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Abstract. Objective The goal of this paper is to investigate the limits of EEG
sensor miniaturization in a set-up consisting of multiple galvanically isolated EEG
units to record interictal epileptiform discharges, referred to as ‘spikes’, in people
with epilepsy. Approach A dataset of high-density EEG recordings (257 channels)
was used to emulate local EEG sensor units with short inter-electrode distances. A
computationally efficient sensor selection and interictal spike detection algorithm
was developed and used to assess the influence of the inter-electrode distance and
the number of such EEG units on spike detection performance. Signal-to-noise
ratio, correlation with a clinical-grade IED detector and Cohen’s kappa coefficient
of agreement were used to quantify performance. Bayesian statistics were used to
confirm the statistical significance of the observed results. Main Results We found
that EEG recording equipment should be specifically designed to measure the
small signal power at short inter-electrode distance by providing an input referred
noise < 300 nV. We also found that an inter-electrode distance of minimum 5 cm
between electrodes in a setup with a minimum of two EEG units is required
to obtain near equivalent performance in interictal spike detection to standard
EEG. Significance These findings provide design guidelines for miniaturizing
EEG systems for long term ambulatory monitoring of interictal spikes in epilepsy
patients.
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1. Introduction

Epilepsy is one of the most common severely
disabling brain conditions, affecting over 46 million
people worldwide [1]. The disorder is characterized
by pathological electrical discharges of neurons,
which can be recorded non-invasively using scalp
electroencephalography (EEG) as isolated spikes or
spike-wave complexes. The latter occur during clinical
epileptic seizures, but also between seizures (i.e.
interictal epileptiform discharges (IED) or ‘spikes’),
without any concomitant clinical manifestations. EEG
is routinely used in the clinic to document such
discharges in order to contribute to diagnosis, follow
up, and adaptation of treatment for people with
epilepsy. Clinical EEG recordings are typically carried
out in a hospital (outpatient or inpatient) setting in
a resting condition over a relatively short period of
time. The American Clinical Neurophysiology Society
recommends, that this lasts at least 20 minutes [2].
Therefore, routine EEG often provides only a snapshot
of the disorder experienced by a person with epilepsy.
Short duration EEG recordings cannot capture long-
term patterns of the disorder such as seizure frequency,
timing or dynamic cycles [3]. Long-term monitoring
of interictal spikes has been shown to be an effective
predictor of seizure timing [4] as well as treatment
outcome [5]. In order to obtain long-term EEG in
realistic conditions, miniaturized EEG devices that can
be worn by people in their everyday life would be
preferable.

Previous work has demonstrated that EEG
recording using several dozens of electrodes, such
as those used in clinical routine, are not required
to effectively monitor discharge features in people
with a diagnosis of epilepsy and that a low number
of electrodes can be sufficiently informative [6–9].
Furthermore, wearable EEG devices for everyday life
monitoring are in active development [10–14]. Efforts
to miniaturize EEG devices have mainly focused either
on the electronics of the recording device or on the
electrode placement setup. Some examples include the
work of Zibrandtsen et al. [14] who made custom
fitted in-ear EEG to monitor people with epilepsy.
They analyzed intra-ear EEG channels and inter-
ear EEG channels and investigated the feasibility of
annotating epileptic seizures based on in-ear EEG
channels alone. They found ear-EEG can detect
temporal lobe seizures and generalized seizures as well
as interictal spikes. Swinnen et al. [12] used Byteflies
Sensor Dot, a commercial miniature EEG sensor with
two channels, to detect typical absence seizures in
adults and children. They found epileptologists were
able to reliably detect typical absence seizures using
this miniature EEG sensor.

One way of further minimizing the EEG setup

is by reducing the number of wires. This can be
done by using several EEG amplifiers that are each
connected to a single pair of electrodes. These isolated
EEG sensor units measure a local bipolar channel, each
with a built-in local amplifier. Such a set-up with
multiple miniaturized and galvanically isolated EEG
sensor units eliminates the need for multiple long wires
that run across the scalp, and is sometimes referred
to as a wireless EEG sensor network [15–17]. The
bulkiness of such an EEG sensor network is determined
by the number of sensor units and the size of these
units. The latter is mostly dependent on the distance
between the electrodes of each such sensor unit.

Obviously, reducing the number of recording
electrodes increases the importance of electrode
placement as it is expected to influence the detection of
epileptiform discharges, even for generalized discharges
[6]. As a corollary, it is critical to individualize the
placement of reduced numbers of electrodes to the
specifics of a patient discharge pattern as compared
to routine hospital-based recordings.

To approach this electrode placement problem,
and to analyze miniaturization effects, a setup
with multiple sensor units with short bipolar inter-
electrode distances can be emulated and evaluated
using information collected through high-density EEG
(HD-EEG) recordings. In a 257-electrode HD-EEG
head cap, electrodes are situated approximately 2
centimeters apart, thus allowing to emulate short
inter-electrode distances. This type of approach has
been previously proposed in the context of auditory
attention decoding, to identify and quantify the lower
bound on miniaturization for EEG-based decoding of
neural responses to speech. Mundanad Narayanan et
al. showed that for inter-electrode distances equal or
greater than 3 cm, the decoding performance was not
significantly worse compared to that achieved with long
distance channels referenced to the Cz electrode [15].
Furthermore, they showed a rapid decline in decoding
performance for inter-electrode distances smaller than
3 cm. The study was also performed on an HD-EEG
dataset where short distance channels were constructed
through re-referencing. Studies on the effect of inter-
electrode distance had already been reported in the
1980. Authors showed that the amplitude of the
EEG follows an exponential relationship with inter-
electrode distance [18]. However, in the context of
spike detection, it is not necessarily the decrease in
amplitude that impacts the detection performance, but
(also) the changes in signal-to-noise ratio as the noise
levels will also change with a decrease in inter-electrode
distance.

In this paper, we investigate the limits of
miniaturization for interictal spike detection using
a network of galvanically isolated EEG units by
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emulating such a set-up via HD-EEG recorded on
people with epilepsy. We present an automated
algorithm pipeline for the selection of a small
number of EEG channels for mobile EEG ambulatory
monitoring and for the automatic detection of
inter-ictal epileptiform discharges. The effects of
miniaturization, both in terms of short inter-electrode
distance and in terms of a small number of EEG units,
were assessed through comparison with spike detection
on standard 32 channels of ‘long-distance’ EEG in
which all electrodes are wired to a central reference
electrode.

Processing of HD-EEG is a computationally heavy
operation due to the high number of electrodes
resulting in high-dimensional data. In order to study
the influence of the number of EEG sensor units
and the inter-electrode distance, efficient methods
to process these data have to be developed. First
a computationally efficient spike detector should be
used. Spike events are stereotypical in that spatial
and temporal signature of different events are very
similar (within the same patient). Algorithms that
leverage this build an average spike template that
is then used as a matched filter for detecting spikes
[19–22]. This type of algorithm is computationally
efficient due to the low number of operations required
to classify a new epoch of data. In this paper, we use an
algorithm that leverages the spatio-temporal signature
of spike events by constructing a filter that enhances
spikes, but also suppresses non-spike EEG activity
and artefacts by exploiting the spatio-temporal second
order statistics of the latter components. In this way,
the filter maximizes the signal-to-noise ratio (SNR)
(i.e. spike to noise ratio) to obtain a more accurate
detection than a straightforward matched filter. This
filter design paradigm is known as max-SNR filtering
[23]. We then select a small number of EEG units
using a channel selection procedure to obtain a reduced
channel set from a large set of candidate channels. This
must also be computationally efficient and should make
a selection that is optimized for the spike detection
task. In a previous study, we compared different
channel selection methods for group-sparse generalized
eigenvalue decomposition (GEVD) problems, which is
a general class of problems that contains the max-SNR
filter as a special case. The group-sparsity appears
in the spatio-temporal filter, where selecting one EEG
channel corresponds to also selecting all the time lags
associated with that channel (representing a group
of optimization variables). In the study, we found
that for a low number of channels to be selected, a
forward greedy selection was the most efficient, while
being competitive with more expensive optimization
methods [24].

Manual annotation of spike events is a time-

consuming activity that requires the expertise of
experienced clinical neurophysiologists [25]. It is
a difficult task that must meet the six criteria
suggested by the International Federation of Clinical
Neurophysiology [26]. These criteria define an IED
as (1) di- or tri-phasic waves with sharp or spiky
morphology (i.e. pointed peak); (2) different wave
duration than the ongoing background activity: either
shorter or longer; (3) asymmetry of the waveform:
a sharply rising ascending phase and a more slowly
decaying descending phase, or vice versa; (4) the
transient is followed by an associated slow after-
wave; (5) the background activity surrounding IED
is disrupted by the presence of the IED; and (6)
distribution of the negative and positive potentials
on the scalp suggests a source of the signal in the
brain, corresponding to a radial, oblique, or tangential
orientation of the source. While these criteria provide a
basis for labeling a spike, inter-rater agreement is only
fair, with reported Cohen’s kappa coefficient of 0.49
for inter-rater agreement for single spike identification
[27], 0.63 for the occurrence of one or more spikes
during a 10-second epoch, and 0.69 for a 30-minute
epoch [28]. Because of the time required, it is
rare for human experts to fully annotate an EEG
recording. For diagnostic purposes, the annotation of
several clear spike events that allow confirmation of
the diagnosis of epilepsy and localization of the seizure
onset zone are often sufficient. Human annotation can
be facilitated by a spike detection software. Only a
few software packages are available on the market with
certification for use in clinical practice. Currently,
Persyst includes the spike detection algorithm with
the highest agreement to human experts [28]. It is a
fully automated spike detector based on a deep neural
network.

The outline of the paper is as follows. We present
the dataset, along with the channel selection and spike
detection methodology in section 2. Next, in section 3,
we present our results on the effect of inter-electrode
distance and number of miniaturized EEG units on the
ability to identify spikes. They are discussed and put
in perspective with the current corpus of research in
section 4. Conclusions and implications of the work
are highlighted in section 5.

2. Methods

This section describes the material and methods that
were used to conduct the analysis on the limits of
EEG sensor miniaturization to record interictal spikes.
We first describe the EEG data set in subsection 2.1,
after which we describe the different steps of our signal
processing methodology in the remaining subsections.
The signal processing pipeline consists of the following
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steps. First, a base set of annotations for spikes
are generated using the automated spike detector
provided with the Persyst software. Then, a pool of
bipolar channels with a fixed inter-electrode distance
is generated by re-referencing the high-density EEG
channels. We then propose a spike detector based on
a max-SNR filtering criterion. This filter design is
then used to perform a data-driven channel selection,
where we aim to select the N bipolar channels that
maximize the SNR at the output of the filter. A
detailed description of each of these steps is presented
in the next subsections along with the performance
metrics used to evaluate miniaturization limits.

2.1. Recordings

The recordings used in this study were originally
obtained between 2015 and 2018 in the context of
pre-surgical evaluation of patients with drug-resistant
focal epilepsy referred to a tertiary care hospital
(Rigshospitalet, Copenhagen, Denmark). HD-EEG
recordings were performed over 120 minutes with 257
electrodes with exchangeable sponge electrodes using
a EGI Gedodesic Sensor Net HydroCel GSN 130
amplifier and cap sampled at 1 KHz.

2.2. Spike annotations

In order to automate the annotation of IEDs (from
hereon referred to as ’spikes’), the recordings were
analyzed using Persyst version 14.D software (Persyst
Development Corporation, Solana Beach, CA, USA)
to annotate the spikes. Persyst is a clinical grade EEG
analysis software that specializes in epilepsy diagnosis.
It contains a fully automated spike detector based on a
deep neural network. To obtain the spike annotations,
the software’s low-pass and high-pass values were left
at their default values (0.16 Hz - 70 Hz). The notch
filter was set to 50 Hz. The detection was set to the
low sensitivity setting (Persyst score > 0.9), which has
high specificity [28]. Spikes occurring during periods
contaminated by strong artifacts (peak amplitude >
200 µV or 1 second root-mean-square > 100 µV , which
are mostly associated with tapping and movement
artifacts) and recordings with a low number of spikes
such that cross-validation could not be performed (less
than 10 spike events) were excluded from the analysis.

2.3. Miniature EEG emulation

The miniaturization analysis was performed by ex-
tracting a pool of candidate channels (each represent-
ing a separate galvanically isolated EEG sensor unit),
with desired inter-electrode distances of either 2, 3.5, 5,
6.5 or 8 cm between electrode pairs (each distance leads

to a different pool of candidates which are then stan-
dardized across scenarios as explained below). We refer
to the inter-electrode distance with the value d. To ob-
tain this pool of bipolar channels, we implemented the
following procedure. First, the inter-electrode distance
between all possible electrode pairs was computed. The
latitude and longitude of each electrode in the EGI
Gedodesic Sensor Net HydroCel GSN 130 headset is
given by the manufacturer. The distance was com-
puted as the haversine distance with the head modeled
as a sphere with a circumference of 57 cm [29]. The
haversine distance or great-circle distance is the short-
est distance between two points on the surface of a
sphere, measured along the surface of the sphere [30].
In the context of EEG sensor units, this distance cor-
responds to the length of the wire between two elec-
trodes. Figure 2 shows the number of electrode pairs
(channels) as a function of the inter-electrode distance.
The electrode pairs at a distance d± 0.25 cm were re-
tained. Since each d results in a different number of
candidate channels, a channel selection procedure was
then applied to each of the pools in order to obtain
an equal number of candidate channels independently
of inter-electrode distance d. This selection eliminates
redundant channels to obtain a pool of candidate chan-
nels that uniformly cover the scalp. Channels were con-
sidered redundant with respect to each other if they
were geometrically close by and in the same orienta-
tion as they would record very similar signals. How-
ever, electrode pairs with close midpoints but orthog-
onal orientation would record relevant information as
they record dipoles with different orientations. To this
end, we use a proximity metric (p), which combines the
distance (d) and the orientation between two channels,
based on

d = haversine distance(m1,m2) (1)

p = e(−
2
3∗d) ∗ |v1 · v2| (2)

where m1,m2 are the midpoints of each channel (i.e.
the center point of the great circle line between the
two electrodes that define the channel), v1,v2 are the
unit orientation vectors of each channel (defining the
orientation of the line between the two electrodes that
define the channel), and d is the harvesine distance
between the midpoints of both channels. The different
symbols used in the computation of the proximity
metric are illustrated in figure 1. The proximity metric
p in equation 2 is computed from the multiplication
of the dot product of the two unit orientation vectors
and an exponential decay of the distance between the
midpoints of both channels. The rate of decay is
governed by a constant which reflects the notion of
proximity on the scalp. Based on 1-2, the proximity
metric is high if the two channels are close to each
other (large d), and if their orientation is similar (large
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Figure 1: Illustration of the different symbols used in
the computation of the proximity between two pairs of
electrodes.

|v1 ·v2|). Indeed, if either the angle between v1 and v2

is near-orthogonal or the distance d is large, then p will
be small. The local density of a channel was computed
as the sum of the proximity p of a channel to all other
channels. To obtain a set of 256 channels, the channel
with the highest proximity to all other channels was
iteratively removed until a set of 256 channels was
obtained in each candidate pool.

2.4. Spike detection algorithm

Template matching has been demonstrated to success-
fully detect neural spiking activity both on intracranial
and scalp EEG recordings [19–22].In this paper, we use
a filter design framework that is akin to such a tem-
plate matching filter, with the additional benefit that it
takes the noise statistics into account (in this case any
non-spike EEG activity) in order to maximize the SNR
for the detection. The max-SNR filtering algorithm we
use here is a variation of an algorithm we previously
developed and validated for the detection of epileptic
seizures [8]. It is a pre-trained multi-channel filter, im-
plemented as a filter-and-sum pipeline. The algorithm
requires examples of spikes and noise (i.e. non-spike
EEG), which are obtained automatically via Persyst
executed at a high specificity level (see below).

The raw signals were first downsampled from 1
KHz to 100 Hz, then bandpass filtered between 3 Hz
and 30 Hz using a zero-phase, non-causal bandpass
filter. The EEG signal in channel k at sample time
index t is modeled as

xk(t) = sk(t) + nk(t)

where sk(t) corresponds the signal component that
contains all the spike events and nk(t) corresponds to
background EEG, which in our case is considered to
be noise. The N -channel EEG signal is denoted as
x(t) ∈ RN with x(t) = [x1(t) . . . xN (t)]. The aim is
to produce a filter w ∈ RN that filters and combines
the N channels of EEG into a single-channel output
signal o(t) in which the background EEG is maximally
suppressed, while preserving the spikes. This output
channel is obtained through the linear combination:

o(t) = wTx(t) (3)

From a signal processing viewpoint, w acts as a spatial
filter that linearly combines different EEG channels
at different positions on the scalp. The filter w is
optimized in a data-driven fashion to maximize the
SNR of o(t) over a training set, i.e. solving

maxw
E{(wT s(t))2}
E{(wT (n(t))2}

= maxw
wTRsw

wTRnw
(4)

where E{.} denotes the expected value operator, Rs =
E{s(t)s(t)T } and Rn = E{n(t)n(t)T } denote the spike
and noise covariance matrices, respectively, and s(t)
and n(t) are defined similarly to x(t), i.e., x(t) =
s(t) + n(t). In subsection 2.4.1, we will explain how
these covariance matrices Rs and Rn are estimated
from the data. It can be shown [23] that the solution
of the maximization problem defined in equation
4 is the eigenvector corresponding to the largest
eigenvalue of the matrix R−1

n Rs. This is equivalent
to solving a generalized eigenvalue decomposition
(GEVD) problem based on the matrix pencil (Rs,Rn)
[23].

The filter described above is a spatial filter. It
can be expanded to a causal spatio-temporal filter by
creating a buffer of L samples for each channel and
stacking all buffered (time-lagged) samples in a single
vector x̃(t) = col{x̃1(t), . . . , x̃N(t)} where x̃k(t) =
[xk(t), xk(t−1), . . . , xk(t−L+1)]T and col{.} denotes a
columnwise stacking. The output signal o(t) is given by
equation 3 where w is replaced by w̃ ∈ RLN and x(t)
is replaced by x̃(t) ∈ RLN . This then corresponds to a
filter-and-sum operation, where each channel is filtered
with a channel-specific finite impulse response filter of
length L, followed by a summation across channels.
For spike detection the buffer length is set to 200 ms
(L = 20 at 100 Hz sampling), corresponding to the full
duration of a spike discharge.

In this spatio-temporal extension, the covariance
matrices in equation 4 are replaced with their spatio-
temporal generalizations, i.e., Rs = Es{s̃(t)̃s(t)T }
and Rn = Ei{(ñ(t))(ñ(t))T }. In the remainder
of the paper, we always assume the spatio-temporal
extension unless otherwise specified, and omit the ˜
for notational convenience.
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Figure 2: Histogram of the inter-electrode distance between all electrodes in a EGI Geodesic Sensor Net HydroCel
GSN 130 headset with 257 electrodes. Distances of 2, 3.5, 5, 6.5 and 8 cm ±0.25 cm, highlighted in darker blue,
are investigated in this study.

2.4.1. Covariance matrix estimation In order to
compute the optimal filter w, we need to estimate the
two covariance matrices Rs and Rn on a training data
set.

In our implementation of the algorithm, the spike
covariance matrix Rs is estimated based on a training
set S with a few example ‡ spike waveforms of the
patient under test. To this end, we used the following
estimator § ∥

Rs ≈
1

L|S|
∑
τ∈S

f(τ)

τ+L∑
t=τ

x(t)x(t)T (5)

f(τ) = g

τ+L∑
t=τ

||x(t)2||1

(∑
ν∈S

∑ν+L
t=ν ||x(t)2||1
|S|

)−1

(6)

g(x) =

{
1 if x < 1
1
x if x >= 1

(7)

where S is the set of time indices corresponding to the
first time sample of each ‘spike’ segment marked by
the Persyst spike detector. f(τ) is a normalization of
the power of a spike event with respect to the average

‡ These examples can be obtained, e.g., from a manual
annotation on part of the data, or via automatic annotation
with clinical-grade software such as Persyst in high-specificity
modus to extract a few examples with a minimal number of
false positives.
§ It is noted that the estimator (5) does not contain the
mean subtraction that is usually present in the definition of a
covariance matrix. This is because Rs as it is defined in (4) does
not have this mean subtraction, since the filter design should
take a mean offset in the signals into account. However, since
our data is high-pass filtered, the signals are zero-mean in the
long term.
∥ Note that, since the noise floor is always present, the
resulting covariance matrix is actually an estimate for E{(s(t)+
n(t))(s(t) + n(t))T } = Rs + Rn. However, since replacing
Rs with (Rs + Rn) in (4) leads to the equivalent optimization

problem maxw1 + wTRsw
wTRnw

, we obtain the same optimal filter.

power of all spike events for events with above-average
power. It is used to reduce the influence of outlier
spikes with high power (i.e., above-average). The noise
covariance matrix Rn was computed similarly without
the normalization factor as

Rn ≈ 1

|N |
∑
t∈N

x(t)x(t)T

whereN is a set of training samples that do not contain
a spike event. Since most of the data does not contain
spikes (as IEDs are sparse events), it is not a problem
if some spikes leak into Rn, as they will not have a
large impact in the overall sum.

2.4.2. Regularization The inclusion of time lags
substantially increases the dimension of the covariance
matrices, possibly making them ill-conditioned due to
redundancy in the entries of x(t). For this reason
a regularization scheme is required. Wouters et al.
[31] proposed an effective regularization scheme for a
template-matching-filter that optimizes a similar cost
function as in equation 4, but where the numerator
consists of a single template instead of a covariance
matrix. The regularization is obtained by projecting
the data on a subspace containing the main principal
components of the denominator covariance matrix
along with the template itself (to represent the target
signal). In this work we adapted the method to
our problem formulation. The data were projected
on a subspace defined as the span of the principal
components of both the noise Rn and spikes Rs

covariance matrices. The principal components with
the largest eigenvalues of Rn and accounting for
85% of the variance in the noise segments were
retained. The principal components with the largest
eigenvalues of Rs accounting for 95% of the variance
in the spike segments were also retained. These
two sets of principal component vectors were then
combined and orthogonalized by placing them in the
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columns of a new matrix M on which a singular value
decomposition is applied to find an orthogonal basis
for the subspace. Let U = [u1 . . .uK ] denote the
matrix, the columns of which consist of the K left
singular vectors corresponding to the largest singular
values of M, where the cut-off K is chosen such that
the cumulated sum of these singular values is at least
99% of the sum of all singular values. The matrix U is
then used as a compression matrix on the data, i.e.

xc(t) = UTx(t)

where xc(t) ∈ RK . The optimal compressed filter wc

is then given as the eigenvector of (R−1
n,c)Rs,c, where

Rn,c = UTRnU and Rs,c = UTRsU correspond to
the compressed matrices. The filter output is then
defined as o(t) = wc

Txc(t) which is equivalent to an
uncompressed filtering o(t) = wTx(t) with w = Uwc.
It is noted that this compression is only applied with
the purpose of regularization during training to obtain
a better (uncompressed) filter w. During operation of
the algorithm (at test time), we always apply the full
filter w on the uncompressed data, as the compression
with U requires more computations than the filtering
with w.

2.4.3. Classification The classification of an epoch
as containing spikes was performed twice per second
(i.e. at 0.5 Hz). As the filter is trained to suppress
non-spike EEG and enhance spikes, we can perform
detection based on the output power or root mean
square (RMS) value of the filter. Therefore, as features
for the classifier, we used the moving average root
mean square (RMS) value of the single-channel filter
output o(t) averaged over 200 ms (i.e. the duration
of a spike) and the moving average RMS averaged
across the different channels of the EEG data x(t)
and averaged over one second (the latter serves as a
baseline reference). The downsampling to 0.5 Hz was
done with a bucket algorithm [32]. This algorithm
preserves the amplitude of short duration local extrema
such as spikes that would otherwise be attenuated by
a standard low-pass and decimation algorithm. These
two RMS features were log transformed before being
fitted by a linear discriminant analysis (LDA) classifier,
which was trained based on the spike annotations in the
training set.

2.5. Greedy Forward Channel selection

To reduce the number of channels from 256 candidates,
a channel selection procedure is required. As we are
assessing the performance of a spike detection task
based on a max-SNR framework, which is equivalent
to solving a GEVD problem [23], the channel selection
task corresponds to a (group)-sparse GEVD problem.

In Dan et al. [24] the performance of various
group-sparse variable selection methods for GEVD
problems has been investigated. It was found that
greedy forward selection performed competitively with
other state-of-the-art methods at a significantly lower
computational cost. In the present study, where the
number of input channels is high, it is necessary
to use a channel selection method with a tractable
computational complexity, which is why we indeed
adopt a forward greedy selection. The forward
selection method starts from an empty set of channels
C and sequentially adds the channel that maximally
increases the objective in equation 4 when added to the
current set C. New channels are added until C contains
M channels, where M is a pre-defined number of
required channels. Some examples of selected channels
are shown in figure 3.

2.6. Training scheme

Training and testing was performed individually for
each subject. When evaluating the effect of inter-
electrode distance, care was taken to separate the
dataset in independent training and testing sets. The
spike epochs were split in four folds of equal size. The
rest of the non-spike data were also split in four folds
each containing 30 minutes of data. Each training fold
used three folds of spike epochs and three folds of non-
spike data in order to estimate the covariance matrices
Rs and Rn. The obtained filter w defined in equation
4 was then evaluated on the remaining spike fold and
remaining non-spike fold. This process was repeated
four times.

2.7. Evaluation metrics

Since the real ground truth is unknown, we propose
several indirect metrics to assess the quality of the spike
detections.

2.7.1. Signal-to-Noise Ratio The average spike signal
power over 200 ms was computed as the average RMS
amplitude over all channels in all segments that were
flagged as spikes by Persyst (note that we used Persyst
in the high specificity setting, such that the effect of the
false positive detections are assumed to be negligible).
The noise power was computed in a similar fashion over
all non-spike segments. The ratio of both RMS values
was then used as the SNR metric.

2.7.2. Correlation To compare the Persyst detections
and the detections of our max-SNR pipeline, a
correlation score was computed for each subject
between the average spike events detected by both
algorithms. The correlation score allows to compare
the morphology of the detected spike waveforms of
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Figure 3: Example of seven channels selected in two example subjects. The inter-electrode distance of the
channels is set to 5 cm. The topoplot shows the magnitude of the average spike of Persyst at the peak of the
spike (t=0) in a common average montage. The 1 second timecourse of the average spike is shown with all
channels superimposed. The figure illustrates the automatic channel selection results. Maximising the signal to
noise ratio results in a selection with most channels close to the electrodes with highest peak magnitude. Note
that some channels far away from the spike with possibly little correlation to the spike activity are selected which
allows the algorithm to cancel some of the noise components.

both algorithms. A high correlation indicates that the
number of false positive detections of the max-SNR
filter is small (as these would have a distorting effect
on the waveform). Indeed, since Persyst is used in the
low sensitivity mode [28] (resulting in a high specificity,
i.e., very few false positives), the average waveform
of both approaches should be similar. The events
were first aligned to the maximum of the absolute
value over a 0.5 second epoch across all channels.
The average 0.5 second event was then constructed.
The Pearson-correlation coefficient was computed per
channel between the average of the spikes detected
by Persyst and the spikes annotated by the max-
SNR pipeline. The average correlation coefficient was
computed as the weighted sum over all channels where
the weight was given by the power of the channel in
the Persyst average spike event.

2.7.3. Agreement score Cohen’s kappa coefficient of
agreement was used as the agreement score. It was
computed between the baseline performance of the
max-SNR detection pipeline when trained with 32
channels referenced to Cz and between the different
short inter-electrode distance scenarios. The inter-
rater agreement between humans in annotating IEDs
reaches a Cohen’s kappa of 0.49 for detecting individual
spikes [27]. We therefore consider a kappa larger than
0.5 to be in the region of practical equivalence (ROPE).

2.8. Statistical analysis

A Bayesian analysis was performed to evaluate the
probability of obtaining a Cohen’s kappa coefficient
> 0.5 for the different short distance scenarios
(when comparing with the baseline). This is the
level of agreement obtained between human experts

annotating interictal spikes [27]. The analysis was
based on the generation of a large number of
samples from distributions that fit to the observed
data. A Bayesian analysis allows to estimate
the probability of observing a parameter based
on observed measurements and a prior assumption
on the underlying distribution of the parameter.
The observed Cohen’s kappa was modeled as a B-
distribution as is appropriate for a variable bound to
[0, 1] [33]. The B-distribution was expressed in terms
of mean and variance as was proposed in [34]. The
mean and variance are set by a prior distribution with
fixed parameters and are used to generate different
distributions of Cohen’s kappa coefficient. As proposed
in [35], the means were drawn from a B-distribution
whose mean and variance was set to the mean and
variance of Cohen’s kappa coefficients in the full data
set (i.e. across different subjects, folds, inter-electrode
distances, and number of EEG units).. The variance
was drawn from a uniform distribution in the interval
between 0 and two times the variance of the whole
data. The model is represented schematically in figure
4. PyMC 4.1.4 [36] was used to generate the model.

The complete code for the simulations is provided
online : https://github.com/danjjl/miniEEG

3. Results

3.1. Recordings

A total of 40 subjects were processed by Persyst for
spike annotations. Fifteen subjects had ten or more
spike events meeting the inclusion criteria and were
included in the analysis. A total of 4088 spikes were
detected by Persyst. The median number of spikes per
subject was 58 (range 27-1190) The number of spike
events detected by Persyst are given per subject in



EEG sensor selection and miniaturization limits for detection of IED 9

0 1

β(µ, var)

Cohen’s Kappa

0 1

β(0.57, 0.05)

µ

0 0.1

uniform(0.1)

var

Figure 4: Schematic representation of the Bayesian
model. Cohen’s kappa coefficient is modeled as
a β distribution with parameters obtained from a
β distribution for the mean (µ) and a uniform
distribution for the variance (var).

# spikes

subject 1 1190
subject 2 1016
subject 3 439
subject 4 401
subject 5 375
subject 6 231
subject 7 111
subject 8 58
subject 9 47
subject 10 45
subject 11 43
subject 12 40
subject 13 38
subject 14 27
subject 15 27
Total 4088

Table 1: Number of interictal epileptiform discharges
detected by Persyst 14 at the low sensitivity setting.

table 1.

3.2. Signal power

The power of the spike events annotated by Persyst is
reported as a function of inter-electrode distance. The
power is reported as an average across channels for the
channels selected by the channel selection algorithm
when 1-10 channels are selected. Figure 5.a shows that

the median spike RMS at an inter-electrode distance of
2 cm is 4 µV and increases to 12 µV at 8 cm. The SNR
is shown as a function of distance in 5.b. As opposed to
the spike RMS, It shows a near equal SNR independent
of distance with a median SNR of 1.4 at 2 cm and 1.5
at 8 cm. This implies that both the power of the spikes
as well as the background noise are reduced by an equal
amount when reducing the inter-electrode distances.

3.3. Correlation between Persyst and the max-SNR
pipeline

In order to validate our computationally efficient max-
SNR based spike detection pipeline, we compared
the spikes detected by Persyst to the spikes detected
by the max-SNR based detection pipeline when
electrodes were referenced to Cz and 32 channels
were selected using the automatic channel selection
algorithm. Both algorithms detect events such that
the average spike waveform of both algorithms have a
very high correlation. The distribution of average spike
correlations is given in figure 6.b. It shows a median
correlation of 0.94. An example of the average spike
of both algorithms for subject 15 is given in 6.a. The
number of events detected by the max-SNR algorithm
is four times higher than the number of events Persyst
detected at the low sensitivity setting. In total, across
all subjects, the max-SNR algorithm detected 16937
events while Persyst detected 4088.

3.4. Cohen’s kappa coefficient as a function of number
of EEG units and distance

Cohen’s kappa coefficient of agreement is computed
between the max-SNR spike detections on 32 channels
referenced to Cz and max-SNR spike detections when
the number of channels was restricted between one and
ten and the inter-electrode distance was fixed to 2, 3.5,
5, 6.5, 8 cm. A boxplot of these different comparisons
is shown in figure 7. The median of Cohen’s kappa
coefficient increases both with the number of units
and with the inter-electrode distance. For an inter-
electrode distance of 2 cm, the median coefficient is
always below 0.5 for three or less nodes. From 3.5 cm,
it increases above 0.5 for two or more EEG units.

The Bayesian framework is used to test the
confidence of these findings. All simulated MCMC
reported convergence with the Gelman-Rubin statistic
equal to one for all variables. The probability of the
mean Cohen’s kappa coefficient being greater than 0.5
is reported in figure 8. It shows a probability < 95%
when using a single EEG unit. It shows a probability >
95% when using seven or more EEG units at distances
of 2 and 3.5 cm. It shows a probability > 95% when
using two or more EEG units at distances of 5 cm or
more.
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Figure 5: Boxplots of (a) spike root-mean-square (RMS) amplitude as a function of distance and (b) spike RMS
to noise RMS ratio as a function of distance over 15 subjects and 1-10 EEG channels.
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Figure 6: Comparison of the average spike event from patient 15 detected by Persyst and by the max-SNR
pipeline. (a) Example average spike event : (left) Persyst, (right) max-SNR pipeline. One second of data is
shown with 32 electrodes referenced to Cz. (b) Histogram across all patients of the Pearson correlation between
the average spike event of both algorithms.

4. Discussion

In this paper, we investigated the effect of inter-
electrode distance and influence of the number EEG
channels on the ability to record and detect spikes using
a set of galvanically isolated miniature EEG sensor
units. We analyzed data recorded for clinical purposes
with a 257 electrode HD-EEG setup. We annotated the
data for spikes using the Persyst 14.D tool, which has
been widely utilized in clinical practice and research for
seizure and spike detection on EEG. We then measured
the RMS amplitude of the detected spikes after re-
referencing to short inter-electrode distances. We
found that the median RMS of spike events measured

with an inter-electrode distance of 2 cm was 4 µV
(see figure 6.A). This is about three times lower signal
power than found at greater electrode distances and
results in signals that are close to the noise floor of
standard EEG equipment. In standard clinical care,
the American Clinical Neurophysiology Society states
that EEG recording devices should add less than 1
µV peak-to-peak noise at any frequency in the band
[0.5 - 100] Hz [37]. This is in line with amplifier
technology commonly found in EEG equipment, such
as the Texas Instrument ADS1299 which claims an
input referred-noise of 1 µV peak-to-peak [38]. This
indicates that EEG devices with short inter-electrode
distances should aim for lower input referred noise.
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scenarios (varying distance and number of channels) using a max-SNR pipeline and a reference max-SNR pipeline
on 32 channels referenced to Cz. The different colors represent different number of EEG units. The dashed grey
line shows the agreement between human raters.
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Figure 8: Probability in a Bayesian model of observing a mean Cohen’s kappa coefficient of agreement > 0.5
between spike events detected in different test scenarios (varying distance and number of EEG units) using a
max-SNR pipeline and a reference max-SNR pipeline on 32 channels referenced to Cz. The black line shows the
95% probability boundary.

This is a similar observation as in [39]. Our findings
suggest that devices aiming for 2 cm inter-electrode
distance should be designed for an input referred noise
< 300 nV (three times lower than current standard as
suggested by spike amplitude). We also compared the

spike RMS to the non-spike RMS (SNR) as a function
of inter-electrode distance. This SNR results both from
physiological processes as well as extra-physiological
such as electronic noise. We found a ratio of 150%.
This is in line with the definition of spikes, which state
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that spikes should stand out from the background EEG
activity [26]. The SNR was only minimally impacted
by the inter-electrode distance with the SNR at 140%
for an inter-electrode distance of 2 cm. This indicates
that spike activity is still distinguishable at 2 cm with
scalp EEG. This also means that the amplitude of the
spikes and the noise (i.e. background non-spike EEG)
is reduced with a similar factor. A similar observation
was also made in [39] for the case of event-related
potentials.

We compared the spike annotations from the
Persyst software on the original 257 electrodes to the
annotations using our channel selection and detection
pipeline constrained to 32 channels referenced to Cz.
We found that Persyst detected about four times less
spikes than our proposed algorithm. However, we
observed a median Pearson correlation of 0.94 between
the average spike event detected by both algorithms,
with a single subject with a correlation of less than
0.77. For this subject, Persyst does not detect a
clear spike pattern. The maximum amplitude of the
average spike is 9 µV with no clear spike morphology.
The high median correlation indicates a very good
agreement on the morphology of spikes between both
algorithms and is a point of validation to demonstrate
that our algorithm does detect valid spike events.
This indicates that the additional spikes detected by
the max-SNR filter are actual spikes instead of false
positives, implying that Persyst misses a large fraction
of the spike events. The latter is expected, since
we set Persyst to low sensitivity mode because this
is the mode with the highest specificity. In this
setting, Reus et al. observed a specificity of 99%
when compared to human experts [28]. This setting
allows us to use Persyst as reliable ground truth data
to accurately estimate the Rs covariance matrix with
minimal leakage of non-spike events in the estimation
of Rs.

We compared the spike annotations between a
baseline version of our detection pipeline referenced
to Cz in a 32 channel setting with the annotations
from our pipeline constrained to short inter-electrode
distances and less than ten channels. We used the
Bayesian estimation framework [35] to estimate the
probability of obtaining high agreement. This Bayesian
testing confirmed a probability > 95% of obtaining
an agreement > 0.5 for inter-electrode distances
greater than 5 cm when using two or more EEG
units (which corresponds to an agreement that is at
least as good as an inter-rater agreement of human
annotators, for which Cohen’s kappa is 0.49 [27]). In
general, we found an influence of both the distance
and the number of EEG units on Cohen’s kappa
coefficient of agreement, while increasing distance
increases agreement. Increasing the number of EEG

units also increases agreement. In particular going
from a single to two (or more) EEG units results
in a major increase in the kappa coefficient. From
figure 7 and figure 4, we can also observe the interaction
between the inter-electrode distance and the number
of nodes. It is observed that the influence of the
number of EEG units is stronger at small inter-
electrode distances (i.e. between 2 and 3.5 cm). For
such short distances, there is a clear added value when
increasing the number of EEG units. For distances
of 5 cm or higher, good performance is obtained with
merely 3 EEG units, and there is not much to gain
anymore when we increase the number of EEG units.
For the shortest distance (2 cm), at least 4 EEG
units are required to obtain a median performance
that exceeds the agreement of human raters, whereas 2
EEG units are enough to reach this agreement level if
the inter-electrode distance is 3.5 cm or higher. These
findings indicate that a network of galvanically isolated
short distance EEG units is an appropriate setup to
monitor spikes and is comparable to a 32 channel setup
referenced to Cz. It also shows that carefully placed
units and increasing the number of units can counteract
the decrease in performance obtained by shortening the
inter-electrode distance.

Current efforts to miniaturize EEG systems are
not limited to the field of epilepsy. In the hearing aid
community, several research groups have investigated
miniaturization of EEG systems to integrate them with
hearing aids. In a recent study, Mundanad Narayanan
et al. showed that for inter-electrode distances equal
or greater to 3 cm, the decoding of neural responses to
speech was not significantly worse to that achieved with
long distance channels referenced to the Cz electrode
[15] when using an appropriate number of EEG units.
While a direct comparison to a spike detection task is
impossible, given the differences in the nature of the
neural response localization and amplitude, both our
study and the studies in the hearing aid community
show networks of galvanically isolated short distance
EEG units are able to capture an EEG signal of
interest.

The design objective of short distance EEG
units is to allow for measurement of EEG in real-
life conditions. This study was conducted on data
acquired in a hospital setting. Recordings obtained
in uncontrolled conditions during everyday life are
expected to contain more artifacts than measured in
the controlled setting of the epilepsy monitoring unit.
Therefore, reproducibility of the findings we report
on a minimal number of channels and inter-electrode
distance should now be tested in everyday life activity
conditions. When designing an ambulatory setup,
robustness should be considered. This could be done
by increasing the number of channels and/or inter-
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electrode distance above our minimal requirements
findings. Improvements to the spike detection
algorithm could also be made for example by building
a filter that discriminates between epileptic spikes and
non-epileptic peak interferers as was suggested in [8].

5. Conclusion

We found that EEG recording equipment should be
specifically designed to measure the small signal power
at short inter-electrode distance by providing an input
referred noise < 300 nV. We also found an inter-
electrode distance of 5 cm between electrodes in a
setup with a minimum of two EEG units is required to
obtain near equivalent performance in interictal spike
detection to standard EEG. These findings provide
design guidelines for EEG equipment miniaturization
in the context of detection of interictal epileptic
discharges.

6. Acknowledgements

We thank Michael Guess from Persyst (Solana Beach,
CA, USA) and Astrid Devulder (UZ Leuven, Belgium)
for their help in configuring and running the Persyst
analyis. We also thank Olaf B. Paulson, Lars Pinborg,
Sándor Beniczky and the Neurobiology Research Unit
of Rigshospitalet (Copenhagen, Denmark) for their
thorough work in collecting, documenting and sharing
the HD-EEG dataset.

This work was supported by VLAIO and Byteflies
through a Baekeland grant (HBC.2018.0189), FWO
project nr. G0A4918N, the European Research
Council (ERC) under the European Union’s Horizon
2020 Research and Innovation Programme (grant
agreement No 802895), and the Flemish Government
(AI Research Program).

References

1. Beghi, E. et al. Global, regional, and national
burden of epilepsy, 1990–2016: a systematic
analysis for the Global Burden of Disease Study
2016. The Lancet Neurology 18, 357–375 (2019).

2. Sinha, S. et al. American Clinical Neurophysi-
ology Society Guideline 1: Minimum Technical
Requirements for Performing Clinical Electroen-
cephalography. Journal of clinical neurophysiol-
ogy 33, 303–307 (4 2016).

3. Baud, M. O. et al. Multi-day rhythms modulate
seizure risk in epilepsy. Nature Communications
9, 1–10 (1 2018).

4. Karoly, P. J. et al. Interictal spikes and epileptic
seizures: their relationship and underlying rhyth-
micity. Brain 139, 1066–1078 (4 2016).

5. Krendl, R., Lurger, S. & Baumgartner, C. Abso-
lute spike frequency predicts surgical outcome in
TLE with unilateral hippocampal atrophy. Neu-
rology 71, 413–418 (6 Aug. 2008).

6. Duun-Henriksen, J. et al. Channel selection for
automatic seizure detection. Clinical Neurophysi-
ology 123, 84–92 (1 2012).

7. Vandecasteele, K. et al. Visual seizure annotation
and automated seizure detection using behind-
the-ear electroencephalographic channels. Epilep-
sia 61, 766–775 (4 2020).

8. Dan, J., Vandendriessche, B., Paesschen, W. V.,
Weckhuysen, D. & Bertrand, A. Computationally-
Efficient Algorithm for Real-Time Absence
Seizure Detection in Wearable Electroencephalog-
raphy. International Journal of Neural Systems
30 (11 2020).

9. Tacke, M. et al. Effects of a reduction of the
number of electrodes in the EEG montage on the
number of identified seizure patterns. Scientific
Reports 12, 1–7 (1 Mar. 2022).

10. Casson, A. J. Wearable EEG and beyond.
Biomedical Engineering Letters 9, 53–71 (1 2019).

11. Valentin, O. et al. Custom-Fitted In- and Around-
the-Ear Sensors for Unobtrusive and On-the-Go
EEG Acquisitions: Development and Validation.
Sensors 21, 2953 (9 2021).

12. Swinnen, L. et al. Accurate detection of typical
absence seizures in adults and children using
a two-channel electroencephalographic wearable
behind the ears. Epilepsia 62, 2741–2752 (11
2021).

13. Frankel, M. A. et al. Wearable Reduced-Channel
EEG System for Remote Seizure Monitoring.
Frontiers in Neurology 12, 1842 (2021).

14. Zibrandtsen, I. C., Kidmose, P., Christensen,
C. B. & Kjaer, T. W. Ear-EEG detects ictal and
interictal abnormalities in focal and generalized
epilepsy – A comparison with scalp EEG
monitoring. Clinical Neurophysiology 128, 2454–
2461 (12 2017).

15. Narayanan, A. M., Zink, R. & Bertrand, A.
EEG miniaturization limits for stimulus decoding
with EEG sensor networks. Journal of Neural
Engineering 18, 056042 (5 2021).

16. Baijot, M. et al. A miniature EEG node for
synchronized wireless EEG sensor networks in
(MDPI, 2021).

17. Bertrand, A. Distributed Signal Processing for
Wireless EEG Sensor Networks. IEEE Transac-
tions on Neural Systems and Rehabilitation Engi-
neering 23, 923–935 (6 2015).



REFERENCES 14

18. Epstein, C. M. & Brickley, G. P. Interelectrode
distance and amplitude of the scalp EEG. Elec-
troencephalography and Clinical Neurophysiology
60, 287–292 (4 Apr. 1985).

19. Quon, R. et al. AiED: Artificial intelligence for
the detection of intracranial interictal epilepti-
form discharges. Clinical neurophysiology 133, 1–
8 (2022).

20. Jin, J., Dauwels, J., Cash, S. & Westover,
M. SpikeGUI: software for rapid interictal
discharge annotation via template matching and
online machine learning. Annual International
Conference of the IEEE Engineering in Medicine
and Biology Society 2014, 4435–4438 (2014).

21. Jing, J. et al. Rapid annotation of interictal
epileptiform discharges via template matching
under Dynamic Time Warping. Journal of
neuroscience methods 274, 179–190 (2016).

22. Lodder, S., Askamp, J. & van Putten, M. Inter-
ictal spike detection using a database of smart
templates. Clinical neurophysiology 124, 2328–
2335 (12 2013).

23. Veen, B. D. V. & Buckley, K. M. Beamforming:
A Versatile Approach to Spatial Filtering. IEEE
ASSP Magazine 5, 4–24 (2 1988).

24. Dan, J., Geirnaert, S. & Bertrand, A. Grouped
variable selection for generalized eigenvalue
problems. Signal Processing 195 (2022).

25. Harid, N. M. et al. Measuring expertise in identi-
fying interictal epileptiform discharges. Epileptic
Disorders 24, 496–506 (3 2022).

26. Kural, M. A. et al. Criteria for defining interictal
epileptiform discharges in EEG. Neurology 94,
e2139–e2147 (20 2020).

27. Jing, J. et al. Interrater Reliability of Experts in
Identifying Interictal Epileptiform Discharges in
Electroencephalograms. JAMA neurology 77, 49–
57 (1 2020).

28. Reus, E., Cox, F., van Dijk, J. & Visser,
G. Automated spike detection: Which software
package? Seizure 95, 33–37 (2022).

29. Bushby, K. M., Cole, T., Matthews, J. N.
& Goodship, J. A. Centiles for adult head
circumference. Archives of Disease in Childhood
67, 1286–1287 (10 1992).

30. Brummelen, G. V. Heavenly mathematics: The
forgotten art of spherical trigonometry (Princeton
University Press, 2012).

31. Wouters, J., Kloosterman, F. & Bertrand, A. A
data-driven regularization approach for template
matching in spike sorting with high-density
neural probes. Annual International Conference
of the IEEE Engineering in Medicine and Biology
Society. 2019, 4376–4379 (2019).

32. Steinarsson, S. Downsampling Time Series for
Visual Representation (University of Iceland,
2013).

33. Basu, S., Banerjee, M. & Sen, A. Bayesian
Inference for Kappa from Single and Multiple
Studies. Biometrics 56, 577–582 (2 2000).

34. Ferrari, S. & Cribari-Neto, F. Beta Regression
for Modelling Rates and Proportions. Journal of
Applied Statistics 31, 799–815 (7 2004).

35. Kruschke, J. K. Bayesian estimation supersedes
the t test. Journal of experimental psychology
142, 573–603 (2 2013).

36. Salvatier, J., Wiecki, T. V. & Fonnesbeck,
C. Probabilistic programming in Python using
PyMC3. PeerJ Computer Science 2016, e55 (4
2016).

37. Halford, J. J., Sabau, D., Drislane, F. W.,
Tsuchida, T. N. & Sinha, S. R. American Clinical
Neurophysiology Society Guideline 4: Recording
Clinical EEG on Digital Media. Journal of clinical
neurophysiology 33, 317–319 (4 2016).

38. ADS1299-x Low-Noise, 4-, 6-, 8-Channel, 24-
Bit, Analog-to-Digital Converter for EEG and
Biopotential Measurements datasheet ADS1299.
Rev. C. Texas Instruments (2017). https://www.
ti.com/lit/gpn/ads1299.

39. Bleichner, M. G. et al. Exploring miniaturized
EEG electrodes for brain-computer interfaces. An
EEG you do not see? Physiological reports 3 (4
2015).


