
1

Change Point Detection in Time Series Data using
Autoencoders with a Time-Invariant Representation

Tim De Ryck∗†, Maarten De Vos∗‡, Alexander Bertrand∗
∗ STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics,

Department of Electrical Engineering (ESAT), KU Leuven, Belgium
† Seminar for Applied Mathematics, Department of Mathematics, ETH Zürich, Switzerland
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Abstract—Change point detection (CPD) aims to locate abrupt
property changes in time series data. Recent CPD methods
demonstrated the potential of using deep learning techniques,
but often lack the ability to identify more subtle changes in the
autocorrelation statistics of the signal and suffer from a high false
alarm rate. To address these issues, we employ an autoencoder-
based methodology with a novel loss function, through which the
used autoencoders learn a partially time-invariant representation
that is tailored for CPD. The result is a flexible method that allows
the user to indicate whether change points should be sought in the
time domain, frequency domain or both. Detectable change points
include abrupt changes in the slope, mean, variance, autocorrela-
tion function and frequency spectrum. We demonstrate that our
proposed method is consistently highly competitive or superior to
baseline methods on diverse simulated and real-life benchmark
data sets. Finally, we mitigate the issue of false detection alarms
through the use of a postprocessing procedure that combines
a matched filter and a newly proposed change point score. We
show that this combination drastically improves the performance
of our method as well as all baseline methods.

Index Terms—change point detection, time series segmentation,
autoencoder, deep learning

I. INTRODUCTION

In the era of big data, where Internet of Things (IoT) devices
and other sensors provide endless data streams, the importance
of time series analysis techniques can hardly be overestimated.
One particular task, that has drawn attention from statistics
and data mining communities for decades [1]–[4], is change
point detection (CPD): the detection of abrupt changes in the
temporal evolution of time series data. Change point detection
can be a goal in itself or it can be used as a preprocessing tool
to segment a time series in homogeneous segments (which
can then be further analysed, clustered or classified). Real-life
applications of CPD include, but are not limited to, the analysis
of climate data [5], financial market data [6], [7], genetic data
[8] sensor network data [9], [10] and medical data [11], [12].
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CPD methods can be categorized according to many differ-
ent criteria. It is common to make the distinction between on-
line CPD, which provides real-time detections, and retrospec-
tive (offline) CPD, which provides more robust detections at
the cost of needing more future data. In this paper, we focus on
the second category. Many CPD algorithms compare past and
future time series intervals by means of a dissimilarity mea-
sure. An alarm is issued when the two intervals are sufficiently
dissimilar. A first group of methods defines this dissimilarity
measure based on the difference in distribution of the two
intervals. CUSUM and related methods [4], [13] track changes
in the parameter of a chosen distribution, the generalized likeli-
hood ratio (GLR) procedure [14], [15] monitors the likelihood
that both intervals are generated from the same distribution,
and subspace methods [16], [17] measure the distance between
subspaces spanned by the columns of an observability matrix.
All these methods however strongly rely on the assumption
that the time series data is generated using some paramet-
ric probability distribution (CUSUM), autoregressive model
(GLR) or state-space model (subspace method). Bayesian
online CPD [18] is another notable algorithm that depends
on distributional assumptions. Unsurprisingly, the performance
of these parametric methods heavily depends on how well
the actual data follows the assumed model. Parameter-free
alternatives are kernel density estimation [2], [19], [20] and the
related density ratio estimation [21], [22]. A more complete
overview of CPD methods can be found in e.g. [23]–[26].

Following the successful application of deep learning tech-
niques in anomaly detection, a promising approach for CPD
was to base the dissimilarity measure on the distance between
features automatically learned by an autoencoder [27]. Main
advantages of this approach are the absence of distributional
assumptions and the ability of autoencoders to extract complex
features from data in a cost-efficient way. There are however
also some severe drawbacks. First, there are no guarantees
that the distance between consecutive features reflects the
actual dissimilarity of the intervals, i.e. features may vary
significantly even in the absence of a change point. Second,
the correlated nature of time series samples is not adequately
leveraged by vanilla autoencoders, which makes it challenging
to detect abrupt changes in the frequency domain. This is
not uncommon in CPD literature [4], [18], [20], [28]. Some
methods explicitly focus on abrupt changes in the spectrum
[29], [30], thereby often ignoring changes in the time domain.
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Finally, the absence of a postprocessing procedure preceding
the detection of peaks in the dissimilarity measure often leads
to a high number of false positive detection alarms [31].

Building on [27], we propose a new autoencoder-based CPD
method using a partially time-invariant representation (TIRE)
that aims to overcome the aforementioned concerns. Our main
contributions can be summarized as follows.
• We propose a new CPD framework based on a novel

adaptation of the autoencoder with a loss function that
promotes time-invariant features. Through our choice
of loss function, we aim for the autoencoder to learn
a representation that is better suited for CPD. Based
on this encoding, we define a dissimilarity measure to
detect change points. We evaluate the performance of our
algorithm on diverse simulated and real-life benchmark
data sets and compare with other dissimilarity-measure-
based CPD algorithms.

• Whereas many change point algorithms assume the time
series data to consist of independent identically dis-
tributed (iid) samples, we explicitly focus on non-iid
data. We use the discrete Fourier transform to obtain
temporally localized spectral information and propose
an approach that combines time-domain and frequency-
domain information. When domain knowledge is avail-
able, our approach allows the user to only focus on the
time or frequency domain.

• Finally, we propose a way of identifying change points
from the dissimilarity measure data by applying the no-
tion of topographic prominence [32] to the CPD setting.
We emphasize the general importance of postprocessing
steps in CPD through numerous experiments.

II. PROBLEM FORMULATION

Let X be a d-channel time series of length T for which there
exist time stamps 0 = T0 < T1 < . . . < Tp = T such that
every subsequence of the form (X[Tk+1], . . . ,X[Tk+1]) is a
realisation of a discrete time weak-sense stationary stochastic
(WSS) process, whereas the union of two such consecutive
subsequences is not. The time stamps T1, T2, . . . are referred
to as change points. The goal of change point detection (CPD)
is to estimate these change points without any prior knowledge
on the number and the locations of the change points [31]. The
piecewise WSS assumption is not a strict prerequisite for the
algorithm to work, but it does accurately summarize the kind
of change points our proposed algorithm will be able to detect.
Examples of violations of the WSS conditions, and therefore
examples of change points we wish to detect, are changes in
mean, variance and autocorrelation. Note that changes in the
latter are also reflected in the frequency spectrum through the
Wiener-Khinchin theorem [33], [34].

We focus on CPD algorithms that are based on a dissimilar-
ity measure. Such methods calculate for every time stamp t the
dissimilarity between the windows (X[t − N + 1], . . . ,X[t])
and (X[t + 1], . . . ,X[t + N ]), where N is a user-defined
window size. Our first main goal is to develop a CPD-tailored
feature embedding and a corresponding dissimilarity measure
Dt, which peaks when the WSS restriction is violated. The

nominal approach for identifying change points would then be
to determine all local maxima and label each local maximum
of which the height exceeds a user-defined detection threshold
τ as a change point [27], [35]. However, given a window
size N , the width of this peak will theoretically be 2N − 1
time stamps, making it likely that noise will cause multiple
detection alarms for each ground-truth change point [31]. Our
second objective is to mitigate the impact of this issue.

III. AUTOENCODER-BASED CHANGE POINT DETECTION

A. Preprocessing

Let X be a d-channel time series of length T , where we
denote the i-th channel by Xi. We first divide each channel
into windows of size N ,

xit =
[
Xi[t−N + 1], . . . ,Xi[t]

]T ∈ RN . (1)

We then combine for every t the corresponding windows of
each channel into a single vector,

yt =
[
(x1
t )
T , . . . , (xdt )

T
]T ∈ RNd. (2)

Furthermore, we use the discrete Fourier transform (DFT)
on each window xit to obtain temporally localized spectral
information. The length of the transformed window is then
cropped to a predefined length M . Finally, the modulus of
the transformed window is computed. Bundling all these
transformations as a single mapping F : RN → RM , we
obtain the frequency-domain counterpart of yt:

zt =
[
F(x1

t )
T , . . . ,F(xdt )T

]T ∈ RMd. (3)

B. Feature encoding

Building on [27], we use autoencoders (AEs) to extract
features for change point detection from the time-domain (TD)
windows {yt}t. We expand the approach in [27] by also
extracting features from the frequency-domain (FD) windows
{zt}t and through the proposal of a new loss function that
explicitly promotes time-invariance of the features in consec-
utive windows. The latter is a relevant property in order to
perform CPD based on a dissimilarity metric.

An autoencoder is a type of artificial neural network that
aims to learn a low-dimensional encoding (i.e. features) from
a higher-dimensional input by reconstructing the input from
the encoding as accurately as possible. It is often used as
a dimension reduction technique and can be seen as a non-
linear generalization of PCA [36]. In its simplest form, an
autoencoder consists of one hidden layer. The encoder maps
the input yt ∈ RNd (resp. zt) to its encoded form ht ∈ Rh as

ht = σ(Wyt + b), (4)

where W is the weight matrix, b is the bias vector and σ is
a non-linear activation function that is applied element-wise.
The decoder then maps the encoded representation back to the
original input space,

ỹt = σ′(W′ht + b′). (5)

We choose σ = σ′ to be the hyperbolic tangent function,
with as a consequence that each channel of the time series



3

should be rescaled to the interval [−1, 1]. We use individual
instead of joint rescaling to ensure that all channels have a
comparable magnitude. The goal of the AE is then to minimize
the difference between the input and the output, i.e. minimize
‖yt − ỹt‖, by optimizing the choice of W,W′,b,b′. In [27],
the learned features ht are then used for CPD by measuring
the dissimilarity between consecutive feature vectors (ht vs.
ht−1). However, the learned features ht will then unavoidably
also contain information that is not relevant for CPD (e.g.
phase shift or noise information), which may generate large
dissimilarities even when there is no actual change point.

We try to remedy this by introducing the notions of time-
invariant and instantaneous features. The idea is that features
learned from consecutive windows are only useful for CPD
when they are approximately equal to each other in the
absence of a change point (e.g. mean, amplitude and frequency
should not change much within a WSS segment). We will
refer to them as time-invariant features as they are aimed
to be invariant over time within a WSS segment. All other
information that is needed for a good reconstruction, but that
may differ for consecutive windows, is aimed to be encoded
in instantaneous features. This then gives

ht =
[
(st)

T , (ut)
T
]T
, (6)

where st ∈ Rs are the time-invariant features and ut ∈ Rh−s
are the instantaneous features. To obtain both a good recon-
struction and time-invariant features, we propose to minimize
the loss function∑

t

(‖yt − ỹt‖2 + λ‖st − st−1‖2) , (7)

where λ > 0 control the amount of regularization of the
time-invariant features. Here we make the implicit assumption
that the number of terms in (7) that correspond to a window
containing a change point is very small compared to T .

It is very uncommon in machine learning to directly min-
imize the loss function (7), i.e. take all t into account for
every step of gradient descent. To improve convergence, it is
advisable to first randomly partition all time stamps t over
J smaller mini-batches Tj [37]. The mini-batch stochastic
gradient descent (SGD) version of minimizing (7) would then
consist of updating the network parameters by calculating the
gradient of ∑

t∈Tj

(‖yt − ỹt‖2 + λ‖st − st−1‖2) (8)

for some j, followed by performing one gradient descent
step and repeating this for all other mini-batches. Note that
formulation (8) would require to use time stamps from other
batches, i.e. t ∈ Tj does not generally imply that t− 1 ∈ Tj .
However, we choose to generalize (8), and minimize the
following loss function for each mini-batch,∑

t∈Tj

(
‖yt − ỹt‖2 +

λ

K

K−1∑
k=0

‖st−k − st−k−1‖2

)
, (9)

where K ∈ N. For K = 1 this equation reduces to (8).
For K > 1, this approach has the advantage that now

X[t−N ] X[t−N + 1] · · · X[t− 1] X[t]

utst

· · ·

· · ·

ut−1st−1

· · ·

· · ·

Fig. 1. Visualization of time-invariant feature encoding for K = 1. The
TD autoencoder is shown two times, once with input yt−1 and once with
input yt. The corresponding time-invariant features st−1 and st are forced to
be approximately equal because of the chosen loss function (9). Frequency-
domain time-invariant features are obtained analogously.

K + 1 consecutive features are jointly and simultaneously
considered during the computation of the gradient, resulting
in an additional smoothing effect of the stochastic gradient
in the direction of the minimization of the penalty term in
(7). Thereby further promoting the aimed time invariance of
the features st. It may help to think of (9) as K + 1 parallel
autoencoders with identical weights and biases, where the k-th
autoencoder receives yt+k−K−1 as input and where a subset
of the latent variables (i.e. the time-invariant features) of the
parallel autoencoders are forced to be close together to obtain
a partially time-invariant representation (Figure 1). Note that
even though the difference in formulation between (7) and
(9) impacts the training of the autoencoder, the resulting loss
functions are essentially the same when summing over all t.

To avoid that the autoencoder encodes all information
in the unregularized instantaneous features, the number of
instantaneous features should be taken as small as possible.
Depending on the data, one might add additional regularization
terms to the loss function or use a more advanced type
of autoencoder (e.g. weight regularized, deep/stacked, tied-
weights, variational, recurrent autoencoder). In an entirely
similar fashion, we train a second autoencoder on {zt}t
with a similar loss function to obtain frequency-domain time-
invariant features. We will use the superscripts TD and FD to
distinguish between parameters and features corresponding to
the time and frequency domain, respectively.

C. Postprocessing and peak detection

In this section we first describe how to construct a dissim-
ilarity measure that complies with the needs formulated in
Section II based on the time-invariant features from the pre-
vious section. Next, we discuss multiple methods to suppress
the number of false positives when determining the detection
alarms.

1) Postprocessing: We first combine the TD and FD time-
invariant features into a single time-invariant features vector,

st =
[
α · (sTD

t )T , β · (sFD
t )T

]T
, (10)

where α, β > 0 are parameters that control the relative con-
tribution of the TD and FD time-invariant features. Next, we
use a zero-delay weighted moving average filter to smoothen
the time-invariant features, as small fluctuations in the features
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will affect the performance of the method. The moving average
filtering operation can be described as follows,

s̃t[i] =

N−1∑
k=−N+1

v[N − k] · st+k[i], (11)

with v[k] = v[2N − k] , k/N2 for 1 ≤ k ≤ N , where N
is the window size as defined in (1), resulting in a triangular
shaped weighting window. We use edge value padding in order
for the equation to be defined for all t. We then propose the
following definition for the dissimilarity measure D:

Dt = ‖s̃t − s̃t+N‖2, (12)

where N is the window size as defined in (1). In some
applications, domain-specific knowledge might suggest that
only TD (resp. FD) information is relevant for CPD. This
expert knowledge can be incorporated in the dissimilarity
measure by setting α = 1 and β = 0 (resp. α = 0 and β = 1)
in (10). We denote the obtained dissimilarity measure by DTD

t

(resp. DFD
t ). Using DTD

t and DFD
t , we can also set α and β

automatically in such a way that the TD and FD time-invariant
features contribute in a comparable fashion to Dt. We let

α = Q({DFD
t }t, 0.95) and β = Q({DTD

t }t, 0.95), (13)

where Q is the quantile function, i.e. for a set of real numbers
A and 0 < p ≤ 1 it holds that Q(A, p) is the smallest number
such that p · 100% of the elements of the set A are smaller
than Q(A, p). We use the 95-percentile as a measure of the
heights of the peaks in the dissimilarity scores, where outliers
are ignored. By setting α and β in (10) according to (13), the
peaks in {DFD

t }t and {DTD
t }t contribute approximately equally

to {Dt}t. As all learned features lie in the interval [−1, 1],
the robustness of using a quantile-based fusion approach is
guaranteed.

2) Peak detection: If the time-invariant features are indeed
similar across successive windows within a WSS segment,
the dissimilarity measure Dt, as defined in (12), will peak
at or near a change point. Determining reasonable detection
alarms from these peaks is an often neglected task in current
literature. In some cases, the problem is avoided by focusing
on time series containing only one change point [35]. In
other cases all local maxima of the dissimilarity measure are
considered to be detection alarms [27], leading to unreasonably
many false positives. Liu et al. [22] propose to reduce the
number of false positives by deleting detections that are too
close to the previous detection. As their method might also
delete correct detections, it is clearly not optimal. Recently,
the use of a matched filter was investigated as a way to
improve detection and localization of change points [28], [31].
It is however difficult to automatically select a representative
peak to base the matched filter on [28], nor is it possible to
unambiguously derive an asymptotically matched filter [31]
for our dissimilarity measure. We therefore propose to reuse
the impulse response v from the moving average filtering (11)
as it is has a comparable effect to that of a matched filter, as
a consequence of its width and shape. This then leads to

D̃t =
N−1∑

k=−N+1

v[N − k] · Dt+k. (14)

The detection alarms then correspond to all local maxima of
the series (D̃N , D̃N+1, . . . , D̃T−N ) [28], [31].

Aiming to further improve detection accuracy, we propose to
use a different, parameter-free approach for peak detection. In
topography, the prominence of a peak is the minimum height
that one needs to descend in order to be able to ascend to
a higher peak [32]. The idea is that even though every peak
in the dissimilarity measure might consist of multiple local
maxima that all have a large height, only one of these maxima
will have a large prominence. This measure has previously
been successfully applied in the analysis of population data
[38], super-resolution microscopy data [39] and neural signals
[40]. Given that Dt is a local maximum, we first define the
two closest time stamps left and right of t for which the
dissimilarity measure is larger than Dt, and denote them by
tL and tR respectively, i.e.,

tL = max {sup{t∗ | Dt∗ > Dt and t∗ < t}, N} , (15)
tR = min{inf{t∗ | Dt∗ > Dt and t∗ > t}, T −N}, (16)

where the max and min operators ensure that tL and tR stay
at a distance N from the boundaries of the time series. We
then define the prominence P(Dt) of local maximum Dt by

P(Dt) = Dt −max

{
min

tL<t∗<t
Dt∗ , min

t<t∗<tR
Dt∗
}
. (17)

If Dt is not a local maximum we set P(Dt) = 0 by definition.
We propose to combine the matched filter (14) and the
prominence measure (17), i.e. by calculating the prominences
for {D̃}t instead of {D}t. A change point is then detected if
the prominence P(D̃t) is above a predefined threshold τ .

D. Summary: the TIRE method

Finally, we summarize all the steps of the proposed
Time-Invariant REpresentation (TIRE) change point detection
method. If only time-domain or frequency-domain information
is used, we will refer to the method using the acronym TIRE-
TD or TIRE-FD, respectively.

1) Construct time-domain windows {yt}t (2) and
frequency-domain windows {zt}t (3) from a time
series X.

2) Using these windows as training data sets, train two
autoencoders by minimizing loss function (9).

3) Use (13) to determine α and β or set one of them to zero
based on domain knowledge. Construct the combined
time-invariant features according to (10).

4) Smoothen the time-invariant features according to (11).
5) Calculate the dissimilarity measures for all t using (12).
6) Apply a matched filter on the dissimilarity measures

following (14) and compute the prominence of all local
maxima using (17).

7) If the prominence (17) of a local maximum is higher than
some user-defined detection threshold τ , a change point
has been detected.

An implementation of our TIRE methods has been made
available at https://github.com/deryckt/TIRE.

https://github.com/deryckt/TIRE
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IV. EXPERIMENTS

A. Evaluation measure

In our setting, the goal of a CPD algorithm is to identify
the location of change points as accurately as possible. Given
a toleration distance δ we say that a ground-truth change point
a is correctly detected by a detection alarm b if the following
three conditions are satisfied [27]:

1) No other ground-truth change point is closer to b than a.
2) The time distance between a and b is smaller than the

toleration distance, i.e. |a− b| ≤ δ.
3) Every detection alarm can only contribute to the correct

detection of at most one ground-truth change point.

To evaluate the performance of our method, we will con-
struct receiver operating characteristic (ROC) curves and use
the area under this curve (AUC) as a performance metric, as
is common practice. Following [20]–[22], [27], we define the
true positive rate (TPR) and false positive rate (FPR) of our
detection algorithm as

TPR =
NCR

NGT
and FPR =

NAL −NCR

NAL
, (18)

where NGT denotes the number of ground-truth change points,
NAL denotes the number of all detection alarms by the algo-
rithm and NCR is the number of times a ground-truth change
point is correctly detected. We obtain the ROC curve by
varying the detection threshold τ . Unlike in the binary classifi-
cation setting, the ROC curve is not necessarily monotonously
increasing, as the FPR does not need to be a monotonous
function of τ . Nevertheless, it still holds that 0 ≤ AUC ≤ 1.
Moreover, note that a TPR of 1.0 can be obtained by setting
the detection threshold to zero τ = 0 (i.e. all time stamps
are detection alarms), though the FPR will always be strictly
smaller than 1.0 for τ = 0 when at least one change point
is present. We therefore extend the ROC curve by manually
adding the point (FPR,TPR) = (1.0, 1.0). This ensures that a
perfect performance corresponds to an AUC of 1.

B. Data sets

We demonstrate the performance of our method on four
simulated and three real-life benchmark data sets, of which six
are typical benchmark data sets in CPD literature. A summary
of their properties can be found in Table I.

1) Simulated data: We consider the one-dimensional au-
toregressive (AR) model y(t) = a1y(t− 1) + a2y(t− 2) + εt
where εt ∼ N (µt, σ

2
t ) and y(1) = y(2) = 0. We generate 50

random change points tn with t0 = 0, tn = tn−1 + bτnc and
τn ∼ N (100, 10). Following the parameter choices of [20]–
[22], [41], we create the following data sets, each consisting
of ten randomly generated time series.

Jumping mean (JM). For this data set, let a1 = 0.6, a2 =
−0.5 and σt = 1.5. We set the noise mean as

µt =

{
0 1 ≤ t ≤ t1
µtn−1

+ n/16 tn−1 + 1 ≤ t ≤ tn.
(19)

Scaling variance (SV). For this data set, let a1 = 0.6,
a2 = −0.5 and µt = 0. We set the noise standard deviation
as

σt =

{
1 tn−1 + 1 ≤ t ≤ tn and n odd
ln(e+ n/4) tn−1 + 1 ≤ t ≤ tn and n even.

(20)

Changing coefficients (CC). We set a2 = 0, µt = 0
and σt = 1.5. To take the burn-in time into account, we set
τn ∼ N (1000, 100). For every segment, the coefficient a1
is alternatively sampled from U([0, 0.5]) and U([0.8, 0.95]),
leading to clear differences in autocorrelation and frequency
content between consecutive segments.

Gaussian mixtures (GM). Here we abandon the AR model
and instead simulate a piecewise iid sequence alternatively
sampled between the Gaussian mixtures 0.5N (−1, 0.52) +
0.5N (1, 0.52) and 0.8N (−1, 1.02) + 0.2N (1, 0.12). Change
points are generated using the same mechanism as for JM and
SV.

2) Real-life data sets: Bee dance [42] is an often used data
set to evaluate CPD algorithms [20], [25], [31], [43], [44].
It consists of six three-dimensional time series of the bees
position (location in 2D plane and angle differences) while it
performs a three-stage waggle dance, which is of interest to
ethnologists.

HASC-2011 is a subset of the HASC Challenge 2011
dataset [45], which provides human activity data from portable
three-axis accelerometers. The six activities carried out are
staying still, walking, jogging, skipping, taking the stairs up
or down. Following respectively [28] and [22], we use the data
from person 671 and convert the data to a 1D time series by
taking the l2-norm of the three-dimensional samples. Human
activity recognition data is commonly used in CPD literature
[20]–[22], [28], [31], [35], [45].

Well log [46] consists of nuclear magnetic resonance mea-
surements taken from a drill while drilling a well. Changes
in the mean of the time series correspond to changes in rock
stratification, outliers should be ignored [47]. Other results on
this data set in the context of CPD evaluation include [18],
[25], [44], [46]–[48].

TABLE I
OVERVIEW OF DATA SETS. FOR DATA SETS CONSISTING OF MULTIPLE

TIME SERIES, MEAN AND STANDARD DEVIATION ARE REPORTED. Q10,
Q50 AND Q90 DENOTE THE 10%, 50% AND 90% QUANTILE, RESP.

CP distances
Data set Length #series #CPs Q10 Q50 Q90

JM, SV, GM 4900± 22 10 48 96 100 104
CC 49000± 70 10 48 987 1000 1013

Bee dance 827± 202 6 20± 4 28 39 56
HASC-2011 39397 1 39 69 427 2509

Well log 4050 1 9 55 170 390

C. Parameter settings and baseline methods

For TIRE, we report the results for two different parameter
settings. Parameter setting a corresponds to the case without
instantaneous features: in both time and frequency domain
the autoencoder learns only 1 (time-invariant) feature (i.e.
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hTD = sTD = hFD = sFD = 1). Furthermore we set K = 2,
λTD = 1 and λFD = 1. Parameter setting b corresponds to
the case with 1 instantaneous and 2 time-invariant features in
the time domain (i.e. hTD = 3, sTD = 2) and furthermore
we set hFD = sFD = 1, K = 2, λTD = 1 and λFD = 1.
For TIRE-TD we set α = 1 and β = 0 in (10), and
vice versa for TIRE-FD. For the combined approach, we
set α and β following (13). We train all networks for 200
epochs using the Adam optimizer [49] with default settings.
For both parameter settings, we choose window sizes and
toleration distances based on domain knowledge and sampling
frequency. We set N = 20 and δ = 15 for JM, SC and
GM; N = 200 and δ = 150 for CC; N = 10 and δ = 15
for bee dance; N = 100 and δ = 300 for HASC-2011 and
N = 75 and δ = 50 for well log. The influence of these
parameter settings will be discussed in Section V-E. In terms
of postprocessing, we use a matched filter and calculate our
proposed prominence score (cf. Section III). The advantageous
effect of this postprocessing stage is analyzed in Section V-C.
In order to obtain a fair comparison, we also apply these
postprocessing steps to all undermentioned baseline methods
which do not explicitly define such a procedure.

The first baseline method we use is the generalized like-
lihood ratio (GLR) procedure [14], [15], which has been
shown to have a good performance for detecting changes in
the autocorrelation function or the frequency spectrum [50].
A conceptually similar method is described in [51]. We use
a sliding window approach, where an AR(2)-model is fit
on every two neighbouring windows as well as their union.
A generalized log-likelihood ratio is used as dissimilarity
measure. For a fair comparison, we use the same window sizes
and postprocessing steps as for TIRE.

Second, we consider a density-ratio estimation method
called relative unconstrained least-squares importance fit-
ting (RuLSIF) that has been applied to CPD [22]. Like
with the closely related uLSIF [21], the idea is to estimate
and compare the density ratio of two neighbouring windows
instead of the individual densities. Because the validation data
sets in [22] largely overlap with ours, we adopt the same
parameter choices and postprocessing steps as described in
the original paper.

Next, kernel learning CPD (KL-CPD) [20] is a recently
proposed kernel learning framework for time series CPD
that optimizes a lower bound of test power via an auxiliary
generative model. Features are learned using a recurrent neu-
ral network and the dissimilarity measure is based on the
maximum mean discrepancy. Given the large overlap in used
benchmark data sets, we use the original default parameter
settings in [20] without adaptation (e.g. window size of 25).
We train the networks for 200 epochs, as longer training did
not result in improved results. For a fair comparison, we
use the same postprocessing steps as for TIRE as none were
proposed in [20].

Finally, we compare with the autoencoder-based break-
point detection procedure (ABD) [27]. ABD only uses time-
domain information and does not include any regularization
to promote time-invariant features. We set parameters using
the parameter guidelines in the original paper. This leads to a

window size of 96 for JM, SV and GM; 995 for CC; 26 for
bee dance; 158 for HASC-2011 and 155 for well log.

V. RESULTS

A. Performance results

In Table II, the performances of all versions of TIRE and
the baseline methods are listed. For all data sets, we report the
mean AUC and its standard error. All data sets, methods and
abbreviations are described in Section IV-C. The highest mean
AUC for each data set can be found in bold. In the following,
we discuss some important observations.

The GLR procedure gives very good results on the sim-
ulated data sets, but its performance degrades on the real-
life data sets. This confirms the common observation that the
performance of model-based CPD procedures heavily relies on
how well the actual data can be described using the chosen
model. In this case, both the simulated data and the GLR
procedure are based on a second-order autoregressive model,
which is why GLR performs well on this data. RuLSIF and
KL-CPD do not perform well on data sets in which the change
points manifest themselves in the frequency domain, since
they do not leverage the sequential nature of the time series
data, i.e. they assume the data samples to be iid. Note that
AUC values for KL-CPD differ from those in [20] as CPD is
there interpreted as a binary classification problem. Next, ABD
generally does not give good results, which can by explained
by ABD’s inability to detect changes in the frequency domain
and the often noisy features (cf. Figure 2). In addition, ABD’s
normalized dissimilarity measure (eq. (10) in [27]), given by,

DABD
t = ‖ht − ht+N‖2/

√
‖ht‖2 · ‖ht+N‖2, (21)

where ht is the vector of learned time-domain features, is not
invariant to a shift of the features (i.e. adding a constant to
all features); it even diverges when the norm of one of the
features vanishes, which is not reasonable.

For all data sets and both parameter settings a and b, either
TIRE-TD or TIRE-FD outperforms (almost) all other baseline
methods or has an AUC higher than 0.90. In many real-life
cases, it is a priori clear whether TD (e.g. well log) or FD (e.g.
HAR data, audio, . . . ) information should be used. Moreover,
our framework for combining the time-invariant features from
the time and frequency domain still gives consistently good
results even when in one of the two domains no change point
information is present. This means that the combined TD-FD
approach can always be selected as a safe choice when it is
unclear in which domain the change points mainly manifest
themselves. Finally, the different parameter settings seem have
no significant influence on the performance of TIRE. The
sensitivity of the proposed method to parameter choices will
be further discussed in Section V-E.

B. Insight in encoded features and reconstruction

To gain insight into the working of the TIRE method, we
investigate how the (partially) time-invariant representation
and the corresponding reconstructions look like. We do this
by conducting a case study on the jumping mean and bee
dance data set.



7

TABLE II
COMPARISON OF THE AUC OF THE PROPOSED TIME-INVARIANT REPRESENTATION CPD METHODS (TIRE) WITH BASELINE METHODS.

Mean Variance Coefficient Gaussian Bee dance HASC-2011 Well log Average
GLR [14], [15] 0.73± 0.02 0.81± 0.02 1.00± 0.01 0.989± 0.004 0.55± 0.06 0.6431 0.2109 0.71± 0.01

RuLSIF [22] 0.708± 0.008 0.65± 0.02 0.36± 0.02 0.874± 0.007 0.47± 0.06 0.3162 0.798 0.597± 0.009
KL-CPD [20] 0.872± 0.007 0.23± 0.02 0.11± 0.01 0.84± 0.07 0.56± 0.07 0.343 0.4247 0.48± 0.01

ABD [27] 0.22± 0.02 0.17± 0.02 0.08± 0.02 0.18± 0.02 0.20± 0.04 0.2487 0.477 0.224± 0.008
TIRE-TD-a 0.86± 0.01 0.25± 0.01 0.26± 0.01 0.958± 0.009 0.36± 0.05 0.4166 0.8002 0.558± 0.007
TIRE-FD-a 0.86± 0.01 0.85± 0.01 0.96± 0.01 0.83± 0.04 0.70± 0.10 0.6504 0.6278 0.78± 0.02

TIRE-a 0.86± 0.01 0.85± 0.01 0.74± 0.05 0.92± 0.02 0.65± 0.09 0.6172 0.7656 0.77± 0.02
TIRE-TD-b 0.882± 0.009 0.26± 0.02 0.26± 0.02 0.965± 0.006 0.42± 0.06 0.4284 0.8151 0.58± 0.01
TIRE-FD-b 0.86± 0.01 0.84± 0.02 0.95± 0.02 0.74± 0.03 0.69± 0.10 0.6261 0.200 0.70± 0.02

TIRE-b 0.877± 0.009 0.83± 0.02 0.76± 0.05 0.89± 0.02 0.60± 0.09 0.6258 0.8134 0.77± 0.01
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Fig. 2. Example of the three-dimensional learned representation on a part
of the jumping mean data set for ABD (left) and TIRE-TD (right) with two
time-invariant features (in red) and one instantaneous feature (in green). The
features were vertically shifted (but not rescaled) for clarity. Blue vertical
lines indicate the locations of ground-truth change points.

First, we demonstrate the effect of our proposed penalty in
the autoencoder loss function (9). In Figure 2 we show the
non-smoothed encoded features (i.e. without applying (11))
for a part of the jumping mean data set for both ABD and
TIRE-TD. For both methods, we use three features, of which
two are time-invariant in the case of TIRE. Other parameter
settings are as in parameter setting b of Section IV-C. Whereas
the features learned by ABD are very variable and noisy, the
time-invariant features of TIRE-TD are approximately constant
within each segment. For TIRE, the only significant variations
in the features are near the ground-truth change points. These
observations match exactly with the intention of our proposed
loss function.

Second, we conduct a case study on the reconstruction of
both TD and FD windows. Since the number of features we
propose to use is very small, these reconstructions might be
lossy and deviate from the original windows. We train TD
and FD autoencoders with only one (time-invariant) feature
following parameter setting a (cf. Section IV-C) for jumping
mean and bee dance data. We select four distinct windows and
their reconstruction for each data set. The results are shown in
Figure 3 in different colours. In case of the jumping mean data
set, the autoencoder unsurprisingly reconstructs the mean of
each interval, ignoring all noise. In the frequency domain, the
mean manifests itself in the DC component (first frequency
bin). The values of most other frequency bins seem to be
encoded in the weights and biases. Next, we consider the
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Fig. 3. Examples of time-domain and frequency-domain windows (dashed
lines) and their reconstructions by the autoencoder used in our proposed
method (full lines). In the jumping mean data set, the change points consist of
abrupt changes in mean. For bee dance, the goal is to detect abrupt changes
in slope (upper right) and amplitude (lower right).

bee dance data set. In the time domain, we use one location
coordinate of the bee. As the bee moves back and forth in its
waggle dance, the location coordinate resembles a triangular
wave. The autoencoder can track the bees location through
the variation in the slope of the location coordinate windows.
The reconstruction in Figure 3 indeed shows approximately
straight lines with varying slope. In the frequency domain,
we only consider the angle of the head of the bee in this
case study. As the bee shakes its head in some parts of the
waggle dance, the goal is to pick up the presence of high-
frequency oscillations. Indeed, the reconstruction only varies
notably in the bins corresponding to higher frequencies. As
we use only one latent variable, the decoded reconstruction
does not fully capture all variations in the frequency spectrum,
yet it captures the slope of the upward trend towards higher
frequencies. We conclude that autoencoders can automatically
identify and construct CPD-relevant features, in contrast to
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Fig. 4. Example of the peak in our proposed dissimilarity measure (black
line) near a ground-truth change point (red vertical line) both without (left)
and with (right) the use of a matched filter. Black dots correspond to local
maxima (i.e. detection alarms), our proposed prominence measure is shown
in blue. The matched filter drastically reduces the number of false positive
detection alarms, whereas the prominence measure makes sure that there is
only one detection alarm with a large change point score. The example was
generated using KL-CPD on the Gaussian mixture data set.

TABLE III
COMPARISON OF THE AUC OF DIFFERENT POSTPROCESSING TECHNIQUES

ON DISSIMILARITY-MEASURE-BASED CPD METHODS.

Height Height+MF Prominence Prom.+MF
GLR 0.42± 0.05 0.67± 0.04 0.58± 0.04 0.71± 0.04

RuLSIF 0.37± 0.07 0.63± 0.05 0.60± 0.07 0.64± 0.05
KL-CPD 0.28± 0.10 0.46± 0.08 0.44± 0.10 0.48± 0.07

TIRE 0.40± 0.08 0.67± 0.10 0.56± 0.08 0.79± 0.07

CPD methods based on parametric models where the relevant
parameters need to be chosen in advance.

C. Importance of postprocessing

In Section III, we conjectured the importance of suitable
postprocessing steps to mitigate the effect of false positive de-
tection alarms. An example of the effect of our postprocessing
steps can be found in Figure 4. The use of the prominence as a
change point score allows us to automatically retain only one
significant detection alarm per peak, whereas a height-based
dissimilarity score would lead to a false positive detection
alarm even if the detection threshold is set high. Furthermore,
the matched filter automatically removes most false positive
detections. The use of our proposed prominence score then
ensures that the remaining false positive detections have a
negligible change point score.

Next, we quantitatively compare peak height and peak
prominence (17) as change point score and investigate the
effect of applying a matched filter (14). We report the average
and standard deviation of the AUC on all seven data sets for
the GLR procedure, RuLSIF, KL-CPD and TIRE in Table III.
Both the matched filter and the use of the peak prominence
result in an increase in the average AUC, with best results
for when both postprocessing techniques are combined. Most
notably, our proposed postprocessing approach almost leads
to a doubling of the average AUC compared to naive peak
detection for all methods.

D. Run time

We compare the run times of the different methods on the
jumping mean data set by reporting the mean and standard
deviation of run times under 10 random seeds. The GLR proce-
dure takes (6.6±0.4)s, RuLSIF needs (69.6±1.5)s, KL-CPD
needs (390±5)s for 200 epochs and TIRE takes (32.5±0.2)s
for 200 epochs. The run times of all methods scale linearly
with the length of the time series. Unsurprisingly, the very
simple GLR procedure is by far the fastest method. KL-CPD,
which involves the training of a generative adversarial network
and a recurrent neural network, is the slowest. Comparing the
run times for 200 epochs, we see that TIRE is faster than KL-
CPD. Note that the comparison between TIRE and KL-CPD is
difficult, as both are iterative methods and convergence rates
may differ. In the code accompanying [20], a stop criterion
for KL-CPD is provided, but this criterion was never satisfied
sooner than 200 epochs on the used data sets. We conclude
that TIRE has a very reasonable run time compared to other
methods, albeit not the best.

E. Sensitivity analysis

We investigate to which extent the performance of the
proposed method depends on the parameters chosen in Section
IV-C. Ideally, each parameter can either be set following some
general guidelines, or the method should not be sensitive to
the exact parameter value.

First, we examine how the performance depends on the
chosen window size. It is clear that a constant window size
would in general be an unreasonable demand: when a time
series is down- or upsampled, the window size should change
accordingly. Some attempts to provide guidelines on how to
choose a window size have been made [27], but these often
give rise to unreasonable choices and poor performance (see
ABD in Table II). Moreover, one can even argue that a good
window size is inherently dependent on the interpretation and
goals of the practitioner, and can not be deduced from the data
alone. For example, this would be the case for a superposition
of two CC time series (cf. Section IV-B) with frequencies
at two distinct scales, of which only one is of interest to
the practitioner. Following amongst others [31], we therefore
advise to set the window size based on domain knowledge
(cf. Section IV-C). To inspect the sensitivity of TIRE to these
choices, we show in Figure 5 the mean AUC and its standard
error for all seven data sets for window sizes that are 0.25,
1/2
√
2, 0.5, 1/

√
2, 1,

√
2, 2, 2

√
2 and 4 times the domain-

knowledge-based window size as defined in Section IV-C.
Furthermore we let again K = 2, λTD = 1 and λFD = 1. The
larger standard error for the bee dance data set in Figure 5 is
primarily caused by the large variation in difficulty between
the different time series, and not by the method. For most data
sets only limited variations in AUC are present in the interval
[0.5, 2], such that a small to moderate change in window
size would not affect the positioning of the performance of
the proposed TIRE method compared to the results of the
considered baseline methods. For the changing coefficients
(CC) data set and the well log data set, the variations in AUC
are more substantial. The AUC for CC increases steadily as the
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Fig. 5. Influence of the window size to the performance of TIRE. We report
the mean AUC and its standard error for window sizes ranging between one
quarter to four times the window size chosen in Section IV-C.

window size grows since the DFT can better capture the long-
range dependences in the data set, but also decreases sharply
when the window size is large compared to the distance
between the change points. In the well log case, the difficulty is
that some change points are very close to each other. When the
window size grows large, two nearby peaks in the dissimilarity
measure will not be resolved anymore. In this case, the use
of a matched filter is thus even disadvantageous. This also
explains why the AUC decreases sharply for all data sets when
an unreasonably large window size is chosen.

Second, we investigate the influence of the latent dimension
of the used autoencoder. We let the total number of time-
domain features hTD vary from 1 to 10 and set the number of
time-invariant features to sTD = max{hTD−1, 1}. Furthermore
we let sFD = hFD = 1, K = 2, λTD = 1 and λFD = 1 (cf.
parameter settings a and b). We use at most one instantaneous
feature to avoid that the autoencoder would leak valuable
CPD-relevant information into the instantaneous features (cf.
Section III). We also let the number of frequency-domain
features vary analogously and investigate the advantage of
using time-invariant features. We do the latter by comparing
to TIREλ=0, a version of TIRE with λ = 0 in the loss
function (9) (i.e. no time-invariant features) and without the
smoothing as in (11), as this is not necessarily a meaningful
operation in this case. The average AUCs over all data sets are
shown in Figure 6. The large standard deviation stems from
the diversity of the different data sets. For TIRE, the average
AUC remains very stable when the number of TD features is
varied. Furthermore, the performance of TIRE seems optimal
for 1 time-invariant FD feature, the average AUC when two
or more FD feature are used is lower but does not further
decrease with the number of FD features. Furthermore, we can
observe that the performance of TIRE with λ = 1 is clearly
superior over TIREλ=0. The increase in AUC is more distinct
for higher numbers of TD features. This is unsurprising, as a
larger latent dimension allows an autoencoder without time-
invariant features to encode the feature more freely, making
the positive effect of adding the time-invariant feature term to
the loss function (9) all the more pronounced.

Next, we determine how sensitive TIRE is to the parameter
K in the training loss (9). We let K vary from 1 to 10, with
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Fig. 6. Sensitivity of performance of TIRE to the total number of TD features
hTD and FD features hFD of the used autoencoder. The average AUC over
all data sets and its standard deviation is shown. We also compare to the
dependence of TIREλ=0 on the latent dimension. Whereas TIRE (with λ = 1)
seems on average robust to the number of TD features, the AUC for TIREλ=0

decreases.
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Fig. 7. Sensitivity of performance of TIRE to the parameter K in the TIRE
training loss (9). We report for each data set the mean AUC and its standard
error for K between 1 and 10.

other parameters as in previous experiments, and present the
result in Figure 7. For most data sets the performance is stable
with respect to changes in K, only for CC and bee dance a
decrease in AUC is observed for large K. As also the runtime
increases with K, we advise to set K rather small, e.g. K ∈
[1, 5].

Finally, we investigate the sensitivity of TIRE with respect
to the change magnitude at the change points (relative to the
noise level). We do this by varying the standard deviation of
the noise in the jumping mean data set (cf. Section IV-B),
leaving the change magnitudes unchanged. The jumps in the
mean are of magnitude 1/16, 2/16, . . . , 3 and we let the
standard deviation of the noise vary from 0.5 to 3. Figure 8
shows a decrease of the AUC that is roughly proportionate to
the fraction of change points for which the change magnitude
is larger than the noise standard deviation. This is in line with
expectations.

In general, we can conclude that the performance of TIRE
does not depend critically on the exact value of the window
size N , the number of features h and the parameter K.

VI. DISCUSSION

In this section, we discuss some algorithmic design choices
and mention potential limitations of the proposed method.
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Fig. 8. Sensitivity of performance of TIRE to the standard deviation of the
noise in the jumping mean data set. The average AUC over ten realizations
and its standard deviation is shown together with the fraction of change points
for which the change magnitude is larger than the noise standard deviation.

First, the combination of time-domain and frequency-
domain information is extensively studied in the field of multi-
view learning [52] and its applications. One approach is to
simply concatenate separately learned TD and FD features, e.g.
[53]. Another approach is to find a joint representation, which
needs to take both views into account in an effective way. This
can for instance be achieved using adaptive gradient blending
[54]. In the context of CPD, it is however a priori unclear how
to optimize this joint representation during training. We there-
fore choose to train the TD and FD autoencoders separately
and use a CPD-tailored data-driven weighted concatenation to
fuse both views into one representation. From Table II, it is
clear that the AUC of TIRE (i.e. with TD and FD combined) is
in general only slightly lower than the maximum of the AUCs
of TIRE-TD and TIRE-FD, illustrating the good performance
of our fusion approach.

Second, in this paper we focused on time series with only
few channels. In this setting, we showed that the latent dimen-
sion of the autoencoder has little influence on the performance.
Our method deliberately targets a lossy reconstruction due to
a compressed representation in order to only learn the most
important time-invariant properties of the time series segment.
For high-dimensional time series data, e.g. supervisory con-
trol and data acquisition (SCADA) or electroencephalography
(EEG) data, the choice of latent dimension might need further
investigation. Alternatively, relevant channels can be selected
using an application-specific method, e.g. [55].

We demonstrated the performance of TIRE using the AUC,
but practitioners need to choose a suitable value of τ (cf.
Section III-D) in order to use the method. As τ critically
depends on domain knowledge and the needs of the practioner
(e.g. their willingness to make a type I, resp. type II, error),
we do not provide explicit guidelines. The tuning of τ can
be facilitated if some prior knowledge is available, e.g. when
part of the data is labelled or when an estimate of the number
of change points is available. In case such information is not
available and in case of doubt, we advise to underestimate τ
as our proposed post-processing procedure effectively reduces
the number of false positives.

It is also worth noting that TIRE can be interpreted as
a nonlinear parametric CPD method that learns the relevant
parameters from the data. Whereas classical parametric meth-

ods are often able to provide an (asymptotically correct)
significance level for change point probabilities [13], [23],
[31], [51], the interpretation of our change point score is rather
limited. These theoretical guarantees for classical parametric
methods however only hold under very specific assumptions
on the data distribution, which are often not satisfied when
real life data is used.

Finally, we showed that the use of filters to both smoothen
the features itself (11) and the dissimilarity measure (14)
generally leads to a significant improvement in AUC (see
Table III). Care should however be taken when the peaks in
the unfiltered dissimarity measure are either skewed or very
close to each other. In the first case, the peak location might
shift, leading to a false negative when the toleration distance is
set too small. In the second case, the two peaks might either
be joined to one peak, or one of the two peaks will have
a very low prominence-based change point score. Given the
good performance of TIRE (Table II), it is however clear that
these are only minor concerns.

VII. CONCLUSION

We have proposed a novel distribution-free change point
detection method based on autoencoders that learn a partially
time-invariant representation that complies with the needs
of CPD. Change points are calculated using a dissimilarity
measure based on the Euclidean distance between the features
learned from consecutive windows. We have mitigated the
effect of false positive detections by proposing a postpro-
cessing procedure using a matched filter and a prominence-
based change point score. Furthermore, we have explicitly
focused on non-iid time series by including temporally lo-
calized spectral information in the input of the autoencoder.
The resulting method is very flexible, as it allows the user
to indicate whether change points should be sought in the
frequency domain, time domain or both. Examples of change
points that can be detected are abrupt changes in the slope,
mean, variance, autocorrelation function and frequency spec-
trum. Finally, we have showed that the performance of TIRE
is consistently superior or highly competitive compared to
baseline methods on benchmark data sets. A sensitivity anal-
ysis reveals that this good performance does not critically
depend on the window size, nor on the latent dimension of
the autoencoder. This robustness, together with the lack of
distributional assumptions, make TIRE an easy-to-use change
point detection method, whilst still offering a great deal of
flexibility.
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