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Abstract. Objective: A hearing aid’s noise reduction algorithm cannot infer to
which speaker the user intends to listen to. Auditory attention decoding (AAD)
algorithms allow to infer this information from neural signals, which leads to the
concept of neuro-steered hearing aids. We aim to evaluate and demonstrate the
feasibility of AAD-supported speech enhancement in challenging noisy conditions based
on electroencephalography (EEG) recordings. Approach: The AAD performance with
a linear versus a deep neural network (DNN) based speaker separation was evaluated
for same-gender speaker mixtures using 3 different speaker positions and 3 different
noise conditions. Main results: AAD results based on the linear approach were found
to be at least on par and sometimes even better than pure DNN-based approaches in
terms of AAD accuracy in all tested conditions. However, when using the DNN to
support a linear data-driven beamformer, a performance improvement over the purely
linear approach was obtained in the most challenging scenarios. The use of multiple
microphones was also found to improve speaker separation and AAD performance
over single-microphone systems. Significance: Recent proof-of-concept studies in this
context each focus on a different method in a different experimental setting, which
makes it hard to compare them. Furthermore, they are tested in highly idealized
experimental conditions, which are still far from a realistic hearing aid setting. This
work provides a systematic comparison of a linear and non-linear neuro-steered speech
enhancement model, as well as a more realistic validation in challenging conditions.
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1. Introduction

In a noisy environment with multiple speakers talking simultaneously, i.e., the so-called
cocktail-party problem, a person with normal hearing has the ability to focus attention
on one speaker and ignore the other speakers and surrounding noise in a seemingly
effortless manner. People with a hearing impairment, on the other hand, find such
situations extremely challenging. Although modern hearing aids allow to suppress
background noise, a major unsolved problem is to determine which of the speakers
is the desired one, and which speakers should be treated as noise. Existing approaches
use unreliable heuristics based on speaker loudness or other acoustic features or simply
assume that the target speaker is always in the frontal direction.

Recent developments in the field of neuroscience have shown that it is possible to
decode the auditory attention of a listener in a multi-talker environment from brain
signals recorded with magneto- or electro-encephalography (M/EEG) [1–3]. This opens
up new opportunities to design smarter hearing devices, augmented with electrodes to
record neural signals, that decode in real time to which speaker a listener is attending,
thereby assisting the hearing device to determine and enhance the attended speaker.

The envelope tracking of speech streams in a listener’s cortical responses, and more
so of the attended speech stream, is well established in the literature [4–6]. Furthermore,
this differential tracking of attended and unattended streams is also present in hearing
impaired listeners [7–9]. This fact can be exploited to design algorithms that perform
auditory attention decoding (AAD). Various methods have been developed to achieve
AAD, addressing different kinds of decoders [2,10–13], stimulus features [3,14,15], data
acquisition [16–18], electrode selection and miniaturization strategies [16, 18,19], etc.

The aforementioned AAD studies in [2–19] assume access to the clean speech signals
to perform AAD, which are not available in a practical setting. Indeed, a hearing aid
only has access to noisy microphone recordings in which multiple speech sources and
noise sources are mixed. The first study that aimed for AAD without access to the
clean speech streams was published in [20], where a multiplicative non-negative ICA
(M-NICA) algorithm [21] was used to extract the individual speech envelopes from
a noisy multi-microphone input. The AAD method in [14] was then used to select
the attended speaker, which was then extracted from the microphone array using a
multi-channel Wiener filter (MWF) [20]. This pipeline was later extended in [22] with
a twofold MWF (one for each speaker) leading to better decoding performance and
less variation across different acoustic conditions. However, while in both of these
studies, the performance of the speaker separation algorithm was evaluated for a range
of background noise levels and speaker positions, the EEG signals used for AAD were
collected from subjects who listened to a 2-speaker scenario with 180° speaker separation
and without background noise. Therefore, there was a mismatch between acoustic
conditions in the AAD experiments and the audio processing modules. In [23], speech
enhancement was achieved using binaural direction-of-arrival (DOA) estimators with
linearly constrained minimum variance (LCMV) beamformers. The AAD module used
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EEG signals recorded in two relatively high signal-to-noise ratio (SNR) conditions and
two reverberation conditions.

The audio processing in [20, 22, 23] is based on linear beamforming and linear
source separation techniques, which do not require any training data and have the
advantage of being computationally cheap. In recent years, DNN-based approaches
have become a popular alternative to solve the speaker separation problem, particularly
for the challenging single-microphone scenario [24–26] and the even more challenging
scenario with additional background noise [27, 28]. When using multiple microphones,
separation performance can be increased by making use of the spatial information of
the sources [29, 30]. In [31, 32], a single-microphone DNN-based approach was used
for speaker separation in an AAD context. However, both of these studies involved
training and testing in noise-free conditions. Furthermore, AAD was performed on
electro-corticography (ECoG) data, which is an invasive approach involving surgery.
This is a limiting factor for hearing-aid users. Non-invasive techniques like EEG are
more preferable in this regard.

It is evident that a detailed analysis of neuro-steered speech enhancement under
challenging acoustic conditions is necessary to draw conclusions about its feasibility.
Despite the promising results in the aforementioned studies, all of them have important
caveats, which may lead to overoptimistic conclusions in a context of demonstrating
viability of neuro-steered speech enhancement algorithms. To summarize: The audio
processing of [20,22] was tested in various noisy conditions with different angles between
speakers, but the EEG recordings were performed in a noise-free condition with 180°
separation, resulting in a mismatch between the acoustic conditions of the microphone
and neural signals. This mismatch does not occur in [23], but only mild noisy conditions
are considered and the speaker positions are the same in all conditions. Finally, it is
noticed that in [32] ECoG is used instead of EEG. Furthermore, the authors only report
results in noiseless conditions, using single-microphone recordings(while most state-of-
the-art hearing aids contain multiple microphones), and with competing speakers of
different gender‡.

In addition to these practical limitations, the different settings across the
aforementioned studies make it impossible to draw conclusions about the impact on AAD
performance of non-linear (DNN-based) methods like [31, 32], and linear methods like
[20, 22, 23], as well as the effect of using spatial information from multiple microphones
versus single-microphone methods.

The contribution of this paper is twofold. First, the aforementioned caveats
are avoided by focusing on realistic scenarios involving microphone recordings from a
binaural hearing aid in challenging noisy conditions with same-gender competing talkers
at various relative speaker positions. In each acoustic condition, the audio and neural
data are matched to each other, i.e., the audio signals presented to the subjects during
the EEG recording are the same as those used for the audio signal processing. Secondly,

‡ Note that both AAD and speaker separation are expected to be more difficult when the competing
speakers are of the same gender.
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Figure 1: Block diagram of the proposed neuro-steered speech enhancement algorithm for a
2-speaker scenario, consisting of modules for blind source separation (BSS), filtering for speech
enhancement (using MWF) and auditory attention decoding. The red (dashed) track and the
green track correspond to two different implementations, as explained in the text.

the potential improvement of using a DNN-based speech separation algorithm compared
to a computationally cheap and training-free linear signal processing algorithm is
investigated. The performance of the extended linear approach is shown to be at par
or better than the purely DNN-based approach. The potential advantage of using a
combination of both approaches, i.e. a DNN-based speech separation to support a
linear beamformer, is also investigated. The superior performance of such a system that
combines the best of both worlds is demonstrated in terms of improvement in signal-to-
interference-plus-noise ratio (SINR), perceptual evaluation of speech quality (PESQ) [33]
and AAD accuracy. The study focuses on two representative state-of-the-art algorithms,
i.e., deep clustering [24] as the DNN-based approach and M-NICA+MWF [22] as the
linear method. In both cases, a multi-microphone input is used, which will substantially
improve speech separation compared to a single-microphone input.

The outline of this paper is as follows. The different neuro-steered speech
enhancement pipelines are presented in Section 2. The various experiments used to
validate the different approaches are presented in Section 3. In Section 4, the results of
the experiments are shown, and the various implications of these findings are discussed
in Section 5.

2. Methods

The proposed neuro-steered speech enhancement pipeline is shown in the block diagram
of Figure 1 for a 2-speaker scenario. Although the analysis in this paper focuses on a
2-speaker scenario, the speech enhancement procedure in Figure 1 can straightforwardly
be generalized to a larger number of speakers (denoted by N in the text). The pipeline
consists of three steps:

(i) In the M-NICA/DNN module, the speech sources are separated in a fully ’blind’
(unsupervised) fashion. Optionally, the estimated speech envelopes obtained
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from the M-NICA/DNN module can be used as side information for the semi-
supervised MWF module, which typically achieves a better separation and
denoising performance. This will be discussed in Subsection 2.2.

(ii) In the AAD module, the attended speech envelope from the listener’s EEG is
reconstructed using a pre-trained decoder. This reconstructed speech envelope is
correlated with the speech envelopes of the individual speakers extracted in step 1,
where the speaker with the highest correlation is selected as the attended speaker.
To this end, either the envelopes from the M-NICA or DNN algorithm can be used
directly (red dashed lines in Figure 1), or a new set of envelopes can be extracted
from the denoised MWF outputs (green lines in Figure 1). Both cases will be
investigated, where the envelopes in the red dashed lines will be referred to as M-
NICA or DNN envelopes (depending on which algorithm is used in the BSS block)
and the ones in the green lines as MWF envelopes. More details about the AAD
are given in Subsection 2.1.

(iii) Once the speaker has been decoded, the corresponding MWF output signal is
selected as the final output, which ideally consists of a denoised version of the
speech signal corresponding to the attended speaker.

In the remainder of this paper, we assume that the number of speakers N is known.
In practice this would require a supporting algorithm to estimateN from the microphone
recordings, e.g., based on subspace analysis, which is beyond the scope of this paper.

2.1. Auditory attention decoding (AAD)

In order to choose which enhanced speech estimate will be presented as output of the
neuro-steered speech enhancement pipeline, it is necessary to know which speech signal
is being attended to by the listener. Towards this goal, an AAD module is used which
consists of a pre-trained spatio-temporal decoder (subject-specific training) which takes
the listener’s EEG data as an input to reconstruct the speech envelope of the attended
speaker. In the training data, the ground truth about the subject’s attention is known,
and the decoder is designed such that the difference between its output and the attended
speech envelope is minimized in the mean square error (MSE) sense. The algorithm
described in [14] was used for our decoder design. The reconstructed attended speech
envelope is given by

p̃(k) =
L−1∑
τ=0

C∑
c=1

dc(τ)mc(k + τ), (1)

where mc(k) is the value of the c-th EEG channel at sample time k, and dc(τ) denotes
the decoder weight at the c-th channel at time lag τ . All decoder weights are stacked
in a vector d = [d1(0), d1(1), ..., d1(L − 1), d2(0), ..., d2(L − 1), ..., dC(0), ..., dC(L − 1)]T .
Stacking EEG samples of all C channels for L time lags, we get m(k) = [m1(k),m1(k+

1), ...,m1(k + L − 1),m2(k), ...,m2(k + L − 1), ...,mC(k), ...,mC(k + L − 1)]T ∈ RLC .
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Using this notation, (1) can be written as p̃(k) = dTm(k). The optimal decoder that
minimizes the MSE between the reconstructed attended envelope p̃(k) and the attended
speech envelope pa(k) is given by

d̂ = R−1
mmRmpa , (2)

where Rmm = E{m(k)m(k)T} ∈ RLC×LC is the EEG covariance matrix, Rmpa =

E{m(k)pa(k)} ∈ RLC is the cross-correlation vector between the EEG data and the
attended speech envelope, which is known during the training of the decoder and E{.}
denotes the expected value operator. At test time, the correlation coefficients between
p̃(k) and the estimated speech envelope of each speaker are then computed. The speech
envelope that results in the higher correlation is selected as the attended speech stream.

2.2. Blind source separation and denoising

The microphone signal of a mixture of N speakers can be represented in the short-time
Fourier transform (STFT) domain as

y(t, ω) =
N∑
i=1

xi(t, ω) + n(t, ω) =
N∑
i=1

hi(ω)si(t, ω) + n(t, ω), (3)

where t indicates the time, ω the frequency index, n(t, ω) represents the noise recorded
by the microphone and xi(t, ω) represents the observed signal of the i-th speaker si, as
recorded by the microphone. The transfer function that models the acoustic propagation
path between the source si and the microphone is given by hi(ω).

In a multi-microphone setting, such as a (binaural) hearing device, where M

microphones are present, (3) generalizes to

y(t, ω) =
N∑
i=1

xi(t, ω) + n(t, ω) =
N∑
i=1

hi(ω)si(t, ω) + n(t, ω), (4)

where y(t, ω) = [y1(t, ω), y2(t, ω), ..., yM(t, ω)]T represents the microphone components
stacked over M microphone channels, hi(ω) = [hi,1(ω), hi,2(ω), ..., hi,M(ω)]T with
hi,j(ω) modeling the path between the source si and microphone j, and n(t, ω) =

[n1(t, ω), n2(t, ω), ..., nM(t, ω)]T represents the stacked components of noise in the M
microphones. A multi-microphone mask (or a beamformer) wi(t, ω) can be estimated
such that the speech signal can then be estimated as

s̃i(t, ω) = wi(t, ω)Hy(t, ω), (5)

where superscript H denotes the conjugate transpose operator. Note that, while the
symbol s̃ is used in (5) for the sake of clarity, the goal is not necessarily to perform
a dereverberation, i.e., s̃i may be closer to the recorded speech signal xi(t, ω) =

hi(ω) ∗ si(t, ω) than to the ‘dry’ speech signal si itself.
Two methods are presented to estimate the mask in (5): one that is fully linear,

based on the M-NICA algorithm, and one that makes use of a DNN.
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(i) The linear multi-channel signal processing approach using M-NICA provides an
estimate of the energy envelope of each individual speaker (see Subsection 2.2.1).
These envelopes can be directly fed to the AAD module (red dashed track in
Figure 1 as in [34], or alternatively, they can be used as a voice activity detection
(VAD) mechanism to design an N -fold MWF which estimates per-speaker masks
wi in (5), as explained in Subsection 2.2.2. The envelope of s̃i from (5) can then
be fed to the AAD module as in [22] (green track in Figure 1).

(ii) On the other hand, a DNN can be trained to separate speech mixtures into
individual speech streams (see Subsection 2.2.3). As opposed to M-NICA, the DNN
directly estimates the masks wi to compute (5), after which the speech envelopes
can be extracted and directly fed to the AAD module as in [31, 32] (red dashed
track in Figure 1). Alternatively, the envelopes obtained from the DNN can also
be used as a VAD to design MWF masks (green track in Figure 1).

2.2.1. Multiplicative non-negative independent component analysis (M-NICA) The M-
NICA algorithm was introduced in [21], and has been used to blindly separate speech
envelopes from a multi-microphone input [20, 34]. The M-NICA algorithm operates in
the short-term energy domain, thereby transforming the problem into a (non-negative)
energy envelope separation problem. To this end, the short-term energy signal from each
microphone signal is computed over a window of K samples. The M-NICA is applied
on the resulting M energy signals (note that M-NICA operates at a sampling rate that
is K times lower than the microphone signal sampling rate). For more details on the
implementation of M-NICA for demixing speech envelopes, we refer to [21,34].

M-NICA exploits the inter-channel differences in the energy distributions of the
speech sources in order to extract the energy envelopes of each individual speaker. In
the case of a binaural hearing aid, these differences are mostly due to head shadow
effects. The non-negativity of the underlying sources facilitates the use of only second
order statistics in its computations, in comparison to other source separation algorithms
that use higher order statistics. This, together with the K-fold reduction in sampling
rate, leads to a low computational complexity which is a desirable factor to incorporate
such a source separation scheme in an actual hearing prosthesis.

2.2.2. MWFs for source separation and/or denoising In this paper, an N -fold MWF
(one for each speaker) will be used to estimate each speech signal in real time. The MWF
is a data-driven and adaptive linear beamforming algorithm which allows to efficiently
denoise and extract a single speaker from a mixture by computing the mask in (5)
which results in the linear estimate with the smallest MSE, i.e., the linear minimumMSE
(LMSSE) estimate. It is a semi-supervised method as it requires a voice activity detector
(VAD) for the target speaker, i.e., it needs to know at which times the target speaker
is not active in order to estimate the second-order statistics of the background noise
and interfering speakers. The VAD information can be straightforwardly extracted by
thresholding the speech envelopes obtained from the M-NICA algorithm (or alternatively
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using the deep learning algorithm as explained in Subsection 2.2.3). The i-th MWF
computes the LMMSE maskwi(t, ω) in (5) that yields the estimate s̃i(t, ω) that is closest
to xi,mref(t, ω), i.e., the i-th speaker’s contribution in an arbitrarily-chosen reference
microphone mref. The MWF wi(t, ω) is defined as

ŵi(t, ω) = arg min
wi

E{|xi,mref(t, ω)−wi(t, ω)Hy(t, ω)|2}. (6)

The solution for this LMMSE problem is given by [35]:

ŵi(t, ω) = R−1
yyRxixiemref , (7)

where Ryy = E{y(t, ω)y(t, ω)H}, Rxixi = E{xi(t, ω)xi(t, ω)H}, and emref denotes
the mref-th column of an M × M identity matrix, which selects the column of
Rxixi corresponding to the reference microphone. The ‘speech plus interference’
autocorrelation matrix Ryy can be estimated during the time periods when the i-th
speaker is active§. Assuming independence between all sources, Rxixi can be estimated
as Rxixi = Ryy − Rvv. Here, Rvv = E{n(t, ω)n(t, ω)H} +

∑
j 6=i Pj(ω)hj(ω)hj(ω)H

is the interference autocorrelation matrix, where Pj(ω) = E{|sj(t, ω)|2}. Rvv can be
estimated by averaging over all STFT frames in which speaker i is not active. Estimating
Rxixi as Ryy−Rvv can result in poor filters, particularly, if Rvv contains non-stationary
sources. Therefore, in our computations, Rxixi was estimated based on a generalized
eigenvalue decomposition (GEVD) of Ryy and Rvv (details in [36]) to ensure robustness.
Note that, while speech is known to be highly non-stationary, the expected values here
are calculated over a long-term window, thereby capturing the average long-term power
spectrum of the speech. Therefore, the MWF will not react to short-term changes in
the speech spectra, it mainly focuses on the (fixed or slowly varying) spatial coherence
across the microphones. To also exploit the fast spectral changes in the speech, a single-
channel Wiener filter which uses short-term statistics can be added as a postfilter [37],
yet this is beyond the scope of this paper.

To separately estimate Ryy and Rvv, the MWFs require the voice activity
information of the speaker it must enhance. The energy envelopes from the output
of the source separation algorithm (M-NICA or a DNN approach, see subsections 2.2.1
and 2.2.3, respectively) are used to identify the active and silent periods of each speaker,
for e.g., through a thresholding operation‖, and hence form the VAD tracks that each
MWF needs.

Note that the N MWFs work in parallel to enhance the speech streams of N
different speakers. It is important to note that these MWFs can share a large part of
the computations, as the estimation of the matrix inverse R−1

yy is a common requirement
across them. The real-time aspects of such a system will be discussed in Subsection 5.4.

§ For the sake of conciseness, the frequency variable ω is omitted for autocorrelation matrices in this
section.
‖ There is also the possibility of using other parameters, speech presence probability [38] for instance,
to make softer VADs, but this is not within the scope of this paper.
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2.2.3. Deep learning for source separation Deep learning solutions for source separation
differentiate between single-microphone and multi-microphone approaches as well as
between methods that can and cannot cope with additional background noise. The
deep learning based separation technique that will be used in this paper is called Deep
Clustering (DC) [24], which can be extended to cope with noise [27, 28] and to use
multi-microphone information [29].

In DC, a D-dimensional embedding vector v(t, ω) is constructed for every time-
frequency bin as v(t, ω) = ftω(|Y |), where Y is used to refer to the complete input signal
across all time-frequency bins, v(t, ω) is a D-dimensional embedding vector normalized
to unit length, and the function f is chosen to be a DNN. A (TΩ × D)-dimensional
matrix V is then constructed from these embedding vectors, where T and Ω denote
the total number of time and frequency bins, respectively. Similarly, a (TΩ × N)-
dimensional target matrix Z is defined. If target speaker i is the dominant speaker for
bin (t, ω), then zi(t, ω) = 1, otherwise zi(t, ω) = 0. Speaker i is dominant in a bin (t, ω)

if i = arg maxj(|sj(t, ω)|). A permutation independent loss function is then defined as

L = ‖V V T −ZZT‖2
F

=

T,Ω,T,Ω∑
t1,ω1,t2,ω2

(〈v(t1, ω1),v(t2, ω2)〉 − 〈z(t1, ω1), z(t2, ω2)〉)2,
(8)

where ‖.‖2
F is the squared Frobenius norm. Minimizing this loss function pushes

embeddings together if their time-frequency bin are dominated by the same speaker
and otherwise the embeddings should be perpendicular.

After estimating V , all embedding vectors are clustered into N clusters using k-
means clustering. Speaker masks are then constructed as follows

ŵi(t, ω) =

{
1, if v(t, ω) ∈ ci
0, otherwise

, (9)

with ci a cluster. These masks can be used to estimate the source signals by applying
them to the original speech mixture:

s̃i(t, ω) = wi(t, ω)y(t, ω), (10)

where (10) can be seen as the single channel simplification of (5). Since binary masks
are estimated, it is assumed that only one speaker is active per time-frequency bin.
Since speech spectra are sparse, this assumption holds to some extent [39].

Deep clustering, as presented above, is not well suited for noisy environments. The
binary masks in (9) will cause the noise energy to be distributed over the speaker signal
estimates. The noise energy can be filtered out by estimating an additional speech-to-
noise ratio mask α(t, ω) [27]. Both the embeddings v(t, ω) and the ratio mask α(t, ω)

can be estimated by the DNN from the magnitude spectrum of the microphone signal:
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[v(t, ω), α(t, ω)] = ftω(|Y |). During training of the network, the target noise suppression
mask is set to be

αtarget(t, ω) =

(
N∑
j

|sj(t, ω)|2
)1/2(

|n(t, ω)|2 +
N∑
j

|sj(t, ω)|2
)−1/2

, (11)

as it was shown to perform well in many noisy scenarios [40]. The loss function of (8)
can then be extended to:

L = ‖V V T −ZZT‖2
F + γ

T,Ω∑
t,ω

(
α(t, ω)− αtarget(t, ω)

)2
, (12)

where the hyper-parameter γ can be tuned to weigh the importance of speech separation
and noise suppression. The estimated mask of (9) is then changed to

ŵi(t, ω) =

{
α(t, ω), if v(t, ω) ∈ ci
0, otherwise

. (13)

DC has been developed for single microphone setups, but can easily be extended
to include spatial information Ysp from a multi-microphone setup [29]. This spatial
information is simply appended to the input of the model to estimate the embeddings
(and the noise mask): [v(t, ω), α(t, ω)] = ftω(|Y |,Ysp). The interchannel phase
difference (IPD) between two microphones m1 and m2 is chosen to represent the spatial
information [29]:

ysp(t, ω) = [cos(θm1,m2(t, ω)), sin(θm1,m2(t, ω))] (14)

with θm1,m2(t, ω) = ∠ym1(t, ω)−∠ym2(t, ω) and Ysp is the matrix containing the spatial
information ysp(t, ω) over all time-frequency bins (t, ω). In case there are more than two
microphones (M > 2), the spatial features can be determined for all microphone pairs
and stacked as a single feature representation.

A single mask for each speaker i is produced, in the same way as was done in
(13) which is then copied and applied to each microphone. The mask is applied to the
average of all microphone spectrograms, or equivalently¶

ŵi(t, ω) =

[
ŵi(t, ω)

M
,
ŵi(t, ω)

M
, . . . ,

ŵi(t, ω)

M

]T
(15)

when using (5).
So far we have focused on estimating masks to filter out the interfering speaker (and

noise). The estimated s̃i(t, ω) can be further enhanced in a secondary stage as in [41]. To

¶ This corresponds to applying the mask to the output of a forward-steering beamformer. Other choices
are possible (e.g. select only one microphone, or summing magnitude spectra and adding the phase
of one of the microphones), but these were empirically found to not have a significant impact on the
results.
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this end, a new DNN is trained, denoted by the function g′, which estimates an enhanced
mask for speaker i based on |Y | and the previous estimate s̃i: ŵenh

i (t, ω) = g′tω(|Y |, s̃i).
Notice that the network used for g′ is shared over the speakers. In the multi-microphone
case, the IPD is again included to obtain ŵenh

i (t, ω) similarly to (14)-(15).
In the next step, the envelopes of the speech sources as estimated from the mask

(15) can be used for auditory attention decoding (red dashed lines in Figure 1). There is
also the option of using these envelopes to first compute the VADs for the N -fold MWFs
as discussed in Subsection 2.2.2, and then using the envelopes from these MWF outputs
for attention decoding instead (green lines in Figure 1). This would correspond to the
algorithm proposed in [22], where the M-NICA block is replaced with a DNN. A final
option, which will not be further discussed in this paper, is to use the masks estimates
ŵi(t, ω) as a weight when determining Ryy and Rvv in Subsection 2.2.2, similarly as
was done in [42]. Initial experiments with this method gave no significant improvements
in AAD accuracies.

3. Experiments

3.1. Experiments setup

3.1.1. AAD setup 18 normal-hearing subjects (of which 6 males) between 20 and 25
years old participated in the experiment, where each subject had to focus on the speech
stream from a particular direction, in the presence of a competing speaker from another
direction and background noise. Their 64-channel EEG was recorded at a sampling rate
of 8192 Hz. This dataset consists of 138 minutes of EEG recordings per subject. Further
details can be found in [43]. The stimuli and the corresponding acoustic conditions used
in this experiment are described below, in Subsection 3.1.2.

3.1.2. RBM Dataset The RadioBoeken Mix (RBM) dataset was built by mixing parts
of 8 Dutch stories narrated by 8 different female narrators [44], taken 2 at a time as
competing speech streams in the presence of different levels of background multi-talker
(‘babble’) noise. The background babble noise consisted of 9 different 4-talker babble
streams (2-male and 2-female) perceived to be coming from 9 equidistant positions
(from -180° to 140° in steps of 40°) around the listener. The babble was constructed
from 36 audiobooks (18 male and 18 female narrators) from LibriVox (a public domain
collection of audiobooks) [45]. Anechoic head-related transfer functions for 6 behind-
the-ear microphones (M = 6) in a binaural hearing aid set-up [46] (with approximately
7.5 mm distance between neighbouring microphones) were used for making directional
audio. All audio was sampled at 44.1 kHz. The long term spectrum of the babble
sources was matched with the average spectrum of all the target speech streams. The
experiments included a condition without background babble noise (referred to as the
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noise-free case) and two noisy conditions with SNRs+ of -1.1 dB and -4.1 dB. Note that
both SNRs are negative, resulting in challenging conditions where the signal power of
the background babble noise is higher than the signal power of the attended speaker.
Different scenarios regarding the relative position of both speakers are simulated, namely
(-90° (utmost left), 90° (utmost right)), (30°, 90°), (-30°, -90°), and (-5°, 5°) with angle
between speakers 180°, 60°, 60° and 10° respectively.

This RBM data set is used in all evaluation experiments throughout this paper,
unless mentioned otherwise.

3.1.3. DNN training dataset A separate audio dataset was needed to train the model
for the speaker independent deep learning based source separation as explained in 2.2.3.
A novel dataset, called Corpus Gesproken Nederlands Mix (CGNM), was created. It
used the Corpus Gesproken Nederlands component-o-Flemish (CGN-o-VL) [47], which
contains 150 Dutch speakers of which 102 (51 female and 51 male) were randomly
chosen to build up the training set, containing 27 hours of unique single-speaker speech
in total (16 minutes per speaker on average). 20 000 2-speakers mixtures were artificially
created using randomly selected single-speaker audio from CGN-o-VL. These mixtures
totalled 60 hours of overlapping speech, to be used as training set. Even though in the
RBM dataset (Subsection 3.1.1) only female-female mixtures are used, male-female and
male-male mixtures are included in the training set as well for better generalizability.
Furthermore, both speakers can be located anywhere between -100° and 100°, again
to make the network more general. Two types of datasets were made: one containing
the 20 000 mixtures without background babble noise (CGNM-noisefree), and the same
mixtures with background babble noise (CGNM-noise). The SNR for the background
noise for each mixture was uniformly sampled between -4 dB and 4 dB. Babble speakers
were taken from the LibriSpeech corpus [48] and were positioned in the same way as
in 3.1.1. All DNN models in this paper are trained on this CGNM dataset. Both
CGNM-noisefree and CGNM-noise were used to train the DNN models, unless specified
otherwise.

To assess separation quality, 12 held-out female speakers (totalling 3.2 hours of
unique speech) were chosen to create a test set. The test set consisted of 728 2-speaker
mixtures (totalling 2.2 hours of mixed speech). While the RBM set remains the main
dataset for evaluation throughout this paper, this CGNM test set is introduced as it is
more closely related to the CGNM train set, which was used to train the DNN models.
Comparing DNN separation performance on the CGNM test set and the RBM set, will
allow to address some generalization issues of the DNN in Subsection 4.1.

3.2. Data preprocessing and design choices

+ In this paper (input) SNR is defined as the ratio of the power of the target speaker to the power
of background babble. Note that the actual SNR is even lower due to the presence of an interfering
speaker, which is not included in this SNR metric.



speech separation for EEG-informed attention decoding 13

3.2.1. EEG preprocessing All EEG data was filtered using an equiripple bandpass
filter with passband between 0.5 Hz and 10 Hz, and with passband attenuation of at
most 0.5 dB and stopband attenuation of 20 dB (lower) and 15 dB (upper). Previous
studies [1,5,49] have shown that cortical envelope tracking is best within this frequency
range. EEG data was then downsampled to 40 Hz.

3.2.2. M-NICA audio preprocessing The microphone signals were lowpass filtered with
an 800 Hz cut-off and downsampled to 8 kHz before computing the energy envelopes,
since it was found to be beneficial for the source separation process under low SNR
conditions [22]. Energy was computed every 200 samples (25 ms), bringing down the
sampling rate to 40 Hz.

3.2.3. Deep learning design choices For the deep learning model utterances were also
downsampled to 8 kHz. An STFT with a 32 ms window length (256 samples) and a
hop size of 8 ms was used. A bidirectional long short-term memory recurrent neural
network (BLSTM-RNN) with 2 layers and 600 hidden units each, was used to estimate
the embeddings which where then normalized. The embedding dimension was chosen
at D = 20 and since the number of frequency bins was Ω = 129, the total number of
output nodes was DΩ = 20 ∗ 129 = 2580. This is identical to the setup in [24]. For the
enhancement network g′ another BLSTM-RNN was used with 2 layers using 300 hidden
units each. The output layer had Ω = 129 nodes and a sigmoid function was applied on
top to estimate the final masks. The hyperparameter γ in (12) is set to 1.

According to the principles of curriculum learning [24, 50], the networks were first
trained on segments of 100 time frames, before training on the full mixture. The weights
and biases were optimized with the Adam learning algorithm [51] and early stopping
was used on the validation set. The log-magnitude of the STFT coefficients were used as
input features and were mean and variance normalized. Zero mean Gaussian noise with
standard deviation 0.2 was applied to the training features for better generalization [52].
For the single-channel scenario a single microphone was randomly selected. For the
multi-channel scenario the input consisted of the average of the left-ear and the average
of the right-ear microphone signals, as well as the spatial features (see (14)) from 3
microphone pairs (with one pair using a left-ear and a right-ear microphone and pair 2
and 3 using two left-ear and two right-ear microphones, respectively). All networks were
trained using TensorFlow [53]. The code for the deep learning based source separation
can be found here: https://github.com/JeroenZegers/Nabu-MSSS.

3.2.4. MWF design choices For the estimation of MWF coefficients an STFT with a
64 ms window length (512 samples) and a hop size of 32 ms (256 samples) was applied
to the microphone signals, after they were downsampled to 8 kHz. The thresholds for
estimating the VAD tracks for the different approaches were determined empirically. For
energy envelopes extracted from the M-NICA and DNN-based source separation, the
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25th percentile of the per sample amplitude of the envelope was used as the threshold,
above which the speaker was considered to be active.

3.2.5. Audio envelope extraction The envelope extraction method from [14] was used.
Each of the speech streams used as stimulus were filtered with a gammatone filterbank
[54], splitting the signal into 15 filter bands. In each gammatone band, the absolute
value of each sample was taken after which a power law compression with an exponent
of 0.6 was applied. The power law-compressed samples were then bandpass filtered in
the same manner as was done for the EEG signals resulting in subband envelopes. The
subband envelopes were added together and downsampled to 40 Hz to form a single
‘powerlaw subband’ envelope. Power law compression aims to replicate the non-linear
transformation of the stimulus in the human auditory system, with relatively higher
attenuation of higher amplitude signals [55]. This method of auditory inspired envelope
extraction has been found to result in significantly better attention decoding accuracies
than other envelope extraction methods [14].

Power law subband envelopes were only used in cases where broadband speech
streams where available, i.e., the DNN and MWF envelopes built from the speech
streams obtained with the DNN-based mask (15) or the MWF-based mask (7),
respectively. Since M-NICA directly extracts energy envelopes from the broadband
speech streams, the gammatone filterbank could not be applied here. When applying
AAD on the M-NICA-envelopes, the square-root of the extracted energy envelopes was
used to transform them to an amplitude envelope, since energy envelopes are sub-optimal
to perform AAD [14].

3.2.6. AAD design choices In order to perform AAD, EEG data was split into trials
of 30 s, resulting in 276 trials per subject for each of the 3 different angles between
speakers (separations of 180° for (-90°,90°), 60° for (30°,90°) and (-30°,-90°), and 10°
for (-5°,5°) respectively). Decoders were trained (using leave-one-trial-out (LOO) cross
validation) to reconstruct the envelope of the attended speech stream. To improve
decoding accuracy and eliminate the need for regularization, a single decoder was
computed over the entire training set data as in [14], instead of averaging over per-
trial decoders in the training set as in [2].

4. Results

4.1. Single-channel and multi-channel source separation

In some cases, for hardware reasons, a single-channel set-up can be preferred over a
multi-channel set-up. The deep learning approaches to noise-free source separation,
both for single-channel and multi-channel setup, were trained on the CGNM-noisefree
train set and evaluated on the CGNM-noisefree test set and the RBM noise-free set.
Results are expressed in Signal-to-Distortion Ratio (SDR) [56] improvements and are
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Table 1: SDR improvement results for a single-channel and multi-channel DNN without
noise.

noise-free CGNM test noise-free RBM

single-channel 10.0 dB 3.8 dB
multi-channel 12.3 dB 12.3 dB

Table 2: SDR improvement results for a single-channel and multi-channel DNN for the
noise-free RBM set, depending on the difference in speaker positions.

10° 60° 180° avg.

single-channel 2.5 dB 1.7 dB 7.3 dB 3.8 dB
multi-channel 12.7 dB 11.6 dB 12.5 dB 12.3 dB

* *** *

Figure 2: AAD accuracies (on 30 s trials) of 18 subjects listening in noise-free conditions
when envelopes from the output of multi-channel DNN and single-channel DNN were
used. Comparisons between the different approaches were done using Wilcoxon’s signed-
rank test [57] with Holm correction. : ‘***’ for p < 0.001, ‘*’ for p < 0.05.

shown in table 1.
Notice that for the single-channel case, performance on the noise-free RBM dataset

is much worse than on the CGNM-noisefree test set, even though both consist of held-out
female speakers. The DNN generalizes poorly to other datasets. A possible reason for
this could be differences in the recording set-up, and the fact that the CGNM-noisefree
test set consists of volunteers, while the RBM dataset consists of children stories told
by professional story-tellers. It is concluded that the single-channel setup does not
generalize well across data sets. Multi-channel separation quality is considerably better
than the single-channel counter part. Furthermore, the SDR results on the CGNM-
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noisefree test set and the RBM dataset are also more alike, compared to the single-
channel results. The network uses spatial information to characterize the speakers and
does not need to solely rely on the difference in speaker characteristics to separate the
speakers, as is necessary in the single-channel case [58]. In table 2, the SDR results
on the RBM dataset are split up per angle between speakers. For the single-channel
setting, it is observed that the model performs much better for the 180° case compared
to the other cases. For the 180° case the speech amplitudes of both speakers will differ
more due to head shadow effects, which may explain why it is easier for the network to
separate both. These head shadow effect might also happen, although less pronounced,
for the 10° (speakers at -5° and 5°) case, which could explain why it performs slightly
better than the 60° (speakers at 30° and 90°) case, where both speakers are on the same
side of the head. Further research is needed to support these claims/assumptions.

The absolute envelopes, extracted from the outputs of both single-channel and
multi-channel DNNs performing speaker separation of the stimuli in the RBM dataset
for the noise-free condition, were used for auditory attention decoding of the EEG
data collected under matching acoustic conditions and stimuli. Figure 2 shows AAD
accuracies over 18 subjects under the noise-free condition, for the 3 different angles
between the speakers. For all angles between speakers, the multi-channel DNN resulted
in significantly higher AAD accuracies compared to the single-channel DNN, as was
expected from the results in table 1. We therefore continue with the multi-channel
approach for all further analyses.

4.2. Linear versus non-linear source separation for AAD

The per-subject AAD accuracies on the RBM dataset were computed for each of the
3 different angles between speakers and the 3 noise conditions. For each 30 s trial,
the correlation of the reconstructed attended envelope was computed with 5 pairs of
envelopes extracted using different speech enhancement methods:

• ‘Oracle’ - powerlaw subband envelopes extracted from the original speech signals
(not mixed)

• ‘M-NICA’ - amplitude envelopes extracted from the output of the M-NICA source
separation algorithm (red dashed track in Figure 1)

• ‘DNN’ - powerlaw subband envelopes extracted from the output of the DNN-based
source separation algorithm (also red dashed track in Figure 1).

• ‘M-NICA+MWF’ - powerlaw subband envelopes extracted from the output of
MWFs when using the output of the M-NICA based source separation algorithm
to build VAD tracks (green track in Figure 1).

• ‘DNN+MWF’ - powerlaw subband envelopes extracted from the output of MWFs
when using the output of the DNN based source separation algorithm to build VAD
tracks (also green track in Figure 1).
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Figure 3: AAD accuracies (on 30 s trials) of 18 subjects for different speech separation
approaches for 3 cases: the noise-free case, -1.1 dB SNR, and -4.1 dB SNR. The results
of using the M-NICA and DNN approaches are compared with the results when using
oracle speech envelopes for AAD. The separated streams were either directly used for
AAD (red boxes here and dashed red lines in Figure 1), or used to generate VAD tracks
for MWFs (green boxes here and green lines in Figure 1), the outputs of which were then
used for AAD. The red line indicates the significance level. Comparison between the
different approaches were done using Wilcoxon’s signed-rank test with Holm correction.
: ‘***’ for p < 0.001, ‘**’ for p < 0.01, ‘*’ for p < 0.05, ‘ns’ for no significant difference.
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Figure 3 shows the resulting AAD accuracies for the 18 subjects for the noise-free
condition, for -1.1 dB and for -4.1 dB. For each angle between speakers, comparison
between the different approaches were done using Wilcoxon’s signed-rank test with Holm
correction. The green boxplots correspond to the green lines (MWF envelopes), and the
red box plots correspond to the dashed red lines (M-NICA/DNN envelopes) respectively
in Figure 1.

An interesting observation from Figure 3 is that a training-free linear algorithm
as proposed in [22] (here represented by ‘M-NICA+MWF’) is able to perform at
least on par and often even better than a pre-trained complex deep model (here
represented by ‘DNN’) in all speaker angle and noise conditions. When breaking down
the subcomponents of [22] into M-NICA and MWF separately, or when using the DNN
as support for the MWF, some other interesting observations can be made, which are
briefly reported in the remainder of this subsection.

In the noise-free condition, for 180° and 10° separations, the M-NICA envelopes
result in accuracies that match those when using oracle speech envelopes for AAD while
the DNN envelopes perform significantly poorer. On the other hand, for 60° speaker
separation, the DNN envelopes outperform M-NICA envelopes, yet upon including the
MWF filtering step, there are no more significant differences between the 2 source
separation approaches. However, the results are still significantly lower than with oracle
speech envelopes. It must be noted that in the 60° case, the competing speaker positions
are on the same side of the listener’s head ((-30°,-90°) or (30°,90°)). It has already been
observed in [22] that the same 60° case was challenging for M-NICA, indicating difficulty
to extract discriminative spatial features under such conditions

Figure 3 also shows AAD accuracies from trials in a noisy condition with -1.1 dB
SNR. For 180° speaker separation, it can be seen that all source separation approaches,
with or without the MWF filtering step, result in similar AAD performances, but do not
match up to that of oracle speech envelopes. Nevertheless, the performance decrease
is minimal, in particular when an MWF is used. For 10° and 60° speaker separation,
the DNN envelopes result in better performance than the M-NICA envelopes. MWF
filtering substantially improves results for both approaches for the 60° case, where the
DNN+MWF combination even matches performance with the oracle speech envelopes.
For the 10° case, only the M-NICA approach requires MWF filtering to match oracle
speech performance.

For the -4.1 dB SNR (Figure 3), which is a highly challenging condition, it is
observed that for 180° separation, the performances of all the approaches do not differ
significantly from each other. However, for the 10° condition, the M-NICA and DNN
envelopes result in accuracies below chance level, and only with the additional MWF
filtering, do the results match up to those of oracle speech envelopes. In the 60° case, the
MWF filtering does improve results for both the source separation approaches, however
only the DNN+MWF approach’s results match up to those of oracle speech envelopes.
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Figure 4: Boxplots showing improvement in signal to interference-plus-noise ratios of
8 story parts when the MWFs use VAD tracks extracted from the different speech
separation approaches. The results of using M-NICA and DNN outputs for the VAD
are compared with the results when using oracle speech for the VAD. Comparison
between the different approaches were done using Wilcoxon’s signed-rank test with
Holm correction. : ‘***’ for p < 0.001, ‘**’ for p < 0.01, ‘*’ for p < 0.05, ‘ns’ for
no significant difference.

4.3. Speech enhancement performance

To estimate the effectiveness of the MWF for speech enhancement, we looked at the
improvement in the signal to interference-plus-noise ratios (SINRs) and PESQ, on the
RBM dataset, at the output of the MWFs when using VAD tracks generated from 3
sources: the oracle speech envelopes, the M-NICA envelopes, and the DNN envelopes.
The SINR is defined as the ratio of the power of the attended speaker to the total of the
power of the unattended speaker and the background noise. The reference input SINR
is taken as the highest SINR among the 6 microphones (note that the achieved SINR
improvement will be larger for the other microphones). For each noise condition and
angle between speakers, the improvement in SINR was computed for 8 story parts to
which the subjects had to listen without interruption. Figure 4 shows the improvement
in SINRs of the 8 story parts, for the 3 noise conditions and 3 different angles between
speakers. For the noise-free case, it is observed that the oracle speech envelopes result
in more speech enhancement than M-NICA or DNN envelopes in all separation angles
(although perceptually there is not much difference: the difference between 40dB and
20dB SINR is hard to notice). However, in the presence of background noise, the
DNN+MWF approach significantly outperforms the M-NICA+MWF approach, and
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Figure 5: Boxplots showing PESQ scores of 8 story parts when the MWFs use VAD
tracks extracted from the different speech separation approaches. The results of using
M-NICA and DNN outputs for the VAD are compared with the results when using
oracle speech for the VAD. Comparison between the different approaches were done
using Wilcoxon’s signed-rank test with Holm correction. : ‘****’ for p < 0.0001, ‘***’
for p < 0.001, ‘**’ for p < 0.01, ‘*’ for p < 0.05, ‘ns’ for no significant difference.

matches up to the performance with the oracle speech envelopes in the 10° and 180°
cases. For the acoustically more challenging case of 60° (since the speakers are on the
same side of the head), it is observed that the DNN+MWF approach performs almost
similar to the oracle+MWF approach (although the small differences are still statistically
significant), and both of them substantially outperform the M-NICA+MWF approach.

The results for PESQ, a measure that focuses more on speech intelligibility, are
shown in Figure 5. The significance tests are very similar to those of SINR and thus the
above observations for SINR also hold for PESQ.

4.4. Gain control performance

AAD accuracies are dependent on evaluated trial lengths, which was set to 30 s in our
experiments. In the context of gain control in a neuro-steered hearing device, longer
trial lengths can result in higher accuracies, but at the cost of slow decisions affecting the
speed with which the device can follow a switch in attention of the user. The minimal
expected switching duration (MESD) [59] is a performance metric for AAD algorithms
that takes this trade-off into account. This metric finds the optimal operating point
to minimize the expected time required for such a hearing device to switch between
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Figure 6: Boxplots showing MESDs for two cases: when attention decoding was
performed using ‘Oracle’ speech envelopes versus when using ‘DNN+MWF’ speech
envelopes. The numbers in red indicate the number of outliers (MESD > 100s) which
were removed from the plot (such high values are due to near-chance level performances,
which are too low to achieve an acceptable gain control, leading to extremely high
MESDs). They were included in the statistical analysis.

speakers in a robust fashion after the user switches attention. The MESD toolbox [60]
was used to compute the MESDs of the best performing algorithm (DNN+MWF) and
the oracle case for the 3 different angles between speakers and the 3 noise conditions. The
results are shown in Figure 6. Using Wilcoxon’s signed-rank test with Holm correction,
we found that the MESDs of the oracle case were not significantly lower than those of
DNN+MWF, except for all speaker separations in the noise-free condition (p = 0.05),
and for 180° at -1.1 dB SNR (p < 0.05). For all other cases, there were no significant
differences between the two approaches.

5. Discussion

Previous studies that combine speech enhancement/separation with AAD investigated
only one type of algorithm (either linear [20, 22, 23] or DNN-based [31, 32]), mostly in
relatively mild acoustic conditions. Furthermore, each study has its own specific set-
up (single- vs. multi-microphone, ECoG vs. EEG, matched or mismatched acoustic
conditions during EEG recordings, etc.) which does not allow to directly compare the
results achieved in these studies. The study in this paper was designed to investigate
the feasibility of a neuro-steered speech enhancement pipeline in challenging acoustic
conditions with negative SNRs and various speaker positions, while also comparing
different source separation approaches to produce the speech envelopes used by the
attention decoding block. We investigated the AAD performance of a training-free and
purely linear audio signal processing algorithm (M-NICA+MWF) on the one hand, and a
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non-linear DNN on the other hand, as well as a combination of a linear with a non-linear
approach (DNN+MWF), where the latter acts as a supporting voice activity detector
for the former. In the remainder of this section, we will discuss the main findings of our
study.

5.1. Multi-microphone outperforms single-microphone

Existing AAD studies using DNNs for the acoustic source separation were based on
single-microphone recordings [31, 32]. We observed that a single-channel approach
generalizes less well across datasets and that a multi-channel approach is more robust
in terms of separation quality. In addition, envelopes extracted from the output of
the multi-channel neural network resulted in AAD accuracies that were more robust to
varying speaker positions compared to those from the single-channel neural network.
It is concluded that a multi-microphone set-up is crucial to obtain a sufficiently high
AAD accuracy in practical settings. Thus, we chose the multi-channel neural network
approach for our comprehensive analysis of the neuro-steered source separation.

5.2. Linear algorithm outperforms DNN

In the literature, several algorithms have been proposed to combine AAD with speech
separation methods. Concerning the speech separation part, two main strategies can be
distinguished; those based on traditional (linear) beamforming approaches [20, 22, 23]
and those based on (non-linear) neural networks [31,32]. However, these two strategies
have never been compared to each other in terms of the resulting AAD performance.
The results in Section 4 demonstrate that the AAD performance with a linear speech
separation algorithm (represented by ‘M-NICA+MWF’ in figure 3) is at least on par
and often outperforms a non-linear DNN approach (represented by ‘DNN’ in figure 3)
in all investigated conditions. This holds both in terms of AAD performance (Fig.
3) and speech enhancement performance (Fig. 4). In addition, the linear method
is computationally cheaper than the DNN approach (in terms of operations per second
and memory size), while also being training-free thereby not depending on representative
training data. Furthermore, implementing the MWF as an adaptive, causal, low-latency
filter is relatively straightforward, and latencies can be limited to less than 5 ms [61] (see
also Section 5.4 below). Speech separation based on deep clustering on the other hand,
usually uses a non-causal network where the computation of the embedding vector at
present time is based on all past and future time samples, although recently also causal
DNNs for speech enhancement have been proposed [32,62].

5.3. Combining the best of both worlds: DNN and MWF

While linear and non-linear approaches both individually result in good speech
separation, a combination of both - as in the DNN+MWF approach - resulted in the
best AAD performance, particularly in challenging acoustic conditions. In this case



speech separation for EEG-informed attention decoding 23

the (non-linear) DNN is used as a VAD mechanism to inform the (linear) MWF which
performs the actual speaker separation and denoising, thereby combining the best of
both worlds. This results in the best AAD performance as well as the highest SINR
improvement.

5.4. Real-time aspects

When using a weighted overlap-add (WOLA) procedure [63], the algorithmic delay of the
MWF is equal to the window length used in the STFT computations, i.e., the number
of samples over which the discrete Fourier transform is computed. For example, for a
hearing aid using a sampling rate of 20480 Hz and a 96-point STFT windowing [61],
the algorithmic delay is less than 5 ms. Note that a delay in the VAD information (e.g.
due to possible non-causality of the BSS block in Figure 1), does not have an impact
on the overall input-output delay of the stimulus presented to the user. This is because
the adaptation of the MWF filter coefficients can be decoupled from the actual filtering
operation itself, where the former can lag behind on the latter. This implies that any
delay or non-causality in the M-NICA or DNN block will not create a bottleneck towards
real-time speech processing. It will only add some inertia in the updating of the MWF
coefficients to adapt to changes in the acoustic scenario.

5.5. EEG-based AAD is feasible in challenging low-SNR conditions

The SNRs in this study were chosen such that the speech intelligibility varied across
conditions. The estimated speech recognition threshold (SRT), at which a normal-
hearing subject can understand 50% of the attended story on average, was found to be
-7.1 dB (see [43] for details of the estimation procedure). The SNRs -4.1 dB and -1.1 dB
were chosen by adding 3 dB steps from the 50% speech intelligibility point. The -7.1 dB
condition was excluded from this study due to the difficulty subjects faced in focusing on
the attended speaker (as reflected in the AAD accuracies under this condition reported
in [43]). Subjective speech intelligibility reported during the recording sessions for the
different angles between speakers show that -4.1 dB and -1.1 dB SNRs also are not easy
listening conditions. Compared to [23] where the noise conditions are relatively mild
(4 dB and 9 dB SNR), [32] where there is no background noise, and [22] where the EEG
recording conditions did not match the acoustic conditions, our current study provides a
holistic view on the performance of a neuro-steered speech enhancement pipeline under
realistic to challenging acoustic conditions. It is found that not only EEG-based AAD
with no access to clean-speech sources is feasible under challenging acoustic conditions,
but also that the AAD accuracies and improvement in SINRs for DNN+MWF get
remarkably close to oracle performance.



speech separation for EEG-informed attention decoding 24

5.6. Future outlook

The proposed neuro-steered speech enhancement and its analysis over a range of acoustic
conditions is a step towards effectively incorporating attention decoding and source
separation algorithms in neuro-steered hearing prostheses. With the field of deep
learning expanding and exerting its presence in various scientific domains, we have
tried to address the possibility of deep learning based source separation in this context
and systematically compare it with a classical signal processing approach. While
the realisation of neuro-steered hearing prostheses is still far from being a reality,
there are ongoing advancements that can accelerate this process. In addition to
hardware requirements such as miniaturisation of neural recording equipment, better
computational and storage capabilities in hearing devices etc., also newer approaches
for improved attention decoding itself based on DNNs [11–13], canonical correlation
analysis [64] or state-space modelling [3, 10] can contribute to faster and more robust
attention decoding and hence better neuro-steered speech enhancement. Finally, a
limitation of this study is that it does not include reverberant conditions, which can
both affect speech separation algorithms and the AAD performance.

6. Conclusion

In a multi-speaker ‘cocktail party’ scenario, a hearing aid’s noise reduction algorithm
does not have the knowledge of which speaker the user intends to listen to. Incorporating
AAD algorithms to detect the attention of the user, leads to the concept of so-called
neuro-steered hearing aids. In this study a neuro-steered speech enhancement pipeline
is presented, without access to clean speech signals in challenging acoustic scenarios.

The performance of a linear as well as DNN-based speaker separation approach
was analyzed. It was found that a purely linear approach often outperforms the
DNN-based approach. However, the best performance, under challenging scenarios,
was obtained when combining the best of both worlds, i.e., when using the DNN to
provide VAD information to a linear data-driven beamformer. In addition, for the DNN-
based speaker separation, the benefit of using a multi-microphone system compared to a
single-microphone system was demonstrated. An additional advantage of using a linear
data-driven beamformer is that it decouples the algorithmic delay in the blind source
separation of the audio signals from the total system delay, thus facilitating robust real-
time speech processing. With this study, we present a proof-of-concept of feasibility of
a neuro-steered speech enhancement pipeline in challenging acoustic conditions.
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