimation process for every such frame would rapidly become
expensive in terms of time and energy, particularly when a high
sampling rate is required such as in audio signal processing
applications. Therefore, signal estimation in WSNs often relies
on the design of linear spatio-temporal fusion rules such as
those mentioned by the DANSE algorithm [10]–[12], [14],
[26]. Rather than iterating on the estimation variables directly,
the iterations are performed on these fusion rules instead, in
order to adapt them over time in a data-driven fashion, where a
new frame of sensor observations can be used in each iteration.

Unlike in the literature on parameter estimation in WSNs, the
effect of noisy links, i.e., the presence of additional noise in the
transmitted signals, is generally not considered in the existing
literature on signal estimation in WSNs.

In this paper we focus on the DANSE algorithm for dis-
tributed signal estimation in a WSN with noisy links, i.e.,
when noise is introduced into the fused and transmitted signals
due to, e.g., quantization or communication errors. We derive
fusion rules that take this additional noise into account at
almost no increase in computational complexity, resulting in
a modified version of the DANSE algorithm, referred to as
“noisy”-DANSE or N-DANSE for short. The convergence
proof in [10] of the original DANSE algorithm cannot be
straightforwardly generalized in the case with noisy links.
Furthermore, as opposed to the original DANSE algorithm, the
new N-DANSE algorithm minimizes an upper bound on the
per-node mean squared errors. Therefore, we adopt a different
strategy to prove convergence of the N-DANSE algorithm with
noisy links. This new proof then also contains the convergence
of DANSE without noisy links as a special case.

The paper is structured as follows. In Section II we formu-
late the problem statement and the signal model, and we briefly
review the centralized approach to linear MMSE estimation. In
Section III we review the DANSE algorithm, which facilitates
the exposition of the rest of the paper. In Section IV we derive
the modified version of DANSE, named noisy-DANSE or N-
DANSE, to account for noisy links, i.e., additive noise in the
transmitted signals. In Section V we prove convergence of
the N-DANSE algorithm to a unique point. In Section VI
we provide numerical simulations, supporting our analysis.
Finally, we present the conclusions in Section VII.

II. SIGNAL MODEL AND LINEAR MMSE ESTIMATION

A. Signal model

We consider a WSN composed of K nodes, where the k-th
node has access to Mk sensor signals. We denote the set of
nodes by K = {1, . . . ,K} and the total number of sensors by
M =

∑
k∈KMk. The sensor signal ykm captured by the m-th

sensor of the k-th node is modelled as the combination of a
node-specific desired signal component xkm and an undesired
noise component vkm, which can be expressed mathematically
as

ykm[t] = xkm[t] + vkm[t], m ∈ {1, . . . ,Mk}, (1)

where t ∈ N denotes the discrete time index of the sensor
signal samples. In order to allow frequency domain represen-
tations, we assume that the sensor signals ykm are complex-
valued, and we denote complex conjugation with the super-
script (·)∗. We assume that the desired signal components
xkm are uncorrelated with the undesired noise components
vkm for all nodes and sensors. It is noted that correlation may
exist within or across nodes for the desired signal components
and for the undesired noise components, i.e., E{xkmx∗qn}
and E{vkmv∗qn} are not necessarily zero. We remark that no
statistical distribution, Gaussian or otherwise, is assumed on
the sensor signals ykm or their components xkm, vkm. Besides,
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we assume that all sensor signals are realizations of short-
term wide-sense stationary1 and short-term ergodic stochastic
processes.

We denote by yk the Mk × 1 vector containing the Mk

sensor signals of node k, i.e.,

yk = [yk1, . . . , ykMk
]T , (2)

where the superscript (·)T denotes the transpose operator. For
the sake of an easy exposition, we will omit the discrete time
index t when referring to a signal, and include it only when
referring to a specific observation, e.g., a sample of the Mk-
channel sensor signal yk collected by node k at sample time t
is denoted by yk[t]. The Mk×1 vectors xk and vk are defined
in a similar manner, such that

yk = xk + vk . (3)

We assume that the node-specific desired signal components
xk are related to a desired source signal s through an unknown
steering vector ak such that

xk = aks, ∀k ∈ K, (4)

where ak is an Mk×1 vector containing the transfer functions
from the source to the sensors. Note that we assume a single
desired source signal s to be present in order to simplify the
exposition in Sections III and IV. However, all results can be
extended to the case with multiple desired sources in a similar
fashion as in the original DANSE algorithm [10].

The goal of each node k is to estimate the desired signal
component xkm̃ in its m̃-th sensor, where m̃ can be freely
chosen. We only estimate one signal per node as this will
simplify the notation later on. However, this is without loss of
generality, as the optimal estimation of other channels of xk
can be obtained as a by-product in the (N-)DANSE algorithm
without increasing the required communication bandwidth. We
will explain this in Section III under equation (19). To simplify
the notation, we denote by dk the desired signal of the k-th
node, i.e.,

dk = xkm̃ . (5)

Note that in (4) neither the source signal s nor the desired
signal components xk are observable, and that the steering
vector ak is also unknown. We do not attempt to estimate
neither s nor ak since we aim to preserve the characteristics
of the desired signals as they are observed by each node.
This is relevant in several applications where it is important
to estimate signals at specific node locations, as explained in
Section I and references therein.

Finally, we highlight that the signal model given by (1) -
(4) includes convolutive time-domain mixtures, described as
instantaneous mixtures in the frequency domain. In this case,
the framework is applied in the short-term Fourier transform
domain in each frequency bin separately [30].

1This assumption is added to simplify the theoretical derivations. In
practice, the assumption is relaxed to stationarity of the spatial coherence
between every pair of sensor signals ykm and yqn. This means that non-
stationary sources (such as speech) are allowed, as long as the transfer
functions from sources to sensors remain static or vary only slowly compared
to the tracking speed of the DANSE algorithm [30].

B. Centralized linear MMSE estimation

We first consider the centralized estimation problem where
every node has access to the network-wide M×1 sensor signal
vector y, given by

y = [yT1 , . . . ,y
T
K ]T . (6)

The network-wide desired signal component vector x and
noise component vector v are defined in an similar manner,
such that y = x + v. In this case, the goal for the k-th node
is to estimate its desired signal dk based on a linear MMSE
estimator ŵk which minimizes the cost function

Jk(wk) = E
{∣∣dk −wH

k y
∣∣2} , (7)

where E{·} is the expectation operator and (·)H denotes con-
jugate transpose. Assuming that the sensor signal correlation
matrix Ryy = E

{
yyH

}
has full rank2, the unique minimizer

of (7) is given by

ŵk = R−1yy rydk , (8)

where rydk = E{yd∗k}. The estimate of the desired signal dk
of the k-th node is given by

d̂k = ŵH
k y . (9)

C. Estimation of signal statistics

The matrix Ryy can be estimated through sample averaging,
for instance using a sliding window,

Ryy[t] =

t∑
n=t−L+1

y[n]y[n]H , (10)

where L is the size of the sliding window.
Sample averaging is not possible for rydk since the desired

signals dk are not observable, and hence its estimation has to
be done indirectly [10]. Using (3), (5) and the fact that x and
v are uncorrelated3, rydk can be expressed as

rydk = Rxxck , (11)

where Rxx = E{xxH} and ck is an M × 1 selection vector
whose entry corresponding to the m̃-th channel of xk is one,
and all other entries are zero.

In cases where the desired source has an ‘on-off’ behaviour,
as in speech [6], [30], [31] or EEG signal enhancement [9],
the noise correlation matrix Rvv = E{vvH} can be estimated
during periods when the desired source is not active, since then
the sensor signal samples only contain a noise component.
Since we assume that x and v are uncorrelated and v is zero-
mean, it is then possible to use the relationship Rxx = Ryy−
Rvv to obtain an estimate of Rxx. More advanced data-driven
techniques to estimate Rxx that rely on subspace methods have
been developed in [15], [31].

2This assumption is usually satisfied in practice due to the presence of a
noise component in each sensor that is independent of other sensor signals,
such as thermal noise. If this is not the case, the pseudoinverse has to be used.

3For the sake of easy exposition, we also assume that the noise components
v are zero mean.
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III. THE DANSE ALGORITHM

In this section we provide a brief review of the DANSE
algorithm. For more details we refer the reader to [10], [11].

In the context of WSNs, the k-th node only has access to
its own sensor signals yk, and thus every node would need to
exchange their complete set of sensor signals with every other
node in order to compute the optimal linear MMSE estimator
ŵk (8) and the corresponding optimal signal estimate d̂k =
ŵH
k y (9). This would require a significant amount of energy

and bandwidth [1]. The DANSE algorithm allows to obtain the
optimal linear MMSE estimates of the desired signals without
requiring a full exchange of all the sensor signals.

For the sake of brevity and clarity of exposition, we consider
the DANSE algorithm in a fully connected network as in [10].
However, it is noted that the DANSE algorithm has also been
adapted to a tree topology [12] and to be topology independent
[14]4.

The main idea behind the DANSE algorithm is that each
node k can optimally fuse its own Mk-channel sensor signal
vector yk to generate the single-channel fused signal zk, given
by

zk = fHk yk ∀k ∈ K, (12)

where the Mk × 1 fusion vector fk will be defined later in
(19). Each node k then transmits its fused signal zk to all other
nodes in the network. As every z-signal is received by all the
nodes in the network, a node k has access to an (Mk+K−1)-
channel signal, consisting of its own Mk sensor signals yk and
the K−1 z-signals from other nodes, which can be collected in
the (K − 1)× 1 vector z−k = [z1, . . . , zk−1, zk+1, . . . , zK ]

T ,
where the subscript ‘−k’ refers to the signal zk not being
included. The (Mk +K − 1)-channel signal in node k is then
defined as

ỹk =

[
yk
z−k

]
= x̃k + ṽk . (13)

Node k can use ỹk to estimate its desired signal dk using a
local linear MMSE estimator w̃k given by

w̃k = arg min
w

E
{
|dk −wH ỹk|2

}
. (14)

Note that the DANSE algorithm needs to find the optimal
fusion vectors fk and the optimal estimators w̃k for every
node-specific signal dk ∀k ∈ K. To solve this, the DANSE
algorithm iteratively updates the fusion vectors fk in (12) for
all nodes one by one in a round-robin fashion. To this end, we
introduce the iteration index i ∈ N and write it in the subscript
of all variables that are influenced by fk, e.g., zik = f iHk yk. In
every iteration, each node k ∈ K updates its local estimator
as

w̃i+1
k = arg min

w
E
{∣∣dk −wH ỹik

∣∣2} , (15)

which is then given by (compare with (8)-(11))

w̃i+1
k =

(
Ri
ỹkỹk

)−1
Ri
x̃kx̃k

c̃k , (16)

where Ri
ỹkỹk

= E{ỹikỹiHk }, Ri
x̃kx̃k

= E{x̃ikx̃iHk } and c̃k is
the (Mk+K−1)×1 selection vector whose m̃-th entry is one

4In Section VI-H we compare the N-DANSE and DANSE algorithms in a
tree topology through numerical simulations.

y1
fH1

ψH
1

g∗12

g∗13

d̃1

Estimated
signal

z2

z3


From
other
nodes

To
other
nodes

Noise

1

Figure 1. Diagram of signal flow in node 1 for the (N-)DANSE algorithm in a
network with three nodes (K = 3). The square boxes denote a multiplication
from the left-hand side (i.e., ψH

1 y1).

and all other entries are zero. The estimated desired signal at
any node k is then

d̃ik =
(
w̃i+1
k

)H
ỹik =

(
ψi+1
k

)H
yk +

(
gi+1
k,−k

)H
zi−k , (17)

where we used the following partitioning of the node-specific
estimator w̃i+1

k ,

w̃i+1
k =

[
ψi+1
k

gi+1
k,−k

]
, (18)

where ψi+1
k and gi+1

k,−k are vectors of dimensions Mk × 1

and (K − 1) × 1 respectively, and the elements of gi+1
k,−k are

given by gi+1
k,−k = [gi+1

k1 , . . . , gi+1
k,k−1, g

i+1
k,k+1, . . . , g

i+1
kK ]T . After

applying (16) in each node, one node, say node k, will also
update its fusion vector based on its ψi+1

k , i.e.,

f i+1
k = ψi+1

k , (19)

whereas the fusion vectors of all the other nodes remain
unchanged5 [10]. The updating node k changes in a round-
robin fashion from 1 to K through the iterations. It is noted
that, if the other channels of xk would be included as desired
signals in (5), the selection vector c̃k in (16) would become a
selection matrix with Mk columns, and similarly the estimator
w̃k would also become a matrix with Mk columns, one for
each channel of xk. Nevertheless, only one column has to be
selected to compute the fusion vector fk, since all columns
would be the same up to scaling due to (4), and thus no extra
data would need to be transmitted in that case.

Under assumption (4), it is proven in [10] that the up-
date (19) results in a sequence of node-specific estimators
{w̃i

k,∀k ∈ K,∀i ∈ N} which converges to a stable equilibrium

5A version of the algorithm in which all the nodes can update their fusion
rules simultaneously has been proposed in [11]. We consider this case through
numerical simulations in Section VI-G.
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as i → ∞. In this convergence point, at each node k the
estimated desired signal d̃ik in (17) is equal to the centralized
node-specific estimated signal d̂k = ŵH

k y, where ŵk is the
node-specific estimator defined in (8).

As an example, a diagram of the signal flow inside node
1 in a network of K = 3 nodes is shown in Figure 1. The
additive noise in the fused signals zk is introduced in Section
IV, and is to be ignored for the time being.

We highlight the fact that, while due to the iterative nature
of the DANSE algorithm it may appear that the same sensor
signal observations are fused and transmitted several times
over the sequence of iterations, this is not the case in practice.
In practical applications the iterations are spread over time,
such that the updates of fk are performed over different
sensor signal observations. These sensor signal observations
are usually processed in frames. The updated fusion vectors
and node-specific estimators are then only applied to the next
incoming sensor signal observations. An explicit description
of the processing in frames will be provided for the N-DANSE
algorithm in Section IV (Algorithm 1). This description is also
valid for the DANSE algorithm as explained above, as we will
show that the N-DANSE algorithm is a generalization of the
DANSE algorithm.

We also note that, since the (N)-DANSE algorithm is
intended to perform spatial filtering (or beamforming), there
is an inherent assumption of synchronization across all y and
z-signals that is only there if temporal filtering is included. As
a consequence, clock drift needs to be handled either by an
explicit synchronization protocol or by compensation within
the algorithm itself. The latter is beyond the scope of the paper,
but we refer the interested reader to [32]–[34].

IV. THE N-DANSE ALGORITHM: ADDITIVE NOISE IN THE
TRANSMITTED SIGNALS

A. Noisy links

Let us now consider the presence of additive noise in the
transmitted signals. We denote by zikq the signal transmitted
by the k-th node and received by the q-th node at iteration i.
With additive noise, it is given by

zikq = f iHk yk + eikq , (20)

where eikq denotes the noise added during the communication
process between node k and node q. In Figure 1 a diagram of
the signal flow for node 1 is depicted as an example.

We make the following assumptions about the additive
noise:
• The additive noises eikl, e

i
qp have zero mean and are

mutually uncorrelated, i.e., E{eikl(eiqp)∗} = 0, ∀q 6= k.
• The additive noise eikq and the signals yk are uncorre-

lated, i.e., E{yk(eikq)
∗} = 0∀k, q ∈ K.

• The second order moment of the additive noise eikq is
linearly related to the second order moment of the fused
signal f iHk yk, i.e.,

E
{
|eikq|2

}
= βkE

{
|f iHk yk|2

}
∀k, q ∈ K . (21)

We assume that the parameter βk is known by node k.

Note that assumption (21) is without loss of generality, as
the signal fHk yk is usually scaled before transmission to
maximally cover the available dynamic range. A scaling of
zkq has no influence in the dynamics of the algorithm, as the
scaling will be compensated for by the gk,−k coefficients in
(18). Besides, it is also noted that (21) means that the variances
of the additive noises ekq depend only on the transmitting
node k. Although each node q receives a different version
of fHk yk with different decoding errors ekq , their impact
has comparable magnitude since wireless links are generally
designed to satisfy a certain target bit error rate. Besides, the
chosen coding scheme of each node has a comparable effect
on all receiving nodes, e.g., a weak coding scheme would
result in more decoding errors in all nodes which receive its
signal. Furthermore, this model also covers quantization errors
introduced at the transmitting node k. We also highlight the
fact that no statistical distribution, Gaussian or otherwise, is
assumed on the additive noises ekq , which is also important
to allow the modelling of different transmission errors such as
communication and quantization noise.

In the particular case of uniform quantization, the mathe-
matical properties of quantization noise have been extensively
studied [16], [35], [36]. In our framework this would happen
when the signals f iHk yk,∀k ∈ K, are subject to uniform
quantization prior to their transmission, in which case the
parameter βk in (21) can be shown to be given by [16]

βk =
∆2
bk

12E
{∣∣fHk yk

∣∣2} , (22)

where ∆bk = Ak/2
bk . The parameter Ak is given by the

dynamic range6 of the fused signal f iHk yk, and bk is the
number of bits used by the k-th node to quantize its fused
signal f iHk yk. Quantization in the frequency domain can
also be considered following the model discussed above, as
explained in [37].

In the remainder of this section we propose a modified
version of the DANSE algorithm, referred to as noisy-DANSE
or N-DANSE for short, for the noisy links case (20). A
convergence proof for the N-DANSE algorithm is provided
in Section V, based on a different strategy than in [10].

B. Fusion vectors for N-DANSE

Fusion vectors govern how useful the z-signals are to the
estimation problems of other nodes. In the original DANSE
algorithm, each node finds its optimal fusion vector as part
of the solution to its own local estimation problem, as given
in (19). In the presence of noisy links, modelled by (20),
the update of the fusion vector of node k must take into
account the additional noise terms ekq which are present in
the estimation problems of other nodes q 6= k.

The main idea is to define an additional cost function
that is minimized in the updating node k to define the
fusion vector fk. Although this cost function can only contain
information available to node k, let us first consider the

6The dynamic range is usually chosen to be several standard deviations of
the signal, i.e., A2

k ∝ E{|fHk yk|2}, such that (22) is independent of fk .



6

case as if node k had access to all the noisy z-signals
received by all the other nodes in the network, i.e. z−k,q =
[z1q, . . . , zk−1,q, zk+1,q, . . . , zKq]

T , for all7 q 6= k. A proper
fusion rule fk would be one that minimizes the total estimation
error across all other nodes q, assuming node q estimates dq
using all its received z-signals, including the -to be optimized-
zkq = fHk y + ekq . This leads to the following cost function

Jsk(fk, h1k, . . . , hKk,h1,−k, . . . ,hK,−k) =∑
q∈K\{k}

E
{
|dq −

(
fHk yk + ekq

)
h∗qk − hHq,−kz−k,q|2

}
,

(23)

where the h-coefficients are auxiliary optimization variables
that mimic the choice of the g-coefficients at other nodes.
Note that this is an upper bound on the actual achievable total
mean squared error (MSE), as node q can use its local sensor
signal yq in its local estimation problem instead of zqq , which
offers more degrees of freedom and is free of additive noise.
However, yq cannot be included in (23), as the updating node
k does not have access to it. Nevertheless, it is important to
emphasize that the actual total MSE achieved by the network
will always be lower, and thus better, than predicted by this
bound. Note that finding the fusion vectors which minimize
the total MSE would only be possible if nodes had access to
all the information in the WSN, i.e., all sensor signals yk and
all additive noises ekq . In Section VI-E, we demonstrate the
impact of using this upper bound by comparing the result with
a ‘clairvoyant’ algorithm where all this information would be
available (see also Appendix C).

Using the assumptions on the noise statistics as listed in
the previous subsection, we show in Appendix A that the cost
function (23) is identical to a similar cost function in which all
the z−k,q can be replaced with z−k,k, i.e., the noisy version
of z−k as observed at node k. This means that the second
subscript in z−k,q is interchangeable in the cost function (23).
Therefore, we replace z−k,k with z−k in the sequel for the sake
of an easier exposition8. This leads to the new cost function

Jsk(fk, h1k, . . . , hKk,h1,−k, . . . ,hK,−k) =∑
q∈K\{k}

E
{
|dq −

(
fHk yk + ekq

)
h∗qk − hHq,−kz−k|2

}
. (24)

Note that node k has access to all signals in (24), except for the
desired signals dq . Nevertheless, due to (4) and (5), all node-
specific desired signals dq are the same up to a scaling, and
therefore can be replaced with dk, which can be compensated
for by a similar scaling of the hqk and hq,−k variables. It then
follows that the minimization of fk over the sum of terms in
(24) is the same as the minimization over a single term with
q = k, i.e., minimizing the cost function

Jfk (fk, hk,h−k) = E
{
|dk −

(
fHk yk + ek

)
h∗k − hH−kz−k|2

}
,

(25)

7The signal zqq is here defined as if node q would send a noisy version of
zq to itself.

8This is with a slight abuse of notation, as the z-signals z−k were originally
defined without additional noise. In the sequel, we assume that the presence
of this noise is clear from the context, i.e., the signal zk is assumed to be
noise-free as in (12) before transmission by node k, but becomes noisy as in
(20) after being received by another node q 6= k.

where, with a slight abuse of notation, ek represents any noise
signal ekq that satisfies the assumptions given in the previous
subsection. It can be easily verified that these assumptions
assure that the value of Jfk is the same for any choice of q to
define ekq (based on similar arguments to those in Appendix
A). Despite the fact that the cost function (25) is non-convex,
a closed form expression can be found for its global minimum
up to a scaling ambiguity. To see this, we first expand (25) as

Jfk = E{|dk|2} − rHykdkhkfk − h
∗
kf
H
k rykdk+ (26)

hkh
∗
k(1 + βk)fHk Rykyk fk − rHz−kdkh−k−

hH−krz−kdk + h∗kf
H
k Rykz−kh−k+

hH−kR
H
ykz−k

hkfk + hH−kRz−kz−kh−k ,

where rykdk = E{ykd∗k}, rz−kdk = E{z−kd∗k}, Rykyk =
E{ykyHk }, Rykz−k = E{ykzH−k}, Rz−kz−k = E{z−kzH−k},
and we have used the assumed statistical properties of ek.
Then, we define a new variable pk given by

pk =

[
hkfk
h−k

]
, (27)

which allows to rewrite (26) as

Jfk (pk) = E
{
|dk|2

}
+ pHk Rβkpk − rHỹkdkpk − pHk rHỹkdk ,

(28)

where the matrix Rβk is defined as

Rβk =

[
(1 + βk)Rykyk Rykz−k

RH
ykz−k

Rz−kz−k

]
. (29)

The cost function of (28) is quadratic with a positive definite
matrix Rβk , and thus its global minimizer is given by[

hkfk
h−k

]
= (Rβk)

−1
Rx̃kx̃k c̃k . (30)

The coefficients h−k are a byproduct of the minimization of
Jfk and they do not need to be computed explicitly.

We can see from (30) that the fusion vector fk is only
defined up to an unknown scaling hk. However, any choice
of the scaling factor for fk will be compensated for by the
other nodes when they update their node-specific estimators,
i.e., a scaling of fk, and hence zkq , will be compensated for
in node q by an inverse scaling of the corresponding entry in
g−q such that the product remains the same. For this reason,
the scaling factor hk can be absorbed in the fusion vector fk,
which is equivalent to setting hqk = 1 in (23). The update rule
(30) can then be re-written as[

f i+1
k

hi+1
−k

]
=
(
Ri
βk

)−1
Ri
x̃kx̃k

c̃k , (31)

where we have introduced the iteration index i since (30)
defines the update rule for the fusion vector fk in the N-
DANSE algorithm.

Remark I: Note that (31) is similar to the original DANSE
update rule given in (16), with the matrix Ri

βk
replacing

Ri
ỹkỹk

, and that the structure of both matrices is the same
except for the scaling of the block Rykyk by (1 + βk). In
the case of βk = 0, ∀k ∈ K, i.e. without noise in the
communication, it is readily seen that (16) and (30) yield the
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same result, which makes N-DANSE a generalization of the
original DANSE algorithm.

Remark II: We emphasize that, since the update rule (31)
only requires a scaling of the block Rykyk , the increase in
computational complexity in N-DANSE compared to DANSE
is minimal, and hence taking into account additive noise in
the transmitted signals does not increase the computational
complexity of the algorithm, except for this additional pre-
scaling of the submatrix Rykyk .

Remark III: The estimation of the correlation matrices
required for the N-DANSE algorithm can be done in the same
way as described in Section II-C under the same conditions
given there, e.g.

Ri
ỹkỹk

[t] =

t∑
n=t−L+1

ỹ[n]ỹ[n]H . (32)

Under the assumption of a desired signal with ‘on-off’ be-
haviour, Ri

ṽkṽk
can be computed in the same way during noise-

only segments. Then, Ri
x̃kx̃k

can be obtained through, e.g., the
substraction Ri

x̃kx̃k
= Ri

ỹkỹk
− Ri

ṽkṽk
under the conditions

given in Section II-C, or using other methods referenced
therein. Note that the estimation of Ri

βk
is not necessary since

it can be obtained from Ri
ỹkỹk

using (29). The parameter
βk can either be computed through a model of the additive
noise, like (22) for uniform quantization, or through the use
of training sequences and (21).

We provide a summary of the N-DANSE algorithm in
Algorithm 1. Note that setting βk = 0,∀k ∈ K, yields
the original DANSE algorithm as described in Section III.
While so far we have only considered sequential updates, the
algorithm can be modified to allow for simultaneous updates,
similar to [11]. We briefly study the case of simultaneous
updates of the fusion vectors in Section VI-G with numerical
simulations.

V. CONVERGENCE ANALYSIS

Let us now consider the convergence of the N-DANSE
algorithm described in Section IV. Since the original con-
vergence proof of the original DANSE algorithm in [10]
cannot be generalized to the case of the N-DANSE algorithm
with noisy links, we present a different strategy to prove
convergence, which then also contains convergence of the
DANSE algorithm without noisy links as a special case. For
simplicity, we first consider the case where all nodes have
the same desired signal, i.e., dk = d ∀k ∈ K, and then
we show how to extend the proof to the node-specific case
where dk = akd ∀k ∈ K, which fits with (4) - (5). Note
that the convergence analysis will be an asymptotic analysis,
in the sense that it is assumed that the covariance matrices
are perfectly estimated. This is only an approximation of the
practical situation, where covariance matrices are estimated
over finite windows as explained in Section II-B, and therefore
contain estimation errors.

A. Convergence for dk = d, ∀k ∈ K
Before we begin we state the following Lemma which will

be necessary later in this section.

Algorithm 1 N-DANSE algorithm.

1: Initialize f0q , ψ0
q , g0

q,−q with random entries ∀q ∈ K.
2: Initialize the iteration index i← 0 and the updating node

index k ← 1.
3: Each node q transmits N samples of its fused signal,

ziq[iN + n] = f iHq yq[iN + n] ,

where n ∈ {1, . . . , N} and the notation [·] indicates a
sample index. Note that, in N-DANSE, each node p ∈ K
receives ziq with noise eqp added to it, according to (20),
which is then also present in ỹp.

4: Each node q updates its estimates of Ri
ỹq ỹq

and Ri
x̃qx̃q

using the samples from iN + 1 to iN +N .
5: Each node q (including the updating node k) computes its

node-specific estimator

w̃i+1
q =

[
ψi+1
q

gi+1
q,−q

]
=
(
Ri
ỹq ỹq

)−1
Ri
x̃q x̃q c̃q ∀q ∈ K .

6: The updating node k computes its fusion vector

f i+1
k =

[
IMk

OMk×(K−1)
](
Ri
βk

)−1
Ri
x̃kx̃k

c̃k

where IMk
is the Mk × Mk identity matrix and

OMk×(K−1) is an all-zero matrix of the corresponding
dimensions. For the other nodes q 6= k, f i+1

q = f iq .
7: Each node q ∈ K (including the updating node k)

estimates N samples of its desired signal dq:

d̃iq[iN + n] = ψi+1H
q yq[iN + n] + gi+1H

q,−q zi−q[iN + n] .

8: i← i+ 1 and k ← (k mod K) + 1
9: Return to step 3.

Lemma 5.1: Let f(x) be a continuous function in C → R,
where C ⊂ Cn, and let x̂ be a unique global minimum of f .
Then there exists a ball centered in x̂ with radius ε, denoted
by B(x̂, ε), within which |x−x̂| can be made arbitrarily small
by making f(x)−f(x̂) arbitrarily small. Formally, this means
that ∀ δ ∈ (0, ε),∃ρ > 0 such that

∀x ∈ C : f(x)− f(x̂) ≤ ρ =⇒ |x− x̂| ≤ δ . (33)

The proof for Lemma 5.1 is provided in Appendix B.
Theorem 5.1: If dk = d, ∀k ∈ K, the N-DANSE algorithm

described in Section IV converges to a unique point for any
initialization of its parameters.

Proof: An N-DANSE update at node k minimizes the
cost function (25), in which dk is here replaced with d, and
where hk is set to 1 (as explained above in (31)), i.e.,

Jfk (fk,h−k) = E
{
|d−

(
fHk yk + ek

)
− hH−kz−k|2

}
. (34)

We assume that all the nodes share a global vector h which
contains auxiliary variables h1, . . . , hK (note that these are
virtual variables which are not used in the algorithm but only
in the proof). When a node k minimizes (34), it will then
replace the variables in this global vector h (except hk) with
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the new optimized values. Using (31), the corresponding N-
DANSE update is then given by[

f i+1
k

hi+1
−k

]
=

[
(1 + βk)Ri

ykyk
Ri
ykz−k

RiH
ykz−k

Ri
z−kz−k

]−1 [
rykd
riz−kd

]
, (35)

and we define the update for hk as hi+1
k = hik.

Let us now introduce some additional notation which we
will use to re-write (35) with respect to the network-wide
statistics. The Mk× (k−1) matrix F

i

k and the Mk× (K−k)
matrix Fik are defined as

F
i

k = diag(f i1, . . . , f
i
k−1) , (36)

Fik = diag(f ik+1, . . . , f
i
K) , (37)

where Mk =
∑k−1
n=1Mn, Mk =

∑K
n=k+1Mn and diag(·) is

the operator that generates a block diagonal matrix from its
arguments. The M × (Mk +K − 1) matrix Fik is defined as

Fik =

 O F
i

k O
IMk

O O

O O Fik

 , (38)

where IMk
is the Mk×Mk identity matrix, and O denotes an

all-zero matrix of appropriate dimensions. Expression (35) can
then be re-written with respect to the network-wide statistics
as

FiHk Rβ
yyF

i
k

[
f i+1
k

hi+1
−k

]
= FiHk ryd , (39)

where ryd = E{yd∗} and the matrix Rβ
yy is given by

(1 + β1)Ry1y1 . . . Ry1yK

Ry2y1

. . . Ry2yK
... . . .

...
RyKy1 . . . (1 + βK)RyKyK

 , (40)

where Rynym = E{ynyHm}. Note that FiHk Rβ
yyF

i
k = Ri

βk
,

where Rβk was defined in (29). Equivalently, after an update
at node k, (39) can be expressed as

FiHk Rβ
yy



hi+1
1 f i1

...
hi+1
k−1f

i
k−1

f i+1
k

hi+1
k+1f

i
k+1

...
hi+1
K f iK


= FiHk ryd . (41)

The first Mk equations of (41) can be written as

[Ryky1 , . . . , (1 + βk)Rykyk , . . . ,RykyK ]



hi+1
1 f i1

...
f i+1
k
...

hi+1
K f iK

 = rykd .

(42)

Now let us first assume that we are in a fixed point of the
update rule of the fusion vectors, i.e. f i+1

k = f ik = f?k ,∀k ∈ K.
Note that in a fixed point all the entries of the global auxiliary
vector h must be identical to one. This can be explained as
follows. We reiterate that each entry of z−k in (34) is given
by zq = fHq yq + eq,∀q 6= k. By sequentially updating (34)
for each node k ∈ K, and assuming that the fusion vectors fk
do not change (since we are in a fixed point), all coefficients
hk in h must by definition be equal to 1. This is a direct
consequence of the assumption that dk = d, ∀k ∈ K. Hence
the equations in (42) can be stacked ∀k ∈ K to obtain

Rβ
yy

f
?
1
...
f?K

 = ryd , (43)

which is a linear system of equations with a unique solution
if Rβ

yy is full rank. This assumption is satisfied, for any value
βk ≥ 0, ∀k ∈ K, due to the assumed full rank of Ryy in
Section II. This means that the fixed point is unique.

Our next step is to consider the opposite case, when the
algorithm is not in a fixed point. In this case, f i+1

k 6= f ik, or
equivalently

f i+1
k = f ik + φik , (44)

for non-zero φik. If we replace f i+1
k in (42) with its version in

the current iteration i, f ik, we need to add an error term, i.e.,

[Ryky1 , . . . , (1 + βk)Rykyk , . . . ,RykyK ]


f i1
...
f ik
...
f iK

 (45)

= rykd + εik ,

where the norm of εik will vanish if and only if the norm of φik
in (44) will vanish as i→∞. Note that the error term εik also
compensates for the fact that the coefficients in hi have been
replaced with ones, although they are not necessarily equal to
one when the fixed point has not been reached. Stacking the
equations in (45) gives

Rβ
yy

 f i1
...
f iK

 = ryd + εi , (46)

or equivalently f i1
...
f iK

 =
(
Rβ
yy

)−1 (
ryd + εi

)
. (47)

Note that any fusion vector update given by (35), which
optimizes (34), can be interpreted as one step of an alternating
optimization (AO) [38] procedure on the cost function

Jf (f1, . . . , fK , h1, . . . , hK) =

E


∣∣∣∣∣d−∑

k∈K

h∗k
(
fHk yk + ek

)∣∣∣∣∣
2
 , (48)



9

in which in each iteration we select an index k for which we
optimize over fk and hq,∀q ∈ K (with the constraint hk = 1
by convention), while all other variables fq with q 6= k remain
fixed. This will result in a monotonic decrease in the values
of Jf [39]. Since Jf is bounded from below, the result must
converge to a finite value, and thus

lim
i→∞

(
Jf (f i,hi)− Jf

(
f i+1,hi+1

))
= 0 , (49)

where f = [fT1 , . . . , f
T
K ]T . From (49), it also holds that

lim
i→∞

(
Jfk (f ik,h

i
−k)− Jfk

(
f i+1
k ,hi+1

−k
))

= 0 . (50)

Note that f i+1
k is the result of a global optimization process

of the function Jfk in (34), which has a unique minimum.
Together with (50), this fact allows us to use Lemma 5.1 on the
function Jfk , which implies that the distance between fusion
vectors in consecutive updates must necessarily vanish in the
limit, i.e.,

lim
i→∞

∥∥f i+1
k − f ik

∥∥→ 0 ,∀k ∈ K . (51)

From (51) we conclude that φik in (44) will vanish, and as a
result also εik in (45) will vanish as i → ∞. Thus we arrive
to the following statement

lim
i→∞

 f i1
...
f iK

 =
(
Rβ
yy

)−1
ryd . (52)

This shows that the fusion vectors f ik converge to a unique
point.

B. Convergence for dk = akd, ∀k ∈ K

Theorem 5.2: If dk = akd, ∀k ∈ K, the N-DANSE
algorithm described in Section IV converges to a unique point
for any initialization of its parameters.

Proof: An update of fk at node k based on (25) now
depends on the desired signal dk of the updating node, leading
to the update (31), which can then be rewritten as[

f i+1
k

hi+1
k,−k

]
=

[
(1 + βk)Ri

ykyk
Ri
ykz−k

RiH
ykz−k

Ri
z−kz−k

]−1 [
rykdk
riz−kdk

]
=

[
(1 + βk)Ri

ykyk
Ri
ykz−k

RiH
ykz−k

Ri
z−kz−k

]−1 [
rykd
riz−kd

]
ak , (53)

where we used dk = akd in the last step. By comparing (53)
with (35), we see that the node-specific case (in (53)) results
in the same fusion vector fk as in the case where the desired
signal is the same at each node (in (35)), up to an unknown
scaling. However, this scaling has no impact on the algorithm
dynamics and future updates of other fusion vectors, as the
scaling will be compensated for at each node k ∈ K by the
corresponding coefficient in gk,−k, and hence will also not
affect the update of fq at the next updating node q. Thus, up
to a scaling factor ak, the same sequence of fusion vectors f ik
will be generated as for the case where dk = d,∀k ∈ K. As a

result, the convergence result in (52) also holds for the update
(53), up to a scaling ak for every fk, i.e.,

lim
i→∞


1
a1
f i1

...
1
aK

f iK

 =
(
Rβ
yy

)−1
ryd . (54)

Corollary 5.1: The convergence of the DANSE algorithm
without noisy links as presented in [10] follows from Theorem
5.2 by combining its proof with Remark I from Section IV-B.

VI. SIMULATION RESULTS

In this section we analyze the behaviour of the N-DANSE
algorithm through numerical simulations.

A. Data generation

We consider scenarios in a two-dimensional 5 × 5 m area
where the positions of nodes and both desired and undesired
sources are randomly generated such that each coordinate
follows a uniform distribution in [0, 5]. The minimum distance
between any pair of positions is 0.5 m. In each scenario there
are three noise sources and one desired source present. The
network in any scenario consists of K nodes with Mk = 3
sensors each, where the number of nodes K will be specified
later for each simulation. The three sensors are placed parallel
to the y-axis, spaced with a constant distance of l = 10
cm. All source signals consist of 105 complex samples drawn
from a uniform distribution with zero mean and unit variance,
i.e., the real and imaginary parts are generated independently
from a uniform distribution in

(
−
√
6
2 ,
√
6
2

)
. The entries of the

steering vectors ak are generated according to a narrow-band
propagation model such that

ak =
1
√
rk

[
1, e−i2π

lcos(θk)

λ , . . . , e−i2π(Mk−1)
lcos(θk)

λ

]T
, (55)

where rk is the distance between the source and the first sensor
of the k-th node, θk is the angle between the first sensor of
the k-th node and the source, and λ = c

f is the wavelength
corresponding to f = 1 kHz for a propagation speed of c =
331 m/s. Likewise, for each noise source a steering vector is
generated in a similar way to (55). The node sensor signals
yk are mixtures of desired and noise source signals defined
by the corresponding steering vectors, plus independent zero-
mean white Gaussian noise whose power is 1% of the power
of the corresponding channel of yk, which represents local
sensor noise such as thermal noise. The desired signal dk for
node k is the desired source signal component xkm̃ at the
channel m̃ with the highest signal-to-noise ratio (SNR). The
additional noise in the z-signals is drawn from a zero-mean
uniform distribution with second order moment defined by β.
The parameter β can be different in each node, and different
values are simulated as will be explained in the sequel.

The network-wide second order statistics Ryy and rydk are
estimated through sample averaging using all 105 samples of
the sensor signals. It is noted that, in practical implementa-
tions, nodes will have to estimate the necessary second order
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Figure 2. Convergence of the N-DANSE and DANSE algorithms in a noisy
links scenario with K = 9 nodes for 100 different initializations. The MSE
is shown in a logarithmic scale. The central graph of the figure is a magnified
version of the area bounded by the lowermost rectangle.

statistics on the fly based on sample averaging from finite
length segments of the sensor signals, as the full length signals
are rarely available.

B. Validation of convergence

Our first point of interest is to study the convergence of
the N-DANSE algorithm with the goal to validate the results
presented in Section V. To this end we simulate 100 different
initializations for N-DANSE and DANSE, choosing the same
initialization for both algorithms each time, in a scenario
generated according to Section VI-A with K = 9 nodes and
β1, . . . , β9 generated at random from a uniform distribution
in (0, 1). In Figure 2 we show the resulting MSE for each
initialization at each iteration of N-DANSE and DANSE in the
corresponding shaded area, whose limits mark the maximum
and minimum MSE achieved at each iteration. The marked
line is the average MSE of the respective algorithm for
all initializations. We can observe that both the N-DANSE
and DANSE algorithms converge to a unique point for all
initializations, which for N-DANSE is expected from the
theoretical results presented in Section V.

C. Performance in different scenarios

We are now interested in comparing the performance of
the N-DANSE algorithm and the original DANSE algorithm
in noisy links scenarios. For this comparison we analyze 100
different scenarios where the position of nodes and sources
are randomly generated in each scenario, as explained in
Section VI-A. Each transmitted signal zkq has a corresponding
additive noise defined by βk, which is generated at random
in each scenario from a uniform distribution in (0, 1). To
measure the performance of the algorithms we consider the
MSE improvement across all nodes, defined as

µMSE = 100 ·

( ∑K
k=1 MSEk,DANSE∑K
k=1 MSEk,N-DANSE

− 1

)
, (56)

where the MSE is considered at the convergence point. This
figure of merit shows the total MSE improvement, expressed
as a percentage of the total MSE achieved at convergence
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Figure 3. Box plots of the MSE improvement µMSE of N-DANSE over
DANSE for networks with a number of nodes between K = 3 and K = 24
and 100 scenarios per each different K. The red crosses indicate outliers.
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Figure 4. Influence of the ratio of additive noise power to fused signal
power βk in the MSE improvement of N-DANSE over DANSE. The data
corresponds to 100 scenarios with K = 12 nodes.

by N-DANSE, that can be obtained by using the N-DANSE
algorithm instead of the original DANSE algorithm in the case
of noisy links for each specific scenario (i.e., the same node
and source locations, βk, etc). Figure 3 shows box plots for
the MSE improvement µMSE after convergence for networks of
different numbers of nodes K ranging from 3 to 24, where 100
different scenarios are generated for each specific K. It can be
observed that the MSE improvement µMSE of N-DANSE over
DANSE is almost always positive, showing the superiority
of the former over the latter. The MSE improvement of
N-DANSE over DANSE is observed to increase for larger
networks, which can be intuitively explained since, in larger
networks, there are more nodes doing a better optimization of
the MSE with respect to the additive noise when using the
N-DANSE algorithm, while when using the original DANSE
algorithm more nodes are doing an imperfect optimization
with respect to the additive noise, hence the increasing MSE
improvement with increased number of nodes.

D. Influence of the power of the additive noises

We turn our attention here to the effect of the ratio of
additive noise power to fused signal power βk on the achieved
MSE after convergence. In order to illustrate this effect, we
analyze 100 scenarios with K = 12 nodes, where the positions
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of nodes and sources are generated at random as described
in Section VI-A. To study the influence of changing βk, in
each scenario we generate each βk at random from a uniform
distribution in (β̄, 1.5β̄), where β̄ is then swept from 0 to 4.

Figure 4 shows the resulting MSE improvement µMSE after
convergence as a function of β̄. We observe that the MSE
improvement of the N-DANSE algorithm over the original
DANSE algorithm starts growing as β̄ increases, then peaks
around β̄ = 0.2 (in this set of scenarios), and then it starts to
decay. This is explained by the fact that for moderate values of
additive noise power the fusion vector obtained by N-DANSE
provides a more useful signal zk for the estimation problems
of the rest of the nodes than the zk signal obtained by DANSE
(note that βk = 1 corresponds to the additive noise ek being
as powerful as the fused signal fHk yk). As the additive noises
ek grow more powerful, the signals zk become less helpful
for the rest of the nodes, hence why the MSE improvement
between N-DANSE and DANSE decays, although the N-
DANSE algorithm remains generally superior to the original
DANSE algorithm. Note that the largest improvement happens
for β̄ � 1, which is the most practical range for quantization
and communication noise.

E. Comparison with the centralized clairvoyant scheme.
We now focus on the difference between the N-DANSE

and DANSE algorithms and the optimal fusion vectors for the
case of noisy links, which could be obtained if nodes would
have access to all local sensor signals yk free of noise and
to all additive noises ek, ∀k ∈ K. Since the optimal scheme
requires each node to have access to all information available
in the network, we refer to it as the centralized clairvoyant
scheme. The cost function to be minimized in this centralized
clairvoyant scheme is given by the sum of the MSE at each
node, where the k-th node uses its local sensor signal free of
additive noise yk and the noisy transmitted signals from the
rest of nodes z−k. In Appendix C we provide the mathematical
form of the centralized clairvoyant cost function in (63), and
we derive expressions for its minimization using an alternating
optimization scheme, since a closed form solution for its
minimizer is not possible.

In Figure 5 we show box plots of the excess MSE, i.e., the
difference between the MSE achieved by either N-DANSE
or DANSE and the optimal MSE achieved by the centralized
clairvoyant scheme, expressed as a percentage of the optimal
MSE value, which is given by

µClairvoy = 100 ·

(∑K
k=1 MSEk,(N-)DANSE∑K
k=1 MSEk,Clairvoyant

− 1

)
. (57)

This provides a measure of how close the corresponding
algorithm gets to the clairvoyant scheme. The data is obtained
from the same 100 scenarios used in Section VI-D. We
observe that the N-DANSE algorithm is consistently closer to
the optimal centralized clairvoyant scheme than the DANSE
algorithm, which shows that it generally provides superior per-
formance, i.e. lower MSE, than the original DANSE algorithm
in noisy link scenarios. A Wilcoxon signed-rank test shows
that the MSE improvement between N-DANSE and DANSE
is statistically significant (p-value = 6.17 · 10−7 < 0.05).
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Figure 5. Box plots of the excess MSE between (N-)DANSE and the
centralized clairvoyant scheme, as percentage of the centralized clairvoyant
MSE. The excess MSE of N-DANSE appears on the left and the excess MSE
of DANSE on the right. The red crosses indicate outliers.
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Figure 6. Influence of the bit depth in the MSE improvement of N-DANSE
over DANSE. The data corresponds to 100 scenarios with K = 12 nodes,
where the bit depth is randomly chosen from {1, . . . , b̄}.

F. Influence of the bit depth in uniform quantization of the
z-signals

A particularly interesting case for the source of additive
errors in the transmitted z-signals is uniform quantization, as
mentioned in Section IV-A. To study this case, we consider
that the z-signals are subject to uniform quantization, prior to
transmission, with a bit depth randomly generated between 1
and b̄ bits, where we simulate for b̄ between 4 and 16. We
generate 100 random scenarios as described in Section VI-A
with K = 12 nodes. Since the signals are complex-valued, we
quantize their real and imaginary parts independently, but with
the same bit depth for both. The dynamic ranges of the real
and imaginary parts of zk are respectively denoted by Ak,r and
Ak,i. An estimate of the quantization noise power is needed
in the N-DANSE algorithm, and it is here calculated from the
statistical model for uniform quantization given in (22). As
explained under assumption (21), we choose a scaling factor
for each signal zk such that

βk =
∆2
bk

12E
{∣∣zk∣∣2} =

1

12 22bk

A2
k,r +A2

k,i

E
{∣∣zk∣∣2} . (58)

Figure 6 shows the MSE improvement µMSE between N-
DANSE and DANSE (as defined in (56) for each b̄. It can
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Figure 7. Convergence of the N-DANSE algorithm with simultaneous and
sequential updates in a noisy links scenario with K = 9 nodes for 100
different initializations. The MSE is shown in a logarithmic scale. The central
graph of the figure is a magnified version of the area bounded by the
lowermost rectangle.

be seen that N-DANSE is consistently superior to DANSE
for scenarios with uniform quantization where βk is estimated
from (58) for a wide range of bit depths.

G. N-DANSE with simultaneous updates

Up to this point we have focused on sequential updates of
the fusion vectors. However, the original DANSE algorithm
has also been shown to converge to the optimal solution with
simultaneous and asynchronous updates if a proper relaxation
of the updates is applied. Rather than performing a hard up-
date, this relaxation consists of making a convex combination
between the current and the newly computed fusion vector,
which adds some memory to the updating [11]. The same
relaxation strategy can be applied to the N-DANSE algorithm
with simultaneous (or asynchronous) updates, i.e.

f i+1
k = (1− λ)f ik + λf new

k , (59)

where 0 < λ < 1 and

f new
k =

[
IMk

OMk×(K−1)
](
Ri
βk

)−1
Ri
x̃kx̃k

c̃k . (60)

For more technical details we refer the reader to [11].
In order to show that this strategy is also valid for the

N-DANSE algorithm, we have simulated 100 different ini-
tializations of the N-DANSE algorithm with both sequential
and simultaneous updates, as given by (59), under the same
conditions as Section VI-B. The value of λ was chosen to
be λ = 0.4. In Figure 7 we show the resulting MSE at each
iteration in the corresponding shaded area, in the same way as
in Figure 2. We can observe that both algorithms converge to
the same MSE, and since N-DANSE with sequential updates
has been shown to converge to a lower MSE than DANSE,
the same conclusion can be reached for simultaneous updates.

H. Other topologies

As we have noted before, the DANSE algorithm has been
extended to tree [12] and generic topologies [14]. In these
topologies, nodes can only communicate with a subset of other
nodes (their neighbours). The extensions to tree (T-DANSE)
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Figure 8. Tree topology with noisy links with K = 6 nodes for Figure 9.
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Figure 9. Convergence of the N-DANSE and DANSE algorithms in a noisy
links scenario with a tree topology with K = 6 nodes for 100 different
initializations. The MSE is shown in a logarithmic scale. The central graph
of the figure is a magnified version of the area bounded by the lowermost
rectangle.

and generic (TI-DANSE) topologies design the signal flow
such that nodes only need to communicate with their neigh-
bours and that the amount of data each node must transmit
is independent of the number of neighbours. The extension
of these algorithms to the noisy links scenarios follows the
same reasoning we have explained in Section IV. While a
detailed description is beyond the scope of this paper (for
more details we refer the reader to [12], [14]), we show the
validity of N-DANSE in a tree topology through a simulation
with 100 different initializations of the N-DANSE and DANSE
algorithms. The tree topology with K = 6 nodes is shown
in Figure 8, and the scenario is generated under the same
conditions as Section VI-B for sequential updates in a fully
connected network.

In Figure 9 we show the resulting MSE at each iteration in
the corresponding shaded area, in the same way as in Figure
2. We can again observe that both algorithms converge to a
unique point and that N-DANSE converges to a lower MSE
than DANSE.

VII. CONCLUSIONS

In this paper we have tackled the problem of distributed
signal estimation in a WSN in the presence of noisy links,
i.e., with additive noise in the signals transmitted between the



13

nodes, e.g., due to quantization or due to noise in the com-
munication channel, within the framework of the distributed
adaptive signal estimation (DANSE) algorithm. We have pro-
vided a modification of the fusion rules which incorporates
knowledge of the presence of noisy links at almost no increase
in computational complexity, resulting in a modified version
of the DANSE algorithm, referred to as noisy-DANSE or N-
DANSE algorithm. Additionally, we have provided a proof
of the convergence of the N-DANSE algorithm to a unique
point using a different strategy from the proof of original
DANSE, which cannot be straightforwardly generalized to our
problem. To conclude, we have used numerical simulations to
validate the convergence of the N-DANSE algorithm and to
demonstrate its superiority over the original DANSE algorithm
in the case of noisy links. In particular the MSE achieved
after convergence by the N-DANSE algorithm is closer to
the clairvoyant optimal MSE than the MSE achieved by the
original DANSE algorithm, and the improvement in MSE
provided by the N-DANSE algorithm increases for networks
with more nodes.

APPENDIX A
EQUIVALENCE OF COST FUNCTIONS (23) AND (24)

We start by repeating the cost function (23) for convenience,

Jsk(fk, h1k, . . . , hKk,h1,−k, . . . ,hK,−k) =∑
q∈K\{k}

E
{
|dq −

(
fHk yk + ekq

)
h∗qk − hHq,−kz−k,q|2

}
,

(61)

where z−k,q = [z1q, . . . , zk−1,q, zk+1,q, . . . , zKq]
T contains

the z-signals received by node q with the exception of zkq .
The q-th term of (61) can be expanded as

E{|dq|2} − rHykdqhqkfk − h
∗
qkf

H
k rykdq+ (62)

hqkh
∗
qk(1 + βk)fHk Rykyk fk − rHz−k,qdqhq,−k−

hHq,−krz−kdq + h∗qkf
H
k Rykz−k,qhq,−k+

hHq,−kR
H
ykz−k,q

hqkfk + hHq,−kRz−k,qz−k,qhq,−k ,

where rykdq = E{ykd∗q}, Rykyk = E{ykyHk }, rz−k,qdq =
E{z−k,qd∗q} Rykz−k,q = E{ykzH−k,q}, Rz−k,qz−k,q =

E{z−k,qzH−k,q}, and we have used the statistical properties
of ekq assumed in Section IV-A. It can be readily seen that
(62) depends on yk and z−k,q only through their second order
statistics.

Note that in rz−k,qdq and Rykz−k,q the variable z−k,q can
be replaced by z−k,k = [z1k, . . . , zk−1,k, zk+1,k, . . . , zKk]T ,
since E{ykz∗pq} = E{ykz∗pk},∀p, q, k ∈ K due to the
assumption that yk and ekq are uncorrelated for all k, q ∈ K,
which also implies that dq and ekq are uncorrelated due to (3)-
(5). Similarly, z−k,q can be replaced by z−k,k in Rz−k,qz−k,q ,
since E{zpqz∗rq} = E{zpkz∗rk},∀p, r, q, k ∈ K due to (21). As
a result, the variable z−k,q can be replaced by z−k,k in each
term of (61) without affecting its value, showing that (23) and
(24) are equivalent.

APPENDIX B
PROOF OF LEMMA 5.1

Proof: We show how a ball B(x̂, ε) can be constructed
for which (33) holds. We denote by fmin2 the smallest non-
global minimum of f(x) in C, if it exists. Let us choose ε such
that the maximum of f(x) in B(x̂, ε) is lower than fmin2, i.e.,

max
x∈B(x̂,ε)∩C

f(x) = fε < fmin2. Then, for any δ ∈ (0, ε), we

can choose ρ = max
x∈B(x̂,δ)∩C

(f(x) − f(x̂)). Since x̂ is unique

and f is continuous, all x ∈ C that satisfy f(x) − f(x̂) ≤ ρ
are in the closed ball of radius δ centered in x̂, which proves
(33).

If fmin2 does not exist, ε can be freely chosen, and the same
reasoning presented above can be applied.

APPENDIX C
MINIMIZATION OF THE CENTRALIZED CLAIRVOYANT COST

FUNCTION

Here we provide the cost function of the centralized
clairvoyant scheme whose minimization provides the optimal
fusion vectors and local linear MMSE estimators for each
node in the case of noisy links, in the same framework of
Section IV and used as a benchmark in Section VI-E. We also
provide a detailed derivation of the steps to find its minimizer
through the alternating optimization method [38]. Note that a
practical implementation is not possible in a real WSN due to
the assumption that all nodes have access to the local sensor
signals of other nodes free of additive noises ek.

The optimal set of fusion vectors and linear MMSE estima-
tors can be found by minimizing the sum of the MSE of each
node. Mathematically this cost function is given by

Jc(w
c, f c,hc) =∑

k∈K

E

∣∣∣dk −wcH
k yk −

∑
j 6=k

(
f cHj yj + ej

)
h
(k)∗
j

∣∣∣2
 ,

(63)

where wc
k is the estimator applied to the sensor signals of the

k-th node, f cj is the vector used to fuse the sensor signals of the
j-th node and h(k)j is the j-th entry of the estimator applied to
the k-th estimation problem. The variables wc, f c and hc de-
note the corresponding stacked versions of the mentioned vari-
ables, i.e., wc =

[
wc T

1 , . . . ,wc T
K

]T
, f c =

[
f c T1 , . . . , f c TK

]T
and hc =

[
h
(1)
1 , h

(1)
2 , . . . , h

(1)
K , . . . , h

(K)
1 , . . . , h

(K)
K

]T
. Note

that the variables h(k)k are never used since the fused signal
from the k-th node is not used for the k-th estimation problem,
so they can be ignored.

A closed form solution of the minimizer of (63) is not
possible, and the problem is non-convex. However, note that
fixing either the fusion vectors f c or the estimator variables
wc,hc results in a linear MMSE problem, which is convex, so
we choose an alternating optimization scheme [38] to perform
the minimization. For the sake of clarity, we will refer to
the cost function simply as Jc throughout the rest of the
appendix. For the same reason we will omit the iteration index
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i, assuming that the derivation presented here corresponds to
a single iteration.

First we will expand the expression of Jc given in (63),
which yields the equivalent expression

Jc =
∑
k∈K

[
E{|dk|2} − rHykdkw

c
k −wcH

k rykdk− (64)∑
j 6=k

h
(k)∗
j f cHj ryjdk −

∑
j 6=k

rHyjdk f
c
j h

(k)
j + wcH

k Rykykw
c
k+∑

j 6=k

wcH
k Rykyj f

c
j h

(k)
j +

∑
j 6=k

h
(k)∗
j f cHj RH

ykyj
wc
k+∑

j 6=k

∑
m6=k

f cHj Ryjymf
c
mh

(k)∗
j h(k)m +

∑
j 6=k

h
(k)
j h

(k)∗
j βjf

cH
j Ryjyj f

c
j

]
,

where rykdk = E{ykd∗k}, Ryjym = E{ykyHm}, and we have
used the statistical properties of ek, ∀k ∈ K, presented in
Section IV-A.

Now we can compute the gradient vectors with respect to
each variable, assuming that the others remain fixed. For wc

k

we have
∂Jc
∂wc ∗

k

= −rykdk + Rykykw
c
k +

∑
j 6=k

Rykyj f
c
j h

(k)
j . (65)

By setting (65) to zero we can find the update rule for wc
k as

wc
k = R−1ykyk

(
rykdk −

∑
j 6=k

Rykyj f
c
j h

(k)
j

)
. (66)

Similarly for f cj we have

∂Jc
∂f c ∗j

= −
∑
k 6=j

ryjdkh
(k) ∗
j +

∑
k 6=j

h
(k)∗
j Rykykw

c
k+ (67)∑

k 6=j

∑
m6=k,j

Ryjymf
c
mh

(k)∗
j h(k)m +

∑
k 6=j

h
(k)∗
j h

(k)
j Ryjyj f

c
j+∑

k 6=j

h
(k)∗
j h

(k)
j βjRyjyj f

c
j .

Again, setting (67) to zero we find the update rule for f cj as

f cj =
1

(1 + βj)
∑
k 6=j h

(k)
j h

(k)∗
j

(68)

R−1yjyj

∑
k 6=j

h
(k)∗
j

(
ryjdk −Ryjykw

c
k −

∑
m6=k,j

Ryjymf
c
mh

(k)
m

)
.

Finally, for h(k)j we have

∂Jc

∂h
(k) ∗
j

= −f cHj ryjdk + f cHj Ryjykw
c
k+ (69)

h
(k)
j f cHj Ryjyj f

c
j +

∑
m 6=k,j

h(k)m f cHj Ryjymf
c
m+

h
(k)
j βjf

cH
j Ryjyj f

c
j .

Setting (69) to zero we obtain

h
(k)
j =

1

(1 + βj)f cHj Ryjyj f
c
j

(70)(
f cHj ryjdk − f cHj Ryjykw

c
k −

∑
m 6=k,j

h(k)m f cHj Ryjymf
c
m

)
.

Note that the update rule (70) is not very useful in practice,
since wc

k and [h
(k)
1 , . . . , h

(k)
K ]T can be updated together by

solving a linear MMSE problem where the fusion vectors f c

are fixed.
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