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Abstract

Advances in electroencephalography (EEG) equipment now allow
monitoring of people with epilepsy in their daily-life environment. The
large volumes of data that can be collected from long-term out-of-clinic
monitoring require novel algorithms to process the recordings on board
of the device to identify and log or transmit only relevant data epochs.
Existing seizure-detection algorithms are generally designed for post-
processing purposes, so that memory and computing power are rarely
considered as constraints. We propose a novel multi-channel EEG signal
processing method for automated absence seizure detection which is
specifically designed to run on a microcontroller with minimal memory
and processing power. It is based on a linear multi-channel filter that is
precomputed offline in a data-driven fashion based on the spatial-
temporal signature of the seizure and peak interference statistics. At run-

time, the algorithm requires only standard linear filtering operations,




which are cheap and efficient to compute, in particular on
microcontrollers with a multiply-accumulate unit (MAC). For validation,
a dataset of eight patients with juvenile absence epilepsy was collected.
Patients were equipped with a 20-channel mobile EEG unit and
discharged for a day-long recording. The algorithm achieves a median of
0.5 false detections per day at 95% sensitivity. We compare our algorithm
with state-of-the-art absence seizure detection algorithms and conclude

it performs on par with these at a much lower computational cost.

IR

https://lirias.kuleuven.be /retrieve /579204

(article begins on next page)




Computationally-efficient algorithm for real-time absence seizure detection in

wearable electroencephalography

Jonathan Dan
STADIUS - ESAT KU Leuven, Leuven, Belgium
Byteflies, Antwerp, Belgium

Benjamin Vandendriessche
ECSE - Case Western Reserve University, Cleveland, Ohio, United States of America
Byteflies, Antwerp, Belgium

Wim Van Paesschen
Neurology - UZ Leuven, Leuven, Belgium
Department of Neurology - KU Leuven, Leuven, Belgium

Dorien Weckhuysen
Neurology - Kempenhaeghe, Heeze, Netherlands

Alexander Bertrand
STADIUS - ESAT KU Leuven, Leuven, Belgium
E-mail: alexander.bertrand@kuleuven.be

Advances in electroencephalography (EEG) equipment now allow monitoring of people with epilepsy in
their daily-life environment. The large volumes of data that can be collected from long-term out-of-clinic
monitoring require novel algorithms to process the recordings on board of the device to identify and log
or transmit only relevant data epochs. Existing seizure-detection algorithms are generally designed for
post-processing purposes, so that memory and computing power are rarely considered as constraints. We
propose a novel multi-channel EEG signal processing method for automated absence seizure detection
which is specifically designed to run on a microcontroller with minimal memory and processing power.
It is based on a linear multi-channel filter that is precomputed offline in a data-driven fashion based on
the spatial-temporal signature of the seizure and peak interference statistics. At run-time, the algorithm
requires only standard linear filtering operations, which are cheap and efficient to compute, in particular
on microcontrollers with a multiply-accumulate unit. For validation, a dataset of eight patients with
juvenile absence epilepsy was collected. Patients were equipped with a 20-channel mobile EEG unit and
discharged for a day-long recording. The algorithm achieves a median of 0.5 false detections per day at
95% sensitivity. We compare our algorithm with state-of-the-art absence seizure detection algorithms
and conclude it performs on par with these at a much lower computational cost.
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1. Introduction

Epilepsy is one of the most common severely dis-
abling brain conditions, affecting over 46 million
people worldwide.! The clinical utility of monitor-
ing epileptic seizures has been amply documented.?
For example, it is used for optimizing antiepilep-

tic therapy and for the development of new drugs.
Until recently, long-term monitoring of epilepsy
relied mostly on patient-reported outcomes and
occasional short duration electroencephalographic
(EEG) recording in hospital-based epilepsy monitor-
ing units to document epileptic discharges. Such in-
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hospital recordings rarely contain actual electroclin-
ical seizures as these are relatively unlikely to occur
during the very short recording sessions.? For a small
proportion of people with epilepsy, typically those
selected for surgical treatment, this can eventually
be complemented by additional (one to several day-
long) video-EEG recordings in specially equipped
hospital units.? Epilepsy monitoring units confine
recordings within a hospital room, imposing restric-
tion on patients’ movement and activity. These hos-
pital recordings also incur significant expenses.*

Epilepsy is classified in different syndromes and
seizure types. Typical absence seizures are general-
ized seizures that occur in people with juvenile ab-
sence epilepsy and childhood absence epilepsy syn-
dromes. These seizures are characterized by sudden
impairment of consciousness lasting a few seconds.’
The seizures are associated with a bilateral, syn-
chronous, and symmetrical EEG discharge of 3Hz
spike and wave complexes.® Given the lack of dis-
tinctive movement or other clinical manifestations, it
is difficult for people with absence seizures or their
caretakers to accurately detect and count seizures,
and report them to the clinician. An ambulatory
EEG study in people with absence seizures found
that only 6% of seizures lasting more than three
seconds were reported.” Due to this severe under-
reporting, a wearable EEG device that automatically
detects and logs absence seizures in daily life situa-
tions would be a valuable asset for the people with
epilepsy and the clinician.

The emergence of miniature EEG devices that
can record EEG outside a hospital or lab environ-
ment enables ambulatory measurements in a real-life
setting.812 This allows long-term recordings, which
have a much higher chance of capturing seizures.'
In addition, seizures resulting from epileptic triggers
that would not occur in the hospital can be recorded,
sleep patterns are not disturbed, and the neurologist
has access to a more representative recording of the
patient’s seizures. In order for these new EEG devices
to be accepted and worn by people with epilepsy out-
side the hospital for prolonged periods of time, the
devices need to be designed to be comfortable, minia-
ture, wearable and discreet. Such EEG devices could
be used to monitor people with epilepsy over long
periods of time, generating large amounts of data.
In turn, this would require automated data analysis
to extract relevant biomarkers from large datasets

as the amount of manual annotation work would not
be manageable realistically by an epileptologist. Fur-
thermore, the recorded EEG data have to be pro-
cessed on the device itself in order to minimize the
amount of data that have to be logged within the de-
vice or transmitted to the cloud. This would ensure
a sufficiently long battery lifetime.

Many seizure detection algorithms have been
proposed for use in the clinic.'%1® Most of these are
not built for a specific seizure type and are operated
offline on data collected during routine clinical ob-
servation in epilepsy monitoring units. Only a few
algorithms have been designed specifically for peo-
ple with absence seizures.'®720 In even fewer of these
studies, algorithms were designed to run on wear-
able systems. In contrast to algorithms developed to
run in a hospital without strict computational con-
straints (as they can rely on powerful servers con-
nected to the hospital network),'> algorithms for
wearable systems must meet with strict storage, com-
puting memory, and computing power constraints.
The challenge of developing energy efficient seizure
detection algorithms has also highlighted by teams
working on long-term intracranial EEG for use in
implanted devices.?1723

In this paper we propose a fully automated
seizure detection algorithm specifically designed to
run on a microcontroller. The algorithm is based
on a linear filter that is designed in a data-driven
fashion to maximally amplify absence seizure sig-
nals while optimally attenuating peak interference.
This framework is inspired by work from Wouters
et al. in spike sorting where a template matching
algorithm is used.?* Wouters et al. propose to opti-
mize a data-driven filter in terms of separation of tar-
get signal and peak interferences, thereby maximiz-
ing the signal-to-peak interference ratio. This is an
adaptation of classical data-driven filters that opti-
mize signal-to-noise (SNR) ratio. It is then applied as
a linear filter-and-sum operation with finite impulse
response (FIR) filters. FIR filtering is a standard sig-
nal processing operation that can be efficiently imple-
mented in low-power hardware, in particular when a
dedicated multiply-accumulate (MAC) unit is avail-
able.

The paper is organized as follows. The data col-
lection and the data-driven filter design are presented
in section 2. The results of the proposed algorithm
are reported and compared to other state-of-the-art
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absence seizure detection algorithms in section 3.
The results are discussed in section 4 and conclu-
sions are drawn in section 5.

2. Materials & methods
2.1. Data collection and annotation

The main dataset used in this study consisted of
recordings performed in out-of-clinic environments.
An additional validation dataset was assembled from
retrospective recordings obtained in a hospital set-
ting to validate the generalizability of the proposed
algorithm to new independent data sets with addi-
tional patients and different recording equipment.

For the main dataset, EEG signals were ob-
tained from eight patients with refractory juvenile
absence epilepsy recruited at the epilepsy reference
center of the UZ Leuven university hospital (Bel-
gium) (Table 1). Inclusion criteria were age of 18
or above, and diagnosis of refractory juvenile ab-
sence epilepsy ascertained by an expert neurologist.
Exclusion criteria for data analysis were the ab-
sence of recorded absence seizures. Participants were
equipped at the hospital with a 20 channel Me-
datec BrainWalker3 (Braine-le-Chateau, Belgium)
portable EEG amplifier (10-20 system) sampling at
200Hz and then discharged for ambulatory continu-
ous EEG recording until the next day. During the
recording, they were allowed to proceed with their
daily life activities (the only restriction was not wash-
ing their hair).

For the independent validation dataset, EEG
recordings from 17 patients with refractory juvenile
absence epilepsy who visited the epilepsy monitor-
ing unit during the period 2016-2019 were aggre-
gated (Table 2). The patients were recorded within
the video-EEG unit for a day-long monitoring using
a 20 channel BrainRT Brainbox 1042 EEG recorder
(Kontich, Belgium) sampling at 250Hz. Throughout
those recordings, the patients stayed in the video-
EEG monitoring room. The first eight patients from
table 2 are the same as as the patients in table 1.

Absence seizures, defined as electroencephalo-
graphic generalized spike and wave discharges , were
annotated by an expert epileptologist from UZ Leu-
ven. It is noted that epileptiform graphoelements
with a duration of less than three seconds are gener-
ally associated with interictal activity.?® It depends
on the targeted use case whether such shorter events

should be flagged by a detection algorithm or not,
and so whether their detection should be treated as
true or false positives. In this work, this choice was
avoided by excluding all epileptiform segments with
a duration shorter than three seconds from the anal-
ysis.

The study was approved by the local ethics com-
mittee and written informed consent was obtained
from all participants.

2.2.  Seizure detection algorithm

Our proposed seizure detection algorithm is a pre-
trained spatio-temporal filter, implemented as a
filter-and-sum pipeline; followed by thresholding on
the power of the single-channel output signal. This
approach is illustrated in Figure 1.
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Figure 1. Illustration of the seizure detection algorithm.
Bandpass filtered multichannel EEG signal (top left,
blue) is fed to a pre-trained (see Fig. 2) spatio-temporal
filter (right) implemented as a filter-and-sum pipeline
where each FIR filter has L filter coefficients (‘taps’).
This results in a single-channel output (bottom, blue).
The time-varying standard deviation (RMS value) of this
filter output signal is computed (bottom, orange). All
samples above a set threshold (bottom, black) are labeled
as seizures.

The training of the filter coefficients is done in
a two-step approach. First, peak interferences are
detected by training and applying a purely spa-
tial filter that maximizes the seizure power to non-
seizure power ratio. The 40 minutes of highest power
of the single-channel output (excluding seizure seg-
ments) are labeled as peak interference. Then, a sec-
ond spatial-temporal data-driven filter that maxi-
mizes the seizure to peak interference ratio (SPIR) is
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Table 1.

Patients with juvenile absence epilepsy recruited for 24h out-of-clinic EEG monitoring. Sex:
F (female), M (male); Age in years; Seizure types: A (absence seizure), GTCS (generalized tonic--
clonic seizure), M (myoclonic seizure); Antiepileptic medication: CLB (clobazam), CZP (clonazepam),
LCM(lacosamide), LEV (levetiracetam), LTG (lamotrigine), PER (perampanel), TPM (topiramate),
VPA (valproic acid); Median seizure duration in seconds

Patient Sex Age Seizure types Antiepileptic Recorded Seizure Recording

medication seizures duration duration

1 F 49 A, GTCS,M CZP,LEV, TPM, 0 NA 05:53:30
VPA

2 F 25 A, GTCS LEV, LTG, PER 41 26 22:43:47

3 M 18 A, GTCS LCM, VPA 8 10 21:45:00

4 M 24 A LTG, PER, VPA 0 NA NA

5 F 42 A, GTCS CLZ, LCM, VPA 5 8 21:18:20

6 F 22 A, GTCS LTG 5 4 21:55:33

7 F 20 A, GTCS CLB, LCM 24 13 21:43:40

8 F 24 A, GTCS,M CZP, LTG, VPA 18 9 21:50:40

Table 2. Patients with absence epilepsy recruited for 24h in-hospital EEG monitoring. Sex:

F (female), M (male); Age in years; Seizure types: A (absence seizure), GTCS (generalized
tonic-clonic seizure), M (myoclonic seizure); Antiepileptic medication: CLB (clobazam),
CZP (clonazepam), ESM (ethosuximide), LCM(lacosamide), LEV (levetiracetam), LTG
(lamotrigine), PER (perampanel), TPM (topiramate), VPA (valproic acid)

Patient Sex Age Seizure types Antiepileptic Recorded Recording

medication seizures duration
1 F 49 A,GTCS,M CZP,LEV, TPM, 5 21:59:25

VPA
2 F 25 A, GTCS LEV,LTG,PER 0 20:42:50
3 M 18 A, GTCS LCM, VPA 0 20:16:50
4 M 24 A LTG, PER, VPA 5 20:38:04
5 F 43 A, GTCS CLZ, LCM, VPA 0 14:01:40
6 F 22 A, GTCS LTG 0 20:56:13
7 F 20 GTCS CLB, LCM 0 19:02:21
8 F 24 A, GTCS,M CZP,LTG, VPA 0 20:12:47
9 M 28 A, GTCS,M ESM, VPA 20 19:54:40
10 F 30 A, GTCS  ESM, LEV,LTG 2 21:48:35
11 F 41 A, GTCS  ESM, LCM, LEV 10 19:44:12
12 M 24 A VPA 0 20:34:56
13 F 32 A LTG 0 21:22:48
14 F 47 A, GTCS  LEV, TPM, VPA 88 21:16:33
15 F 49 A, GTCS TPM, VPA 6 19:40:05
16 F 48 A LTG, TPM 40 19:54:04
17 F 33 A, GTCS LEV, LTG 43 21:54:56

trained. This filter can be adapted in terms of num- 2.2.1. Data preprocessing

ber of channels and number of time lags. A detailed
explanation of the algorithm is given in the following

subsections.

The data were high-pass and low-pass filtered with
a fourth-order Butterworth filter with a cut-off
frequency of 0.5Hz and 25Hz, respectively. The
data were then downsampled to 50Hz and re-
referenced to a longitudinal bipolar montage?® re-
sulting in 18 channels. Segments with a root mean
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square (RMS) amplitude of more than 400uV
over a window of 100ms were considered as non-
electroencephalographic (i.e. not of brain origin) and
excluded from the analysis along with 1.5 seconds
of data before and after each excluded segment of
100ms.

2.2.2. Data-driven filter design

The EEG signal in channel k is modeled as
Yi(t) = si(t) + ni(t) +ix(t)

where sy (t) corresponds to seizure-related EEG ac-
tivity, nk(t) corresponds to background EEG or noise
components that are not related to the seizure #, and
ir(t) corresponds to peak interference, i.e. artifacts
that occur sparsely in time with a high peak am-
plitude, e.g. due to chewing or eye blinking. Peak
interferers are typically the main source of false pos-
itives in a threshold-based seizure detection algo-
rithm, whereas the noise floor denoted by n(t) gen-
erally does not trigger a detection. Note that sg(¢)
and iy (t) are sparse processes, i.e. the signals are zero
most of the time, whereas the noise floor signal ny,(t)
is continuously active. The raw data in figure 1 show
periods where seizure activity, noise, and peak inter-
ference (chewing artifact) are respectively dominant.

Let y(t) € RY denote a N-dimensional vec-
tor containing the sample at time t collected at NV
EEG channels, ie. y(t) = [y1(t) ... yn]T, where
T denotes the transpose operator. The vectors s(t),
n(t), and i(¢) are defined similarly, such that y(¢) =
s(t) +n(t) +i(t). The N EEG channels are then lin-
early combined into a single-channel output signal

o(t).
o(t) = wly(t) (1)

where w € RY contains the combination weights.
From a signal processing point of view, w acts as a
spatial filter as it linearly combines different EEG
channels at different positions on the scalp. Our goal
is to find the optimal set of filter coefficients such
that the filter output signal o(t) has a maximal am-
plitude if a seizure is present, while suppressing the
noise floor and peak interferers as much as possible.
In other words, the filter w is optimized in a data-
driven fashion to maximize the SPIR of o(t) over a

training set, i.e. solving

B {(w7s(1)?)
B {(wT((8) + n(0))%) ®

maXyy,

where Es{.} denotes the expected value operator
evaluated over epochs in which a seizure is present,
and E;{.} denotes the expected value operator eval-
uated over signal segments during which a peak-
interferer is active.

Equation 2 is equal to:

wIRw

— 3
WTRi+nW ( )

maXy,

where R = F,{s(t)s(t)T} is the seizure covariance
matrix and Riyn = E{(i(t) +n(t))(i(t) + n(t))T},
is the peak-interference-plus-noise covariance matrix.
In subsection 2.2.3, we will explain how these covari-
ance matrices are estimated from the data. It can
be shown?” that the solution of the maximization
problem defined in equation 3 is the eigenvector cor-
responding to the largest eigenvalue of the matrix
R; R..

The filter described above is a purely spatial fil-
ter. It can be expanded to a causal spatio-temporal
filter by creating a buffer of L samples for each chan-
nel and stacking all buffered (time-lagged) samples
in a single vector y(t) = col{y1(t),...,¥yn(t)} where
Yi(t) = [yr(), ye(t=1), ..., yk(t—L+1)]" and col{.}
denotes a columnwise stacking. The output signal
o(t) is given by equation 1 where w is replaced by
w € RN and y(t) is replaced by y(t) € REYN. This
then corresponds to a filter-and-sum operation as de-
picted in Fig. 1, where each channel is filtered with a
channel-specific L-taps FIR filter, followed by a sum-
mation across channels. The filtering operation that
produces one output sample of o(t) is obtained by
LN multiplications and LN additions.

In this spatio-temporal extension, the covari-
ance matrices in equation 3 are replaced with
their spatio-temporal generalizations, i.e., Ry =
B{8(H8()7} and Rirn = E{((1) + a(t) () +
fi(t))T}. In the remainder of the paper, we shall al-
ways assume the spatio-temporal extension unless
otherwise specified, and omit the ~
convenience.

for notational

#In the remaining of the paper, we will refer to n(t) as the ‘noise’ component. The term noise should be read in the
signal processing terminology as non-target signal components, i.e., signal dynamics that are not related to a seizure.
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2.2.3. Covariance matrix estimation

In order to compute the optimal filter w, we need to
estimate the two covariance matrices Rg and Rjp
on a training data set, where the training data can
be either patient-specific or patient-independent (see
subsection 2.3).

In our implementation of the algorithm, the
seizure covariance matrix Rg was computed as P

Ro~ g > yy®)" (4)

where S is the set of all samples that are part of
epochs that were marked as “seizure” by an ex-
pert epileptologist. Similarly, the peak-interference
covariance matrix R4, was computed as

Risn ¥ 77 S ¥(O¥(0)'
tez
where 7 is the set of all samples that are part of
epochs that contain a peak interference. As opposed
to S, the set of samples that belong to Z are iden-
tified in an automatic fashion. To this end, again, a
data-driven filtering technique was used.

The signal was modeled as a linear combination
of a seizure time series s(¢) and a seizure-free time se-
ries f(t) (including noise-only and peak-interference-
plus-noise segments). A spatial filter p was then com-
puted as the eigenvector belonging to the largest
eigenvalue of Ry IR,, where the seizure covariance
matrix Rs was computed as in equation 4. The
seizure-free covariance matrix Rg¢ was computed on
the rest of the data. Note that in this prior step,
we do not use any temporal filtering, i.e. L is set to
1 resulting in a purely spatial filter. This filter was
then used to produce a single-channel output given
by pTy(t). The RMS over three seconds of the out-
put was computed. The 40 minutes of highest RMS
during seizure-free epochs were labeled as peak inter-
ference which then form the set Z. The set is formed
by ranking the signal by highest power, selecting the
sample with the highest power, extending the selec-
tion to three seconds around the sample and repeat-
ing until a total of 40 minutes are selected. This cap-
tures most of the peak interferers that appear during
a 24-hour recording such as, e.g. chewing artifacts,

eye blinking, speech artifacts, head motion, etc while
being short enough such that high power interferers
dominate the set Z. The process leading to the iden-
tification of the peak interferers and the training of
the max-SPIR filter is shown in figure 2.

2.2.4. Regularization

The inclusion of time lags substantially increases
the dimension of the covariance matrices, possibly
making them ill-conditioned due to the redundancy
in the entries of y(t). For this reason a regulariza-
tion scheme is required. Wouters et al.?® proposed
an effective regularization scheme for a template-
matching-filter that optimizes a similar cost func-
tion as in equation 3. The regularization is obtained
by projecting the data on a subspace containing the
main principal components of the denominator co-
variance matrix along with the template itself (to
represent the target signal). In this work we adapted
the method to our problem formulation. The data
were projected on a subspace defined as the span
of the principal components of the peak interference
R, and seizure Ry covariance matrices. The princi-
pal components with the largest eigenvalues of Rjip
and accounting for 90% of the variance in the inter-
ference segments were retained. The principal com-
ponents with the largest eigenvalues of Rg account-
ing for 95% of the variance in the seizure segments
were also retained. These two sets of principal com-
ponent vectors were then combined and orthogonal-
ized by placing them in the columns of a new matrix
M on which a singular value decomposition is ap-
plied to find an orthogonal basis for the subspace.
Let U = [u; ... uk] denote the matrix, the columns
of which consist of the K left singular vectors corre-
sponding to the largest singular values of M, where
the cut-off K is chosen such that the cumulated sum
of these singular values is at least 99% of the sum of
all singular values. The matrix U is then used as a
compression matrix on the data, i.e.,

ye(t) =UTy(t)

where y.(t) € RE. The optimal compressed filter

W, is then given as the eigenvector of (Rijrln ) Rsc,

PNote that, since the noise floor is always present, the resulting covariance matrix is actually an estimate for
Es(s(t) + n(t))(s(t) + n(t))T = Rs + Rn. If necessary, Rn can be estimated over noise-only epochs (without seizures
or peak interferers) and subtracted from the estimate of Rs. However, since absence seizures have a much higher ampli-
tude than the noise floor generated by background EEG, we have not applied this correction in our implementation.
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Figure 2. Ilustration of the three-stage process that is used to train the spatio-temporal max-SPIR filter. (1) Bandpass
filtered multichannel EEG (left, blue) is used to train a purely spatial max-SNR filter. The filter optimally amplifies the
epochs of epileptic activity and attenuates those of non-epileptic data. (2) Examples of peak interference are automatically
labeled based on the filtered data with the highest RMS power during non-epileptic epochs. (3) These peak interferences
and the epileptic activity epochs are used to train a max-SPIR spatio-temporal filter. In contrast to the max-SNR filter,
the max-SPIR filter will focus on suppressing peak interferers (which cause the majority of the threshold crossings) more

so than suppressing sub-threshold noise.

where Riinc = UTR;,,U and Rec = UTRU
correspond to the compressed matrices. The filter
output is then defined as o(t) = wclyc(t) which
is equivalent to an uncompressed filtering o(t) =
wly(t) with w = Uwe,. It is noted that this com-
pression is only applied with the purpose of regular-
ization during training to obtain a better (uncom-
pressed) filter w. During operation of the algorithm
(at test time), we always apply the full filter w on
the uncompressed data, as the compression with U
requires more computations than the filtering with
w.

2.2.5. Seizure detection

The power of the single-channel output o(t) was used
to detect samples corresponding to a seizure. The
RMS of o(t) over three seconds was calculated as
this duration is commonly used to define an ab-
sence seizure.® A threshold was then applied to the
running RMS signal, selected depending on the de-
sired sensitivity (see Section 3). This binary classifi-
cation (above or below threshold) classified samples
as seizure or non-seizure.

Several rules were applied to the output of the
binary classification to assess the performance of the
classification. Samples labeled as seizures and occur-
ring less than 1.5 seconds before the start or after
the end of a seizure were not counted as false posi-
tive. This was done to account for the settling time of
the rolling RMS. False positives occurring less than
30 seconds apart were merged as a single false posi-
tives. These rules were applied both to our proposed
algorithm and to the algorithms used as benchmark.

2.3. Cross-validation

When training and testing the seizure detection algo-
rithm in a patient-specific paradigm, care was taken
to separate the dataset in independent training and
testing sets. The seizure epochs were split in two folds
of equal size (referred to as seizure folds). The rest of
the data were split in four folds (referred to as non-
seizure folds) of continuous data (each non-seizure
fold contained approximately six hours of data).
Each training fold used one fold of seizure epochs
and three folds of non-seizure data. The obtained fil-
ter was then evaluated on the remaining seizure fold
and remaining non-seizure fold. This process was re-
peated for all possible combinations between seizure
and non-seizure training folds. An illustration of the
cross-validation scheme for the patient-specific case
is given in figure 3.

e o e o e
peak interference — training set
O  seizure — test set

Figure 3. Patient-specific cross-validation. The seizures
are split in two folds. The remaining data are split in
four folds. One seizure fold and three non-seizure folds
are used for training. The remaining seizure fold and re-
maining non-seizure fold are used for testing. This pro-
cess is repeated until all combinations of training and
testing folds are covered.

In the patient-independent paradigm, a leave-
one-patient-out approach was wused for cross-
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validation. The seizure Rg and peak interference
Riin covariance matrices were calculated for each
patient, normalized with respect to their trace, and
then averaged across patients to obtain the pair (Rsg,
Ritn) that is used for the filter design in equation
3. The process was repeated by systematically leav-
ing one patient out of the training of the filter and
testing on that patient.

As a final validation, the patient-independent
filter trained on the patients discharged for out-of-
clinic monitoring was evaluated on a second dataset
with additional patients and a different EEG device,
recorded in hospital. This was used as a validation
test to show that the algorithm is generalizable to
independent EEG recordings.

2.4. Channel selection

When evaluating the performance of the algorithm,
we investigated the effect of the number of channels
(N) on the performance. To this effect a channel se-
lection procedure that selects N out of all available
channels was used. It is based on a greedy forward se-
lection. In the first iteration, 18 single-channel SPIR
filters are trained and evaluated. The channel with
the best performance (in terms of false positives for
a sensitivity of 95%) was selected (N = 1). In the
next iteration, all subsets of two channels that in-
clude the previously selected channel were trained
and evaluated (N = 2). The process was repeated
until NV channels were selected. Note that the evalu-
ation of the best channels was done on the training
fold rather than the test fold. Although this may in-
troduce an overfitting bias to the training fold, the
reported performance (on the test fold) is fair in the
sense that the channel selection is not optimized with
respect to the test fold. The use of a separate valida-
tion fold for channel selection was not possible due
to the small amount of seizures in some patients.

2.5. Evaluation metrics

A varying seizure detection threshold was used to
map sensitivity, i.e. the percentage of seizures that
are detected by the algorithm, in function of false
positive count. This threshold was applied to the run-
ning mean of the RMS of the single-channel output
o(t) as explained in subsection 2.2.5. A measure of
false positive rate was used in place of specificity be-
cause seizures are very rare events and specificity of

the algorithm does not correctly assess the clinical
utility of seizure detection algorithms.?’

In the patient-specific paradigm, the false posi-
tives were averaged over the eight different test folds,
to calculate an average false positive rate per day.

Because energy efficiency of the algorithm is im-
portant when operating in real time on board of a
wearable device, the algorithm was also evaluated
in terms of memory usage and computing complex-
ity. The computing complexity was calculated as the
number of operations (summations and multiplica-
tions required by the algorithm). Single operations
that do not depend on the number of channels or
the number of samples were not counted.

2.6. Comparison with the state of the art

We compared our method with two state-of-the-art
algorithms for absence seizure detection using wear-
able EEG.'6:17 Kjaer et al.'® proposed a support-
vector machine (SVM) based classifier for use with
a single-channel EEG setup. The algorithm extracts
many features based both on amplitude and fre-
quency before applying a non-linear SVM classifier.
The algorithm suggested by Xanthopoulos et al.!” is
based on a multichannel wavelet-based algorithm fol-
lowed by a thresholding operation. These algorithms
were re-implemented as truthfully as possible based
on the original publications and evaluated on our
dataset. A more detailed description of the similar-
ities and differences between these algorithms and
our proposed method is given in the discussion.

3. Results

All results presented in this section are for the main
(ambulatory) dataset, unless mentioned otherwise.
Data from all but two subjects could be used for anal-
ysis. Data from patient 4 were lost due to a recording
error. Patient 1 had no seizures during the recording
time. These two subjects with no recorded seizures
were excluded from the analysis.

3.1. Performance analysis

Figure 4 shows the false positive rate in function of
seizure detection sensitivity when all (N = 18) bipo-
lar channels were used and the number of time lags
was set to L = 25 in a patient-specific paradigm. A
distribution of the false positive rate across the sub-
jects is shown for each sensitivity level. The median
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number of false positives per day for a sensitivity of
95% is 0.5. Note that we report the mean number
of false positives across the two seizure folds. This
is why the number of false positives per day are re-
ported as multiples of 0.5, despite the fact that we
never record longer than a day. In this context, a
value of 0.5 false positives per day within a patient
means that the filter trained on seizure fold 1 gener-
ates 0 false positives per day, while the filter trained
on seizure fold 2 generates 1 false positive per day.
When displaying results in a boxplot the following
conventions are used. The median is represented as
a bright square. The box extends from the first to
the third quartile. The whiskers extend to 1.5 times
the interquartile range (1.5 x @3 — @Q1). All points
outside this range are represented as large dots.

Table 3. Number of false positives per day for each
patient to detect all seizures and to detect all but
one seizure when all (N = 18) bipolar chan-
nels were used and the number of time lags was
set to L = 25 in a patient-specific paradigm.
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Figure 4. Boxplot (over the different subjects) of seizure
detection sensitivity as a function of false positives per
day when applying the data-driven filter with all (N =
18) channels and L = 25 time lags in a patient-specific
paradigm. Median is represented by an orange square,
outliers by a black circle.

Table 3 shows the number of false positives when
detecting all seizures and when detecting all but one
seizure in the different patients when all (N = 18)
bipolar channels were used and the number of time
lags was set to L = 25 in a patient-specific paradigm.
The patient with the greatest number of false posi-
tives per day when detecting all seizures has 2.5 false
detections per day. The median number of false de-
tections per day is 0.5. The median Fj score across
all patients is 0.95 (best between 100% sensitivity
and detection of all but one seizure).

Patient | Recorded False posi- False pos- Fj score
Seizures tives itives per

per day for day to de-

100% de- tect all but

tection one seizure
2 41 0 0 1
3 8 0.5 0.5 0.90
5 5 1.5 1.5 0.87
6 5 0.5 0 0.94
7 24 2.5 1 0.96
8 18 0 0 1

Figure 5 shows the number of false positives per
day for a sensitivity of 95% when varying both the
number of time lags (L) and the number of chan-
nels (N) in a patient-specific paradigm. The figure
shows a decrease of false positives when the number
of channels and/or the number of time lags increase.
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Figure 5. Median (over the different subjects) of seizure
false positives per day when setting the sensitivity to 95%
and varying the number of channels (N) and time lags
(L) in a patient-specific paradigm. Color represents false
positives per day. Dark blue represents a low number of
false detections, yellow a high number.

Figure 6 shows how the performance of the al-
gorithm varies in function of the number of chan-
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nels (N) that are used for the classification task with
L = 25 time lags in a patient-specific paradigm. The
number of false positives per day decreases with in-
creasing number of channels, reaching 0.5 false pos-
itives per day when using 10 channels.
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Figure 6. Boxplot (over the different subjects) of seizure
false positives per day when setting the sensitivity to
95% and varying the number of channels (N) when using
L = 25 time lags in a patient-specific paradigm.

Figure 7 illustrates the effect of the number of
available training seizures on the performance of the
algorithm. The algorithm was trained in a patient-
specific fashion using all (N = 18) channels and
L = 25 time lags. This graph shows results for three
patients (patients 2, 7 and 8), the only ones with
10 or more seizures. Figure 7a illustrates that the
number of available training seizures has very lit-
tle influence on the performance of the algorithm.
The spatio-temporal pattern in the seizure covari-
ance matrix estimated from one seizure (Fig. 7b) is
very similar to the seizure covariance matrix esti-
mated from all seizures (Fig. 7c).

Figure 8 compares the performance of the algo-
rithm when training in a patient-specific paradigm
compared to a patient-independent paradigm. Both
were generated using all (N = 18) channels and
L = 25 time lags. The sensitivity versus false posi-
tive rate starts diverging for sensitivities higher than
60%. For these higher sensitivities the false positive
rate per day is higher in the patient-independent
paradigm than in the patient-specific one. For a sen-
sitivity of 95% the patient independent-algorithm
makes a median of 6 false positives per day while

the patient-specific one makes 0.5 false positives per
day.
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Figure 7. (a) Median number of false positives per day
for a sensitivity of 95% when artificially limiting the num-
ber of training seizures, using all (N = 18) channels and
L = 25 time lags in a patient-specific paradigm. — (b)
Example of a seizure covariance matrix estimated from
one seizure — (c) Example of a seizure covariance matrix
estimated from all seizures in the same patient.

As a final validation, the patient-independent
filter trained on the out-of-clinic recordings was eval-
uated on the validation dataset of patients recorded
in hospital in order to test how well the pre-trained
filter generalizes to other data sets. For a detection
threshold that detects all 222 seizures in the dataset,
there were two false detections in two different pa-
tients across the whole dataset. An example of a true
detection and of a false detection are given in figure
9. Both detections occur while the patient is eating.
The artifacts resulting from chewing are well sup-
pressed in both examples. The seizure is correctly
amplified. In the case of the false detection some
noise with a seizure-like pattern triggers a false de-
tection.
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Figure 8. Median (over the different subjects) of seizure

detection sensitivity in function of false positives per day
when applying the data-driven filter with all (N = 18)
channels and L = 25 time lags in a patient-specific
paradigm (blue) and a patient-independent paradigm
(ocher).
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Figure 10. Comparison of the sensitivity in function of
false positives per day in four different seizure detection
algorithms in a patient-specific paradigm. SVM-N = 1
is the algorithm of Kjaer et al.'6 Wavelet-N = 18 is the
algorithm of Xanthopoulos et al.l”

Figure 10 shows a comparison of the perfor-
mance of our proposed algorithm with state-of-the-
art algorithms for patient-specific absence seizure de-
tection. Four seizure detection algorithms are shown
on the figure. The best performing classifier is a

nonlinear SVM classifier on a single-lead EEG.'¢
The best single-lead channel was investigated in the
work of Kjaer et al. For their algorithm, they found
F7—Fpl to be the best channel. It has a median false
positives per day across subjects of zero for sensitiv-
ities up to 85%. For higher sensitivities, the number
of false positives increases rapidly. The classification
method we propose (N = 10, L = 25) performs simi-
larly with 0.25 false positives per day for a sensitivity
of 85%. When the method we propose is restricted
to one channel (N = 1,L = 25), it generates 15
false positives per day. The multi-channel (N = 18)
wavelet-based algorithm does not perform well on
this dataset.'” It already has 15.5 false positives per
day for a sensitivity of 10%. The number of false
positives increases with higher sensitivities.

The memory usage of the method we propose
corresponds to the data that are buffered and in the
storage of the filter coefficients. The number of cal-
culations needed to classify are the result of applying
the data-driven filter and computing the RMS of the
single-channel output. The memory usage of the non-
linear SVM classifier on a single-lead EEG!6 resides
in a data buffer, the finite impulse response filter that
is used to calculate some features and in the support
vectors that need to be stored for classification of a
new epoch. The SVM algorithm uses an average of
403 support vectors (full range: [17, 1659]). The num-
ber of calculations needed to classify a new epoch are
the result of the feature extraction and classification
using a radial basis function kernel. The memory us-
age of the wavelet-based method!” lies in the data
that are buffered. The number of calculations needed
to classify a new epoch are the result of the contin-
uous wavelet transform and the transformation to a
single-channel output (variance of individual chan-
nels and mean over channels). The total number of
bytes of memory as well as the number of operations
(summations, multiplications, non-linear operations)
are reported in table 4. The number of operations is
reported as a normalized number of operations per
sample. For the window-based algorithms, the num-
ber of operations on a window is divided by the num-
ber of samples in the window. For comparison pur-
poses the sampling frequency of all algorithms was
set to 200 Hz. The algorithm we propose uses 100
bytes of memory in the single channel and 1 kB of
memory in the 10 channel configuration. The amount
of memory required and the number of computations
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Figure 9. An example of detected seizure (a) and of a false detection (b) in the validation dataset. The blue line is the
single-channel output of the filter. The orange line is the running mean of the RMS of the single-channel output. The
black dashed line is the detection threshold.

are linearly proportional to the number of channels
and the number of time lags (see subsection 2.2.2). Table 4. Memory consumption (bytes) and number
The SVM and the wavelet methods use respectively of operations of four seizure detection algorithms.

. proposed-N = 10: our proposed method with N = 10
12 kB and 8 kB of memory. The algorithm we pro- channels and L —= 25 time lags, proposed-N = 1:

pose executes 50 operations per sample period (25 our proposed method with one (N = 1) channel
summations and 25 multiplications) for one channel and L = 25 time lags, SVM-N = 1: a single-chan-
and 500 operations per sample period for 10 chan- nel classifier based on a SVM,'® wavelet-N = 11781
nels. The SVM uses a windowed approach and clas- a multichannel (N = 18) wavelet-based classifier.
sifies windows of two seconds. The algorithm exe- .

. ) . Memory  Operations per sample
cutes 6519 operations per sample period, of which 2 [bytes]
are non-linear (cosine and radial basis function). The
wavelet algorithm classifies windows of one second. proposed-N =10 | 1000 500
It executes 24012 operations per sample period. De- proposed-N = 1 100 50
tail the impl tati £ th leorithms that SVM-N =1 11976 6519
ails on the implementation of these algorithms tha wavelet-N — 18 3000 24012
allows to calculate the number of operations is given

in Appendix A.
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4. Discussion

In this paper we propose an absence seizure detection
algorithm specifically designed to run on a microcon-
troller or field-programmable gate arrays (FPGA).
We collected data in real-life, out-of-clinic environ-
ments using a portable EEG amplifier. It has a sen-
sitivity of 95% for 0.5 false positives per day when
using 10 EEG channels and 25 time lags. The algo-
rithm requires only 1000 bytes of memory and 500
operations per new sample (250 multiplications and
250 summations). This is well within the capabili-
ties of typical microcontrollers that would be found
in a wearable EEG device, such as ARM Cortex
MA4F.1%:12 The computational efficiency can be fur-
ther increased by reducing the number of channels or
the number of time lags (see Fig. 5 where the corre-
sponding trade-off is visualized), the sampling rate,
or by reducing the output sample rate of the spatio-
temporal filter, thereby avoiding the need to compute
a filter output sample for each input sample.

Low power requirements have several advan-
tages for the patient. First, it allows the use of
smaller size power supply, which is relevant con-
sidering that batteries are among the larger and
heavier components in a wearable device. This fa-
cilitates further miniaturization and concealability
of wearable EEG sensor devices. Second, requiring
less power allows for a longer recording time, which
in turn demands less manipulation effort from the
patient, who would not need to replace batteries
as often as in currently available devices. Further-
more, algorithms with a sufficiently low computa-
tional/memory footprint such that the processing
can be on board of the device itself allow to bypass
the need for a cloud-based processing, thereby elim-
inating an energy-intensive wireless transfer of the
raw data.

A sensitive seizure detection algorithm is a valu-
able asset to a neurologist in order to have a precise
idea of the number of seizures the patient is having.
It is well known that patients with absence epilepsy
have difficulties keeping an accurate seizure diary.
The algorithm we propose could be used by the neu-
rologist to considerably speed up the analysis of EEG
recordings. For this use, the algorithm is set to a sen-
sitivity of 100% and the neurologist is only given a
handful of events (including some false positives) to
review.

We investigated the effect of the number of
channels on the performance of the algorithm. The
performance of the algorithm greatly improved when
more channels were available. Ten well-chosen chan-
nels were sufficient to reach 0.5 false positives per
day for a sensitivity of 95% in all but one patient.
Using three channels was associated with a median
of eight false positives per day for a sensitivity of
95%.

We demonstrated that this method requires only
a very small number of example seizure data to train
a linear data-driven filter with good performance.
Results from the algorithm barely varied when train-
ing with one seizure compared to training with more
seizures. This was shown both in the performance of
the seizure detection algorithm when trained on a
low number of seizures and in the visual comparison
of the seizure covariance matrices (figure 7). This is
in contrast with other machine learning approaches
such as neural networks or SVMs,16,30,31
quire a large amount of training data before being
able to classify correctly. The need for very few anno-

which re-

tated samples to train our data-driven filter is a ma-
jor advantage over complex machine learning meth-
ods as this allows neurologists to reduce the time
they spend annotating EEG files. It also allows for
the use of transfer learning techniques where a pa-
tient independent version of the filter is refined based
on a small set of patient specific examples. While
only a small number of seizures are required to train
the algorithm, recording quality during these few ex-
amples influences the performance of the algorithm.
Patient 5 had only five seizures during the record-
ing period. All seizures were short and the recording
was of relatively low quality (i.e. noise during the
seizure). Patient 5 is the only patient to generate
more than 1 false detection per day for a 95% sensi-
tivity.

We compared the performance of our method in
a patient-specific paradigm to the same method in
a patient-independent paradigm. A patient-specific
approach is associated with a lower number of false
detections for the same sensitivity as it is able to
better capture the specific characteristics of seizures
and non-seizure data for that patient. This includes
information on the temporal content of seizures and
peak interferences as well as spatial information. A
patient-independent paradigm allows the algorithm
to be used on a patient for whom no previously an-



14 Jonathan Dan

notated data are available. This considerably broad-
ens the pool of patients who could potentially benefit
from this algorithm. However, the performance of the
algorithm deteriorates in the patient-independent
paradigm to six false detections per day. A trans-
fer learning approach could be used where a patient-
independent filter is used initially, and then updated
to a patient-specific filter when more data from the
patient become available. This is beyond the scope
of this study.

We verified that our algorithm was general-
izable to an independent dataset by applying the
patient-independent version of the algorithm trained
on patients recorded in a out-of-clinic environment
to a dataset collected in the hospital. Results from
these 17 in-hospital patients showed detection of 222
seizure events collected over more than 14 days of
recording which resulted in only two false detec-
tions across all patients. The very low number of
false positives illustrates that our recordings con-
ducted in a hospital setting contained less artifacts
than recordings collected in environments outside the
clinic. False detections are usually triggered when
the EEG contains high-amplitude noise and when
the spatio-temporal characteristics of this noise hap-
pen to overlap with the spatio-temporal character-
istics of seizures. As we showed in this study, this
is a rare event. We note that the algorithm can be
straightforwardly extended with a mechanism that
estimates the event duration based on a threshold-
ing of the filter output. In this case, it would be able
to distinguish between long epileptiform events and
short (typically interictal) epileptiform events. Fur-
thermore, if short interictal events are not of interest
to the neurologist, this mechanism can also be used
to reduce the number of false positives due to short
interfering events. However, since the distinction be-
tween ictal and interictal event duration is somewhat
arbitrary and because the necessity of it is use-case
specific, we did not take event duration into account
in our analysis.

We compared our proposed algorithm with two
state-of-the-art algorithms for absence seizure detec-
tion.1617 Kjaer et al.'6 designed an algorithm for
wearable single-lead EEG where data analysis is per-
formed off-line after the recording. The algorithm
extracts many EEG features that differentiate an
absence seizure from the rest of the EEG signal. A
nonlinear SVM classifier is then used to classify two-

second EEG epochs. The algorithm performs very
well when it is provided with enough training data
(more than five seizures). The SVM algorithm can-
not be ported directly onto a microcontroller such as
found on wearable EEG systems as the calculation
of the EEG features, and classification are compu-
tationally heavy processes. The single-channel SVM
classifier performed similarly to the multichannel
version we propose. We also compared our method to
a multichannel wavelet-based algorithm developed to
detect absence seizures. The algorithm shares some
underpinnings with the method we proposed as it is
based on a filtering step, reduction from multichan-
nel data to a single-channel output, and a thresh-
old on the single-channel output. However, that al-
gorithm does not use any spatial information on
seizures, imposing an equal weight on all channels.
That method does not have a data-driven mecha-
nism to suppress peak interferences so that large am-
plitude artifacts would also trigger the thresholding
mechanism leading to false positives. Another differ-
ence is that it uses wavelet-based filtering, which is
computationally expensive. Xanthopoulos et al. re-
port 4.8 false positives per day for a sensitivity of
80% on a dataset of six people with absence seizures
with a total of 40 hours of recording.!” The algorithm
performed less well on our dataset. Xanthopoulos et
al. identified that large amplitude artifacts trigger
false detections with their method. In our ambula-
tory EEG recordings, many such high amplitude ar-
tifacts are present. These are suppressed by our pro-
posed method by the spatial filtering.

The sample we used is small, though it appeared
to be informative. We also focused on ca. 24h record-
ings, so that generalization to multiple-day record-
ings requires further testing. It must be emphasized
that the algorithm focused on a single seizure type,
which is appropriate in some but not all epilepsy dis-
orders. Absence seizures are common in many forms
of epilepsy across all ages and they are the hallmark
seizure type in two epilepsy syndromes, namely child-
hood absence epilepsy and juvenile absence epilepsy.
However, in many epilepsies, they are not the only
seizure type occurring in a patient. In addition, other
seizure types may have a less characteristic EEG sig-
nature and may involve less channels, making accu-
rate detection more challenging.??

We believe this work is crucial to advance the de-
velopment of wearable seizure detection systems for
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long-term monitoring of people with epilepsy outside
of the hospital. Additional work is required to further
validate and test this algorithm and to actually inte-
grate it in a wearable EEG device. In such a device,
the location and distance between the electrodes will
be constrained by wearability considerations.?? Fur-
ther work will need to be done to investigate how the
distance between electrodes influences the algorithm
performance. In addition, validation of this method
in a larger patient cohort and during long term mon-
itoring is needed before it can be applied in a clinical
setting.

5. Conclusion

We have proposed a data-driven linear filtering
method for absence seizure detection that is de-
signed to run on a microcontroller for use in a wear-
able EEG-based seizure detection system. The algo-
rithm aims to suppress peak interferers while enhanc-
ing seizure signal. It requires only a few annotated
seizures to train the optimal filter. Our algorithm
has been benchmarked against two state-of-the-art
absence seizure detection algorithms (without com-
putation constraints), and was found to perform al-
most on par with the best of these, while being much
more efficient in terms of hardware memory and com-
putational requirements.
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Appendix A Calculating the number of operations
of each algorithm

When counting the operations of the algorithms in
the work of Kjaer et al.'® and Xanthopoulos et al.,'”
the following implementation of common algorithms
were chosen:

e The fast Fourier transform (FFT) is imple-

mented using the radix-2 Cooley-Tukey al-
gorithm. The algorithm requires 5N log,(N)
operations, where N is the number of sam-

ples in a window and is chosen as a power of

two.3?

e The continuous wavelet transform was im-
plemented using FFTs. This implementation
takes an FFT of the signal, an FFT of the
wavelet, multiplies both signals and takes
the inverse-FFT.36 This process is repeated
at every scale.
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