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Abstract— State-of-the-art hearing prostheses are equipped
with acoustic noise reduction algorithms to improve speech
intelligibility. Currently, one of the major challenges is to
perform acoustic noise reduction in so-called cocktail party
scenarios with multiple speakers, in particular because it is
difficult -if not impossible- for the algorithm to determine which
are the target speaker(s) that should be enhanced, and which
speaker(s) should be treated as interfering sources. Recently,
it has been shown that electroencephalography (EEG) can be
used to perform auditory attention detection, i.e., to detect
to which speaker a subject is attending based on recordings
of neural activity. In this paper, we combine such an EEG-
based auditory attention detection (AAD) paradigm with an
acoustic noise reduction algorithm based on the multi-channel
Wiener filter (MWF), leading to a neuro-steered MWF. In
particular, we analyze how the AAD accuracy affects the noise
suppression performance of an adaptive MWF in a sliding-
window implementation, where the user switches his attention
between two speakers.

I. INTRODUCTION

People with hearing impairment often have difficulties
to understand speech in noisy environments, leading to
social isolation and decreased quality of life. This can be
partly overcome by embedding digital signal processing
algorithms in auditory prostheses such as hearing aids or
cochlear implants. By using an array of microphones, it is
possible to apply beamforming techniques that exploit spatial
characteristics of the acoustic scenario to extract the sound
from a target direction while reducing background noise
from other directions. Advanced beamformers, such as the
multi-channel Wiener filter (MWF) [1] optimally suppress
noise in any acoustic scenario by continuously measuring
the statistics of the background noise and adapting the
beamformer coefficients accordingly.

The MWF relies on the fact that a speech signal con-
tains many pauses, during which the noise statistics can
be measured. The MWF uses a voice activity detection
(VAD) mechanism to identify the segments during which
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the speaker is silent. However, in a so-called cocktail-party
scenario, the background noise contains interfering speakers,
such that a fundamental problem emerges: which speaker is
the listener actually attending to, i.e., which speech signal
should be tracked by the VAD, and which speech signal(s)
should be treated as noise. We will refer to this problem as
auditory attention detection (AAD). In practice, without extra
knowledge about the listener’s intentions, the AAD problem
can only be tackled in a heuristic or pragmatic way, e.g., by
selecting the speaker with highest intensity, or by selecting
the speaker closest to the frontal direction (requiring speaker
localization). However, such a system will often choose the
wrong speaker, in which case the MWF will be adapted to
suppress the attended speech, rather than enhancing it.

Several studies have demonstrated that auditory atten-
tion can be decoded from electroencephalography (EEG)
recordings in a two-speaker scenario [2]–[5]. In [3], [4],
it is suggested that hearing prostheses could be extended
with chronic and discreet EEG recording technology [6]–
[8], to form so-called neuro-steered hearing prostheses. Such
devices would allow to track auditory attention based on
EEG recordings, and then adapt the beamforming algorithm
to steer towards the identified speaker of interest. A first
proof of concept for such an EEG-informed noise reduction
algorithm has been described in [9] for a batch-mode (non-
adaptive) version of MWF.

In this paper, we investigate whether the accuracy of
EEG-informed AAD allows to adaptively steer an MWF-
based beamformer to extract the attended speaker from the
microphone recordings of a binaural hearing prosthesis. To
this end, we use a sliding-window implementation of the
least-squares based AAD algorithm originally proposed in
[2]. We assume that the envelopes of the two speech sources
are available, which are used as inputs to the AAD algorithm,
as well as voice-activity tracks for the MWF. In practice,
these speech envelopes can be wirelessly transmitted to the
hearing prosthesis by a multimedia device that produces
the speech signals through its loudspeakers [10] or by an
external reference microphone [11]. If this is not possible,
the envelopes have to be extracted from the microphone
recordings at the hear prosthesis, e.g., using techniques such
as in [12]. The latter is beyond the scope of this study, but
was treated in [9]. The impact of imperfect or noisy speech
envelopes to perform AAD has also been investigated in [5],
where it was found that the AAD performance is quite robust
to uncorrelated noise in the envelopes.



II. PROBLEM STATEMENT AND ALGORITHMS

A. Problem statement

We consider a hearing prosthesis equipped with a mi-
crophone array with M microphones, observing an acoustic
scene with two speech sources. The m-th microphone signal
is described in the frequency domain as

ym(ω) = x1,m(ω)+ x2,m(ω)+nm(ω) , m = 1, . . . ,M (1)

where x1,m and x2,m denote the signal components corre-
sponding to speaker 1 and 2, respectively (as observed at
microphone m), nm denotes the noise picked up by micro-
phone m, and ω denotes the frequency variable. x1,m and
x2,m consist of speech signals that are filtered by an acoustic
transfer function from their respective source to microphone
m, capturing the effect of propagation through the acoustic
environment and the head. By stacking the M microphone
signals in an M-channel signal y(ω) = [ym(ω) . . . yM(ω)]T ,
we can write (1) as

y(ω) = x1(ω)+x2(ω)+n(ω) (2)

where x1, x2, and n denote the stacked versions of the
corresponding signal components in (1).

Our goal is to design a multi-channel filter or beamformer
w(ω) for each frequency ω , which extracts the attended
speech source from y(ω), i.e., the filtered output signal
z(ω) = w(ω)Hy(ω) should be an estimate of the attended
speech signal, which can be either speaker 1 or speaker 2
(superscript H denotes the conjugate transpose operator).

In the next two subsections, we will briefly explain how (a)
the beamformer w(ω) is computed, and (b) how the attended
speaker can be detected based on EEG signals.

B. MWF-based speaker extraction

In practice, the filter w(ω) as well as the filtering operation
w(ω)Hy(ω) are computed for a discrete set of frequencies
ω1, . . . ,ωmax in the time-frequency domain, e.g., based on a
short-time Fourier transform (STFT). In the sequel, we will
omit the frequency variable ω for the sake of conciseness.

Assuming without loss of generality that the listener
attends to the first speaker, our goal is to estimate the signal
x1r as observed in an arbitrarily pre-selected reference micro-
phone r. We compute w such that z is as close as possible to
x1,r in linear minimum mean squared error (LMMSE) sense,
i.e.,

ŵ = argmin
w

E{|x1,r− z|2}= argmin
w

E{|x1,r−wHy|2} (3)

where E{·} denotes the expectation operator. The solution
of (3) is given by the MWF [1]:

ŵ = R−1
yy Rx1x1er (4)

where Ryy = E{yyH}, Rx1x1 = E{x1xH
1 }, and er denotes the

r-th column of an M×M identity matrix, which selects the
column of Rx1x1 that corresponds to the reference micro-
phone.

Ryy can be directly estimated by means of temporal
averaging (over different STFT frames). In this study, Ryy is

initialized as Ryy[0] = 10−6I, where I is the identity matrix,
and an updating procedure with a forgetting factor 0� λ < 1
is used, i.e.,

Ryy[k] = λRyy[k−1]+ (1−λ )y[k]y[k]H (5)

where k denotes the STFT frame index, after removing the
frames in which the attended speaker is silent. The latter are
used to populate the ‘interference-only’ correlation matrix
Rvv, which only contains contributions from the unattended
speaker x2 and the noise n, and for which we use a
similar updating scheme as in (5). Assuming independence
between all sources, the matrix Rx1x1 in (4) can then be
estimated as Rx1x1 = Ryy−Rvv. However, we used a more
robust estimation of Rx1x1 based on a generalized eigenvalue
decomposition of Ryy and Rvv, as proposed in [1] and [13]
(details omitted). Due to the continuous updating of the
above correlation matrices, the MWF ŵ is an adaptive filter.

To distinguish between segments in which the attended
speaker is active or silent, we need a speaker-dependent VAD
mechanism which only triggers when the attended speaker
is active, e.g., based on envelope demixing strategies [9],
[12]. In this study, we make abstraction of this problem and
assume that the speech envelopes of the two speakers are
available, where the VAD tracks are computed by simply
thresholding these envelopes.

C. Auditory attention detection

To detect to which of both speakers a listener is attending,
EEG data is recorded simultaneously with the microphone
signals. Let rn[t] denote the signal in the n-th EEG channel
at sample time t, and let s1[t] and s2[t] denote the speech
envelope of speaker 1 and 2, respectively. For training data
with a known attended speaker, we design a linear EEG
decoder that reconstructs the attended speech envelope (say,
s1) from the EEG data in LMMSE sense [2]–[5]:

min
dnτ

E


∣∣∣∣∣s1[t]−

T−1

∑
τ=0

N

∑
n=1

dn[τ] rn[t + τ]

∣∣∣∣∣
2
 (6)

where the dn[τ]’s define the decoder weights over T time
lags and N channels. By stacking all dn[τ]’s in a vector d,
and similarly stacking the corresponding samples rn[t + τ]
(over all τ = 0, . . . ,T −1 and n = 1, . . . ,N) in the vector r[t],
then (6) can be rewritten as

d̂ = argmin
d

E{|s1[t]−dT r[t]|2} (7)

such that the optimal EEG decoder is found as

d̂ = R−1
rr crs1 (8)

where Rrr = E{r[t] r[t]T}, and crs1 = E{r[t]s1[t]}. The de-
coder d̂ can be computed from (8) using training data in
which the attended speaker is known. As in [4], (8) is
computed once over the entire training data set, instead of
over individual trials followed by an averaging of the per-trial
decoders (as originally proposed in [2]). If sufficient training
data is available, the former avoids to tune a regularization



parameter, and generally results in more accurate decoders
[4].

To perform AAD on new data, the trained EEG-decoder
d̂ is applied on new EEG recordings, and its output signal
p[t] = d̂T r[t] is then correlated to the speech envelopes of
speaker 1 and speaker 2, where the attended speaker is
selected as the one with the highest correlation coefficient.
As we target an adaptive algorithm, we compute two time-
dependent Pearson correlation coefficients ρs1 p[t] and ρs2 p[t]
between the EEG decoder output p and the envelope of
speakers 1 and 2, respectively, over a sliding window of L
seconds. The window includes the current sample at time
t and L− 1 previous samples from the past L seconds.
At a given time t, speaker 1 is selected as the attended
speaker if ρs1 p[t] ≥ ρs2 p[t], whereas speaker 2 is selected if
ρs1 p[t]< ρs2 p[t].

Similar to [2]–[5], we assume in this pilot study that the
speech envelopes s1 and s2 are known, e.g., provided by an
external device or remote microphone [10], [11]. If this is
not the case, then the envelopes have to be extracted from
the microphone signals in y, as in [9], [12], which is beyond
the scope of this paper.

III. EXPERIMENT

EEG recordings from 16 normal-hearing subjects were
collected in a previous study (for details, we refer to [4]).
During the experiment, the subjects listened to two simul-
taneously active speech sources, which were presented at
60dBA using insert phones. The experiment consisted of sev-
eral trials (26 minutes in total), where the subject was asked
to switch attention between left and right ear across trials.
The speech sources were filtered with head-related transfer
functions (HRTFs) to mimic realistic sound perception from
sources impinging on in-the-ear microphones. After filtering,
these simulated microphone recordings were downsampled
from 44.1 kHz to 8 kHz to reduce the computational load.

We split the EEG recordings into segments of 60s each.
We then paired up several segments to generate a set of 72
test frames, for each subject, of 120s each, with attention
on speaker 1 during the first 60s and attention on speaker
2 during the last 60s. Hence each test frame contained a
switch of attention from speaker 1 to speaker 2 after 60s.
For each test frame, a decoder was trained by solving the
least-squares problem in (8) over all data not included in the
current test frame. The speech envelopes s1[t] and s2[t] were
computed by powerlaw compression (with power 0.6) on the
raw speech signals and downsampling to 20 Hz, followed
by band-pass filtering between 2 and 9 Hz, as in [4]. The
decoder output p[t] was correlated to s1[t] and s2[t] over
a sliding window of length L (measured in seconds) at 20
Hz sampling rate with a window shift of 1s. We evaluated
the performance for L = 10, L = 20 and L = 30s. Zero-
padding was applied at the beginning of each test frame to
initialize the sliding window. This resulted in 120 different
AAD decisions at a rate of 1Hz over the full length of the test
frame. These AAD decisions were used to decide which VAD
track (of which speaker) was fed to the MWF, where the

VAD track could switch every second depending on the AAD
decision at that time point. The MWF was applied on M = 6
microphone signals, which were synthesized using HRTFs
from a binaural hearing prosthesis with 2x3 microphones
[14]. The MWF operated on STFT frames of 256 samples
(32 ms), in a weighted overlap-add procedure with 50%
overlap, and with a forgetting factor λ = 0.9905. This value
of λ corresponds to approximately a memory retention of 4
seconds for the MWF which was found to be a good choice
to stabilize the output SNR against spurious switches in the
VAD track due to erroneous AAD decisions. In addition,
at instances where a switch in attention was detected, the
speech and noise correlation matrices of the MWF were reset
to initial conditions effectively forgetting all information
before the switch in attention, and hence leading to a faster
recovery. In order not to reset the MWF each time a spurious
switch in the AAD track is found, we applied a median
filter of 11s over the binary signal with AAD decisions. The
correlation matrices were only reset when there was a switch
in this median output signal. This approach ensured that a
switch in attention was taken into account only if it was
consistent for at least 5 seconds.

IV. RESULTS

Fig. 1a shows an example of a single trial of 120s where
the attention switches from speaker 1 to speaker 2 after
60s (for L = 20s). The two plots show the two speech
signals as observed at the reference microphone (in blue)
and at the output of the MWF (in green). Note that the
MWF is computed on the speech mixture as observed at
the microphone array, but for the sake of intelligibility, the
speech components x1 and x2 are fed separately into the
resulting MWF to generate the two plots in green, i.e., the
actual MWF output signal is the sum of both (green) signals.
Similarly, the sum of the blue signals yields the reference
microphone signal. The red plot shows the AAD decisions
over time, where a positive value corresponds to speaker 1
and negative to speaker 2. Fig. 1a and fig. 1b show trials
with high and low AAD accuracy respectively.

Fig. 2 shows the difference between the SNR at the
reference microphone (input) and the output of the MWF
(0dB corresponds to no difference). The SNR is here defined
as the ratio between the power of the attended and the
unattended speaker. The plot shows the medians over all
subjects and all trials for L = 10, L = 20 and L = 30s, with
an attention switch after 60s. The black curve shows the
SNR improvement when the MWF is always fed with the
VAD track of the attended speaker, which corresponds to a
scenario with an instantaneous AAD with perfect accuracy.
The error bars (for the red curve) show the first and third
quartiles for L = 20s, which seems to provide the best trade-
off between a quick recovery after an attention switch along
with a good SNR improvement and fewer AAD errors that
may steer the MWF towards the wrong speaker. Note that the
SNR improvement becomes negative at 60s, as the MWF is
then still suppressing the attended speaker due to the sudden
switch in attention.



(a) Example with few AAD errors (92.5% accuracy)

(b) Example with many AAD errors (63.3% accuracy)
Fig. 1. Two different examples of MWF-based speaker extraction with an
attention switch at 60s.

Fig. 2. SNR improvement as a function of time for different values of
L (median over all subjects and all trials, with error bars representing first
and third quartiles for L = 20s).

V. DISCUSSION

Fig. 1a demonstrates that an AAD-informed MWF can
extract the attended speaker and that brief AAD errors are
not problematic, although they may slightly steer the MWF
towards the other speaker (the latter is observed at 10s in
Fig. 1b). This can be avoided by using a larger forgetting
factor λ , with the drawback that the MWF will then adapt
more slowly to changes in attention or in the acoustic scene.

From Fig. 1b, we conclude that a high AAD accuracy
is crucial to obtain a stable output. Indeed, when the AAD
starts failing regularly after 35s, the unattended speaker leaks
to the MWF output, up to a point where it even dominates
the output. Such temporary effects have an influence on the
overall SNR improvement in Fig. 2, but are not visible due to
the averaging. Poor trials as in Fig. 1b are not an exception,
and they actually appear quite often in our study. Since the
window length L has a large impact on the AAD accuracy,
higher values will result in more accurate AAD and a lower
probability for the MWF to steer towards the wrong speaker,
at the cost of poorer time resolution to track changes in
the attention. Finally, it is noted that other effects might
play a role which are not taken into account here, such as

the subject temporarily being distracted by the unattended
speaker. Only an online closed-loop implementation and
behavioral assessment can determine whether the MWF
enhances the correct speaker (almost) all the time.

VI. CONCLUSIONS

We have demonstrated that EEG-informed AAD allows to
adaptively steer an MWF, to extract the attended speaker in
a two-speaker scenario. We found that a high AAD accuracy
is crucial in order to stabilize the MWF and steer it to the
correct speaker. When more advanced methods can ensure
a robust and accurate AAD, more stable results may be
expected. Also, other challenges such as extraction of speech
envelopes and reducing the AAD decision delay need to be
tackled before a real system can be realized.
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