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Abstract—The ability to efficiently assess and track the utility
of each sensor signal is crucial to reduce the energy consumption
in a wireless sensor network (WSN), e.g., by putting the sensors
with low utility to sleep. Methods to track the sensor signal utility
have been described for several multi-channel signal estimation
methods. For linear minimum mean squared error (LMMSE)
estimation, the utility of a sensor signal is defined as the predicted
increase in the MMSE when the sensor would be shut down.
However, rather than making such a binary decision, more
flexible energy-saving methods could be considered where a
sensor changes internal parameters such as, e.g., the number
of bits per sample, which results in noise injection in the
transmitted sensor signal. We propose a generalization of the
original definition of sensor signal utility to include this effect,
and we show that it can be efficiently computed and tracked at
hardly any computational cost compared to the already available
LMMSE estimator. In addition, we illustrate how it can be used
to assign a number of bits to each sensor with a greedy approach.
Simulation results show that a greedy assignment based on the
proposed generalized utility leads to improved results compared
to the original utility measure.

Index Terms—Signal estimation, system reconfiguration, adap-
tive quantization, wireless sensor networks, energy efficiency

I. INTRODUCTION

A wireless sensor network (WSN) consists of a collection
of sensor nodes which share their observations of a physical
phenomenon using wireless communications. In this paper,
we focus on linear minimum mean squared error (LMMSE)
estimation [1], where the goal is to estimate a desired signal
from the observed sensor signals.

The sensor nodes usually have a limited energy budget
since they are powered by batteries, which can be difficult
to recharge or replace. Because of this, energy efficiency is
crucial in the design of algorithms for WSNs. In particular,
it is essential to optimize the data exchange among nodes, as
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wireless communication is generally more expensive in terms
of energy consumption than data processing [2].

Previous work on energy efficiency in estimation in WSNs
includes power allocation based on the impact on the minimum
mean squared error (MMSE), using either digital [3] or analog
communications [4], but under the assumption that the noise is
spatially uncorrelated. Such models are not well suited to study
some realistic applications such as speech enhancement, where
the noise is often spatially correlated, e.g., when localized
noise sources are present. More recently, the impact of noise
correlation on the network power minimization has been
studied under an analog communications framework [5]. These
works focus on scenarios where the target parameter changes
slowly over time, such that the proposed optimization schemes
for power allocation are feasible.

However, in adaptive signal estimation a more lightweight
approach is required, since the network needs to swiftly adapt
to the changing signal conditions. One approach is to monitor
the utility of each sensor signal in the network, defined as the
change in MMSE after this sensor signal has been removed
from the estimation and the estimator has been reoptimized
[6]. This allows to select the most useful sensors while others
are put to sleep to save energy. An efficient computation of
sensor signal utility is essential for adaptive signal estimation,
so that changes in utility can be tracked at very low compu-
tational cost. In a WSN with a star topology and centralized
computations, the utility can be computed efficiently from the
(adaptive) estimator coefficients, enabling to solve the sensor
subset selection with a greedy approach [6], [7]. This approach
has been extended to distributed signal estimation in a WSN
[8], although utility bounds have to be used instead of the
exact utility. Nevertheless, the utility metric provided in these
works only distinguishes between cases where a node either
transmits its signal samples at full precision or shuts down
completely. While this certainly helps to save energy, it does
not allow for a flexible scaling of the performance and the
energy consumption of the network.

In this paper, we assume that the sensors can manipulate
internal parameters such as, e.g., the number of bits per
transmitted signal sample, which results in noise injection
in the transmitted sensor signal. Our goal is to predict how
the noise of each individual sensor impacts the global signal
estimation task, based on a generalization of the original
definition of LMMSE signal utility. Our main contribution is to
show that this generalized utility can be computed at virtually



2

no additional cost. We then show how it can be used to assign
the number of bits (which we call ’bit length’) that each sensor
should employ to encode its signal samples according to their
contribution to the MSE, for a given tolerated MSE increase.

The rest of the paper is organized as follows. In Section
II, we briefly review LMMSE estimation and some aspects of
adaptive signal estimation. In section III, we explain sensor
signal utility in LMMSE estimation, and we show in Section
IV how the utility measure can be generalized and computed
efficiently. In Section V, we illustrate how this generalized
utility can be used in a greedy algorithm to assign a bit length
to each sensor signal in the network, and present simulation
results. Finally, conclusions are drawn in Section VI.

II. REVIEW OF LMMSE SIGNAL ESTIMATION

We consider a WSN composed of K sensors, and we
denote the set of nodes by K = {1, . . . ,K}. The k-th sensor
collects samples of a signal yk(t), where t ∈ N is the discrete
time index. For conciseness we will omit the time index in
the subsequent sections. We assume that the signals yk are
complex-valued to allow signal descriptions such as, e.g.,
the short-time Fourier transform. Besides, we assume that
all sensor signals are realizations of short-term wide-sense
stationary and ergodic stochastic processes. We consider the
case where each node sends its signal samples to a fusion
centre, which then collects each signal in a K × 1 vector
defined as y = [y1, . . . , yK ]T . The goal of the fusion centre is
to estimate an unobserved desired signal d from y, based on
an LMMSE estimator ŵ which minimizes the cost function

J(w) = E
{
|d−wHy|2

}
, (1)

where E{·} is the expectation operator and (·)H denotes
conjugate transpose. Assuming that the correlation matrix
Ryy = E

{
yyH

}
has full rank1, the solution is given by

ŵ = R−1
yy ryd , (2)

where ryd = E{yd∗} and d∗ denotes the complex conjugate
of d. Here, ŵ represents a purely spatial filter, but temporal
filtering can easily be considered as well by including time-
lagged copies of the signal samples in y. In an adaptive im-
plementation, a recursive updating procedure is often adopted
to efficiently estimate and track R−1

yy based on the incoming
observations of y, similar to the recursive least squares algo-
rithm [1]. Since d is not directly observable, the estimation of
ryd has to be done indirectly using strategies specific to the
application, for example exploiting the on-off behaviour of a
speech signal in speech enhancement [9], or by using periodic
training sequences. From now on, we assume that both Ryy

and ryd can be estimated adaptively, based for instance on a
recursive sliding-window update, and that the filter ŵ adapts
to changes in the covariance structure of the sensor signals.
The MMSE corresponding to ŵ is given by

J(ŵ) = Pd − rHydR
−1
yy ryd = Pd − rHydŵ , (3)

where Pd = E
{
|d|2
}

is the power of the desired signal.

1In practice, this assumption is usually satisfied because of the presence of
a noise component in each sensor that is independent of other sensor signals,
such as thermal noise. If this is not the case, the pseudoinverse has to be used.

III. SENSOR SIGNAL UTILITY IN LMMSE ESTIMATION

A utility metric is a value assigned to each sensor signal
available to the estimation method, which represents their
contribution to the performance of the estimator. In the case of
LMMSE estimation, the performance is measured by the cost
function J(w) given in (1). Therefore, we define the utility uk
of the signal yk as the increase in MMSE when yk would be
removed from the estimation. Mathematically this is expressed
as2

uk = J(ŵ−k)− J(ŵ) , (4)

where ŵ−k is the LMMSE estimator obtained with all signals
except yk. It is noted that ŵ−k does not merely represent
ŵ with the k-th entry removed, but rather the re-optimized
LMMSE estimator when removing yk from y. Although a
utility is assigned to each sensor signal, the utility uk is
not an intrinsic property of the signal yk, as it also depends
on the other sensor signals that are available to estimate d.
Since ŵ is implemented as an adaptive filter, and since the
sensor signal statistics may change over time, the utility of a
sensor signal will also change over time, and hence an efficient
computation of the sensor signal utility becomes crucial. To
illustrate this, note that the computation of ŵ−k based on (2) is
an O(K2) operation assuming a recursive update of R−1

yy , and
thus tracking the utility for each k ∈ K becomes an O(K3)
operation, which dominates the existing computation of ŵ.

Closed form expressions for an efficient computation of uk
are provided in [6] for LMMSE estimation, and in [7] for
several other signal estimators. Since we will refer to these
expressions in the following sections, they are repeated here.
Assuming the LMMSE estimator ŵ is known, then the utility
of the sensor signal yk can be shown to be equal to

uk =
1

αk
|wk|2 , (5)

where αk is the k-th element in the diagonal of R−1
yy , and

wk is the k-th element of ŵ [6]. Since R−1
yy is already

known from the computation of (2), its diagonal elements αk

are known, and hence uk can be computed ∀k ∈ K with
complexity O(K). Note that the cost of computing uk ∀k ∈ K
is negligible as the estimator ŵ is already computed from (2),
which makes (5) an efficient way of monitoring the utility of
each sensor signal at hardly any additional cost.

IV. SENSOR SIGNAL UTILITY AFTER LOCAL NOISE
INJECTION

Now let us consider that the sensor signal yk is affected by a
local noise, for instance noise resulting from the quantization
of the signal. We assume that sensor node k can manipu-
late the variance of this noise term, e.g., by changing the
number of bits used in the quantization, in order to reduce
the communication cost. This allows the system to make a
trade-off between reduced estimation performance and energy
savings in the wireless transmission. The particular case of
quantization noise is further explained in section V.

2There is a slight abuse of notation, as the same symbol J is used for both
cost functions in (4), although they are essentially different functions, as they
have a different number of arguments.
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Our goal is to quantify the change in the utility of a
sensor signal when this additional noise term is changed.
Mathematically, the new signal vector ye collected by the
fusion centre can then be described as

ye = y + ek , (6)

where ek = [0, . . . , ek, . . . , 0]T is a K × 1 vector and ek is
the noise present in the k-th sensor signal. Note that we omit
the index k in ye to avoid overloading the notation. We will
assume that ek is uncorrelated with every signal in y and with
the desired signal d.

In order to compute the utility of yk in the presence of the
local noise ek, we could consider

Ik(e) = J(ŵe)− J(ŵ) , (7)

where ŵe is the LMMSE estimator corresponding to ye. This
metric computes the increase in MMSE comparing the case
of a local noise present with the case of no noise present.
However, this definition is fundamentally different from (4),
since instead of removing the k-th signal we are exchanging it
for a degraded version of it. Note that (7) yields larger values
when the power of the local noise ek is increased. For this
reason, we refer to Ik(e) as the impact of the local noise.

A more intuitive definition for sensor signal utility in this
case is the increase in MMSE comparing the case where yk
is degraded by the local noise ek to the case where yk is not
included in the estimation. In this case, it can be defined as

Uk(e) = J(ŵ−k)− J(ŵe) , (8)

which can be also expressed as

Uk(e) = (J(ŵ−k)−J(ŵ))− (J(ŵe)−J(ŵ)) = uk− Ik(e) .
(9)

Since we already have an expression for uk, we will first
compute Ik(e), and then Uk(e) follows from (9). Using (7)
and (3), we can write

Ik(e) = rHydŵ − rHyedŵe , (10)

where ryed = E{yed
∗}. From (2) we know that

ŵe = R−1
yeye

ryed , (11)

where Ryeye
= E

{
yey

H
e

}
. As ek is assumed to be uncorre-

lated with d, the cross correlation remains unchanged, i.e.

ryed = ryd . (12)

Using (6), we express Ryeye as

Ryeye
= E

{
(y + ek)(y + ek)H

}
= Ryy + Ree . (13)

The error correlation matrix Ree is given by

Ree = E
{
eke

H
k

}
= pep

T
e , (14)

where pe =
[
0, . . . ,

√
Pe, . . . , 0

]T
and Pe = E

{
|ek|2

}
. Now

we can combine (13) and (14) to compute R−1
yeye

using the
matrix inversion lemma [10], as follows:

R−1
yeye

= R−1
yy −

R−1
yy pep

T
e R

−1
yy

1 + pT
e R

−1
yy pe

= R−1
yy −

Pevkv
H
k

1 + αkPe
, (15)

where vk denotes the k-th column of R−1
yy , and αk denotes

the k-th diagonal element of R−1
yy . We can then use (12) in

combination with (2) and (11) to expand (10) into

Ik(e) = rHyd
(
R−1

yy −R−1
yeye

)
ryd. (16)

From (2) we know that vH
k ryd = wk. Using this fact and

plugging (15) into (16) we obtain

Ik(e) =
Pe

1 + αkPe
|wk|2 (17)

which can be rewritten as

Ik(e) =
αkPe

1 + αkPe

|wk|2

αk
=

αkPe

1 + αkPe
uk , (18)

as a direct consequence of (5).
Finally, the expression of the utility of sensor signal yk

under local noise injection of power Pe is found by plugging
(18) into (9), which gives

Uk(e) =
1

1 + αkPe
uk . (19)

Note that when the noise power is zero, i.e. Pe = 0, the
utility Uk(e) is equal to the original utility uk, while as the
error power grows towards infinity the utility Uk(e) decreases
towards zero. Therefore, the utility (19) can be seen as a
generalization of the original utility (4) proposed in [6]–[8].

V. APPLICATION TO GREEDY ADAPTIVE QUANTIZATION

In this section, we apply the impact measure Ik(e) to the
case of uniform quantization. Since nodes can manipulate
the number of bits they use to encode their signal samples,
reducing this number means that less energy is spent in
wireless communications. The increase in MMSE resulting
from this bit length reduction is directly given by Ik(e), which
is why we choose to use it instead of Uk(e).

A. Quantization model

The quantization of a real number a ∈ [−A/2, A/2] with b
bits can be expressed as

Q(a) = ∆

(⌊ a
∆

⌋
+

1

2

)
, (20)

where ∆ = A/2b. Note that each sensor needs to determine
a suitable value of A for its own signal observations, which
has to be communicated to the fusion centre. The quantization
error, or noise, is then defined as

eb = Q(a)− a . (21)

The mathematical properties of the quantization noise eb have
been extensively studied in the literature [11]–[13], where it
has been shown that the input signal and the quantization
noise are uncorrelated under certain technical conditions on
the characteristic function of the input signal. Under the
same conditions, the MSE resulting from the quantization is
approximately given by ∆2/12, with the approximation being
less accurate in the low resolution regime. This allows to
use the model3 (6), where ek would correspond to the noise

3This model will be validated in Section V-C.
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Figure 1. Comparison between the impact Ik(e) computed according to (17)
using (22) (’model’), and computed based on definition (7) (’true’).

resulting from uniform quantization of the signal yk4, with
power

Pe = ∆2/12 . (22)

B. Greedy bit length assignment

The bit length assignment problem deals with finding the
number of bits to be used by each node to encode their own
signal samples with minimal impact on the estimation error at
the fusion centre. In our case, this would mean finding a bit
length assignment that uses the least number of bits, summed
over all nodes, such that the resulting LMMSE estimator
does not exceed a given MMSE threshold. This problem is
combinatorial in nature, and thus a brute force search is not
feasible for adaptive signal estimation in a WSN.

We choose a more efficient, although suboptimal, solution
in the form of a greedy algorithm. In each iteration, the
algorithm reduces by q bits the bit length of the sensor signal
that yields the least MSE increase. This process continues
until a threshold MMSE is reached. Note that computing the
MMSE increase from a reduction of q bits simply amounts to
computing the impact Ik(e) using (17) and (22).

C. Simulation results

We consider a scenario with four nodes, three noise sources
and one target source, where we evaluate the performance of
the greedy approach to bit length assignment. This is a toy
scenario and we do not try to model any practical application
here. The target source signal consists of 105 samples of
a white stochastic process with a zero mean, unit variance
Gaussian distribution, while the noise sources are zero mean
white Gaussian processes with variances 0.36, 0.28, 0.2, and
the same number of samples. In addition, additive white
Gaussian noise is also present in each sensor signal, with zero
mean and a variance of 10−4. The signals originating from the
sources arrive at the sensors with an attenuation proportional
to the inverse of the distance between source and sensor. We
assume that there is no time delay in the propagation from
source to sensor. The correlation matrix Ryy and the cross
correlation ryd are estimated by averaging over all the signal
samples. Since we are interested in observing the effects of

4Note that yk could be already quantized, e.g. when it is acquired by the
analog-to-digital converter of the k-th sensor, while ek would represent the
error from changing the bit resolution of yk .
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Figure 2. SER resulting from every possible bit assignment, and curves for
each greedy assignment, using Ik(e) and uk .

quantization, we compute ryd assuming knowledge of the
desired signal d to avoid estimation errors.

The results in Fig. 1 show that the values of Ik(e) computed
according to (17) using (22), and computed based on its
definition (7), present very small discrepancies.

In Fig. 2 we show the signal-to-error ratio (SER), given by

SER = 10 log10

(
E{|d|2}

E {|d−wHy|2}

)
, (23)

obtained by the greedy approach based on Ik(e) and on uk.
The light blue dots represent the SER resulting from every
possible bit assignment, from 1 to 16 bits for each node,
covering the entire search space for our scenario. In order to
ease the visualization, we condensed each bit assignment into
the total number of bits it would use, e.g., the bit assignment
[10, 8, 13, 12] would use 43 bits. The blue curve represents the
result in each iteration of a greedy bit assignment using Ik(e).
In this case q = 1, and the target MMSE is set very high so
we can observe the evolution of the greedy assignment. As
the graph shows, the assignments obtained are very close to
the optimal, that is, the assignment that uses the least number
of bits for a given MMSE increase. Finally, the red curve
represents the bit assignments resulting from using uk instead
of Ik(e). This leads to a very large decrease in SER at the
beginning, which corresponds to the least useful signal seeing
its bit length consistently reduced by the selection algorithm.
The reason for this behaviour is that uk represents the MSE
increase if the k-th signal were to be removed completely,
rather than quantifying the impact on the MSE when only
reducing the bit length.

VI. CONCLUSIONS

We have developed a metric to predict the impact of local
noise in a multi-channel LMMSE signal estimation task for
WSNs. It generalizes the sensor signal utility previously pro-
posed in the literature, and we show how it can be computed
and tracked efficiently. In the case of quantization noise, our
metric can be used to perform bit length assignment, where
each node quantizes their sensor signal with a number of bits
related to its importance in the global estimation task. We
have applied our generalized utility in a greedy algorithm for
bit length assignment, yielding improved results compared to
when the original utility metric is used.



5

REFERENCES

[1] G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and Adaptive
Signal Processing: Spectral Estimation, Signal Modeling, Adaptive
Filtering and Array Processing. Artech House, 2005.

[2] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy
conservation in wireless sensor networks: A survey,” Ad Hoc Networks,
vol. 7, no. 3, pp. 537 – 568, 2009.

[3] J.-J. Xiao, S. Cui, Z.-Q. Luo, and A. J. Goldsmith, “Power scheduling
of universal decentralized estimation in sensor networks,” IEEE Trans.
on Signal Processing, vol. 54, no. 2, pp. 413–422, Feb 2006.

[4] S. Cui, J.-J. Xiao, A. J. Goldsmith, Z.-Q. Luo, and H. V. Poor,
“Estimation diversity and energy efficiency in distributed sensing,” IEEE
Trans. on Signal Processing, vol. 55, no. 9, pp. 4683–4695, Sept 2007.

[5] A. S. Behbahani, A. M. Eltawil, and H. Jafarkhani, “Decentralized
estimation under correlated noise,” IEEE Trans. on Signal Processing,
vol. 62, no. 21, pp. 5603–5614, Nov 2014.

[6] A. Bertrand and M. Moonen, “Efficient sensor subset selection and
link failure response for linear MMSE signal estimation in wireless
sensor networks,” in Proc. of the European signal processing conference
(EUSIPCO), Aalborg - Denmark, August 2010, pp. 1092–1096.

[7] A. Bertrand, J. Szurley, P. Ruckebusch, I. Moerman, and M. Moonen,
“Efficient calculation of sensor utility and sensor removal in wireless
sensor networks for adaptive signal estimation and beamforming,” IEEE
Transactions on Signal Processing, vol. 60, no. 11, pp. 5857–5869, Nov
2012.

[8] J. Szurley, A. Bertrand, P. Ruckebusch, I. Moerman, and M. Moonen,
“Greedy distributed node selection for node-specific signal estimation
in wireless sensor networks,” Signal Processing, vol. 94, pp. 57 – 73,
2014.

[9] B. Cornelis, M. Moonen, and J. Wouters, “Performance analysis of
multichannel Wiener filter-based noise reduction in hearing aids under
second order statistics estimation errors,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 19, no. 5, pp. 1368–1381, July
2011.

[10] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed. The
John Hopkins University Press, 2013.

[11] A. Sripad and D. Snyder, “A necessary and sufficient condition for
quantization errors to be uniform and white,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 25, no. 5, pp. 442–448,
Oct 1977.

[12] R. M. Gray, “Quantization noise spectra,” IEEE Transactions on Infor-
mation Theory, vol. 36, no. 6, pp. 1220–1244, Nov 1990.

[13] R. M. Gray and D. L. Neuhof, “Quantization,” IEEE Transactions on
Information Theory, vol. 44, no. 6, pp. 2325–2383, Oct 1998.


