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A Unified Algorithmic Framework for Distributed
Adaptive Signal and Feature Fusion Problems

— Part II: Convergence Properties
Cem Ates Musluoglu, Charles Hovine, and Alexander Bertrand, Senior Member, IEEE

Abstract—This paper studies the convergence conditions and
properties of the distributed adaptive signal fusion (DASF)
algorithm, the framework itself having been introduced in a
‘Part I’ companion paper. The DASF algorithm can be used to
solve linear signal and feature fusion optimization problems in
a distributed fashion, and is in particular well-suited for solving
spatial filtering optimization problems encountered in wireless
sensor networks. The convergence conditions and results are
provided along with rigorous proofs and analyses, as well as
various example problems to which they apply. Additionally, we
describe procedures that can be added to the DASF algorithm to
ensure convergence in specific cases where some of the technical
convergence conditions are not satisfied.

Index Terms—Distributed optimization, distributed signal pro-
cessing, spatial filtering, signal fusion, feature fusion, wireless
sensor networks.

I. INTRODUCTION

THE Distributed Adaptive Signal Fusion (DASF) algo-
rithm introduced in [1] can be used to solve a wide

range of spatial filtering and signal fusion problems in a dis-
tributed fashion, e.g., within a wireless sensor network (WSN).
Examples of such problems include minimum mean square
error estimation, discriminant analysis based on generalized
eigenvalue decomposition [3], canonical correlation analysis
[4], [5], minimum variance beamforming [6], etc. The DASF
algorithm is designed to cope with the typical bandwidth or
energy limitations of WSNs.

A typical spatial filtering or signal fusion problem in a WSN
involves optimizing a cost function depending on the sensor
data collected by each node in the network. Contrarily to a
centralized procedure requiring the sensor data of each node to
be aggregated at a fusion center, the DASF algorithm requires
the nodes to share only compressed data between each other.

Copyright ©2023 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 802895). The authors also acknowledge the
financial support of the FWO (Research Foundation Flanders) for project
G081722N, and the Flemish Government (AI Research Program).

C.A. Musluoglu, C. Hovine and A. Bertrand are with KU Leuven, De-
partment of Electrical Engineering (ESAT), Stadius Center for Dynamical
Systems, Signal Processing and Data Analytics, Kasteelpark Arenberg 10,
box 2446, 3001 Leuven, Belgium and with Leuven.AI - KU Leuven in-
stitute for AI. e-mail: cemates.musluoglu, charles.hovine, alexander.bertrand
@esat.kuleuven.be

A companion paper submitted together with this paper is provided in [1].
This paper has supplementary downloadable material [2] available at http:
//ieeexplore.ieee.org, provided by the authors. The material includes the steps
we follow to prove Lemma 3. This material is 397 KB in size.

This data is then used to locally build a compressed version
of the global optimization problem within a node at every
iteration. As a result, any solver for the global (centralized)
problem can be used to solve the local problems at each node
within the DASF iterations.

In this paper, we provide a set of sufficient conditions for
convergence and optimality of the DASF algorithm, based on
which we can show that the DASF algorithm converges to the
centralized solution of the problem despite the compression,
as if all the raw sensor data were centrally available. The
technical conditions required for convergence are akin to the
well-known linear independence constraint qualifications in
the optimization literature, which in the case of DASF lead
to an upper bound on the number of constraints the global
(centralized) problem is allowed to have. Furthermore, since
the local problems in each node are compressed versions of
the global problem, we assume that the local problems satisfy
the same assumptions as the global problem as outlined in
[1], which is generally the case as they are directly inherited.
Finally, we impose a condition on the finiteness of the number
of possible solutions that are achievable by the solver used
to solve the local problems in each node. We will see that
these conditions are often satisfied for spatial filtering and
signal fusion problems in practical scenarios. Furthermore,
we provide several examples and illustrations on how the
convergence conditions can be checked either a priori or
during operation of the algorithm. We will also show how
the insights obtained from the convergence analysis can be
used to design new strategies to enforce convergence in cases
where a violation of the convergence conditions is detected.

The outline of the paper is as follows. After a short review of
the DASF framework in Section II, we study the convergence
and optimality guarantees of the DASF algorithm in Section
III. In particular, we show that under some technical condi-
tions, accumulation points of the sequence of points produced
by the algorithm are also fixed points, and that fixed points
are solutions of the centralized problem. Examples of typical
spatial filtering and signal fusion problems, such as minimum
mean square error or minimum variance beamforming, and
how the convergence conditions apply to these cases are
discussed in Section IV. Finally, in the contrived cases where
some of the technical requirements are violated, we describe
methods to still achieve convergence for the DASF algorithm
in Section V. Conclusions are drawn in Section VI.

Notation: Uppercase letters are used to represent matrices
and sets, the latter in calligraphic script, while scalars, scalar-
valued functions and vectors are represented by lowercase
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letters, the latter in bold. We use the notation χi
q to refer to

a certain mathematical object χ (such as a matrix, set, etc.)
at node q and iteration i. The notation

(
χi
)
i∈I refers to a

sequence of elements χi over every index i in the ordered
index set I. If it is clear from the context (often in the case
where i is over all natural numbers), we omit the index set I
and simply write

(
χi
)
i
. A similar notation {χi}i∈I is used for

non-ordered sets. Additionally, IQ denotes the Q×Q identity
matrix, E[·] the expectation operator, tr(·) the trace operator,
BlkDiag (·) the operator that creates a block-diagonal matrix
from its arguments and | · | the cardinality of a set.

II. REVIEW OF THE DASF FRAMEWORK

In this section, we briefly restate the scope and operation
of the DASF framework, which was extensively described in
[1]. We do this for completeness and with the purpose to re-
introduce key equations and introduce some new ones that will
be needed in the convergence analysis. The reader who is not
yet familiar with the DASF framework is encouraged to read
[1] first, since the review in this section skips several useful
insights and details.

A. Problem Description and Assumptions

We consider a WSN consisting of a set of K nodes K =
{1, . . . ,K} interconnected according to a network graph G,
which contains edges between nodes that are able to share
data with each other. Each node k collects observations of an
Mk−channel sensor signal yk. We define the network-wide
sensor signal y ∈ RM as

y(t) = [yT
1 (t), . . . ,y

T
K(t)]T , (1)

where t denotes the time index and M =
∑

k∈K Mk. y
is assumed to be (short-term) stationary and ergodic, such
that its statistical properties can be properly estimated given
a sufficiently large number of samples at different time in-
stances, e.g., {y(τ)}N−1

τ=0 , where N denotes the number of time
samples. Our objective is to find a linear filter X ∈ RM×Q

that optimizes in some sense the output signal of the linear
signal fusion XTy. More specifically, we consider problems
of the following form:

P : minimize
X∈RM×Q

φ
(
XTy(t), XTB

)
subject to ηj

(
XTy(t), XTB

)
≤ 0 ∀j ∈ JI ,

ηj
(
XTy(t), XTB

)
= 0 ∀j ∈ JE ,

(2)

where φ and ηj’s are differentiable real- and scalar-valued
functions. We refer to such problems as (distributed) signal
fusion optimization ((D)SFO) problems. In Problem (2), φ de-
notes the objective function and the ηj’s denote the constraint
functions, where the indices j ∈ JI and j ∈ JE correspond
to inequality and equality constraints respectively. We denote
the joint index set JI ∪ JE = J , such that the total number
of constraints is J = |J |.

The objective and constraint functions implicitly contain an
operator that maps the stochastic variable y into a determin-
istic and time-independent quantity, such as an expectation
operator, which in practice is typically replaced with an

estimated quantity based on temporal averaging of N samples
of y.
B is an additional deterministic parameter of the problem.

Similarly to (1), it can be partitioned as

B = [BT
1 , . . . , B

T
K ]T ∈ RM×L (3)

where L is some problem-dependent constant. It is assumed
that each node k has a local access to its corresponding block
Bk (i.e. they can be used in computations without being first
requested from another node). In contrast to the signal y,
the matrix B is deterministic and independent of time. As
noted in [1], Problem (2) can be generalized to more than
one variable X , stochastic signal y and deterministic term B.
Note that such a generalization covers deterministic quadratic
terms in the form XTAX , since two linear terms XTB(1) and
XTB(2) can be combined into (XTB(1)) · (XTB(2))T , with
A = B(1)B(2)T .

As the actual optimization variable is X , and by removing
the time-dependence of the problem by stationarity of the
random signal y, we define the functions f and hj , j ∈ J ,
which express the objective and constraints as a function of
X only:

f(X) ≜ φ
(
XTy(t), XTB

)
, (4)

hj(X) ≜ ηj
(
XTy(t), XTB

)
, ∀j ∈ J , (5)

which are assumed to be continuously differentiable with
respect to the variable X over their respective domains. This
allows us to write (2) compactly as

P : minimize
X∈RM×Q

f(X)

subject to hj(X) ≤ 0 ∀j ∈ JI ,
hj(X) = 0 ∀j ∈ JE .

(6)

Furthermore, we denote the constraint set of (2) or (6) as S,
the complete solution set as X ∗ and a single solution as X∗,
i.e., X∗ ∈ X ∗.

In order to guarantee the theoretical convergence of the
DASF algorithm, we restrict its application to problems satis-
fying the following three general assumptions1 (in Section IV,
we explain how these assumptions can be checked in practical
examples):

Assumption 1. The targeted instance of Problem (2) or (6)
is well-posed, in the sense that the solution set is not empty
and varies continuously with a change in the parameters of
the problem.

The notion of (generalized Hadamard) well-posedness we
require is based on [7], [8]. The main difference is that we
require the map from the space of inputs of the problem
to the solution space to be continuous instead of upper
semicontinuous, which is required for the convergence proof.
We formally define the continuity of this map in Section III.
Even though this condition might seem restrictive, it applies
to many practical instances of the problems of interest (see
Section IV).

1Throughout this text, if assumptions or conditions are labeled as “Xa”,
it implies that this assumption/condition can be replaced with a different
assumption/condition “Xb”. When we only mention the label “X”, we refer
to either of the two.
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Assumption 2. The linear independence constraint qualifi-
cations (LICQ) [9] hold at the solutions of Problem (2) or
(6), i.e., the solutions satisfy the Karush-Kuhn-Tucker (KKT)
conditions.

If X∗ is a solution of Problem (2) or (6), Assumption 2
implies that, for j ∈ J ∗, the gradients ∇Xhj(X

∗) are linearly
independent2, where J ∗ ⊆ J is the set of all indices j
satisfying hj(X

∗) = 0. If the problem is unconstrained, we
have ∇Xf(X∗) = 0.

Assumption 3a. f has compact sublevel sets in S, i.e., for
all m ∈ R, {X ∈ S | f(X) ≤ m} is compact, i.e., closed and
bounded.

It is noted here that this assumption can be further relaxed
to an alternative Assumption 3b presented below. This relaxed
version only requires that the DASF algorithm’s initialization
point is in a compact sublevel set, in which case not all
sublevel sets of f in S should be compact.

Assumption 3b. The sublevel set of f {X ∈ S | f(X) ≤
f(X0)} corresponding to X0 is compact.

As will be shown in Section III-A, Assumption 3a or 3b
is needed to ensure that the elements of the sequence (Xi)i
obtained from the DASF algorithm lie in a compact set, which
is required to show convergence.

In the remaining of this paper, problems P which can
be written as (2) or (6) will be satisfying the assumptions
above, i.e., we will not repeat these assumptions in any of the
convergence theorems. As discussed in [1], we also implicitly
assume that there exists a centralized solver able to solve the
targeted problem instance P, which will be used by the DASF
algorithm to solve local per-node compressed versions of the
centralized problem P.

B. The DASF Algorithm
In order to solve Problem (2) in a distributed setting, we

consider a partitioning of the global variable X into local
variables:

X = [XT
1 , . . . , X

T
K ]T , (7)

where each local variable Xk ∈ RMk×Q is assigned to a single
node k. At any given iteration i, the nodes k all have an
estimation Xi

k of their local variable Xk. At each iteration
i, some node q ∈ K is selected to be the “updating node”,
and will solve a compressed version of Problem (2), which
will be defined later in this section. We note that we choose a
different updating node at each iteration. As the network graph
G can contain loops, we prune the network into a tree, which
we denote as T i(G, q), such that there is a unique path from
any node k ̸= q to the updating node q (as explained in [1],
the tree T i(G, q) should preserve all the neighbors of node q
to maximize the degrees of freedom in the updating process).

At the beginning of each iteration, every node compresses
N samples of its local signal yk using its current estimate Xi

k

2A set of matrices {Aj}j∈J is linearly independent when
∑

j∈J αjAj =
0 is satisfied if and only if αj = 0, ∀j ∈ J , or equivalently, when
{vec(Aj)}j∈J is a set of linearly independent vectors, where vec(·) is the
vectorization operator.

of the local variable Xk to obtain the compressed Q−channel
local signal:

ŷi
k(t) ≜ XiT

k yk(t) ∈ RQ, (8)

while a similar operation is done to compress each Bk:

B̂i
k ≜ XiT

k Bk ∈ RQ×L. (9)

A decentralized fuse-and-forward process is then started, in
which the compressed data from all the nodes is summed on
its way towards node q. This fuse-and-forward flow arises nat-
urally when using a recursive computation rule, as explained
in [1]. Indeed, the data that node k sends to its neighbor n
(which is closest to the updating node q) is defined as

ŷi
k→n(t) ≜ XiT

k yk(t) +
∑

l∈Nk\{n}

ŷi
l→k(t), (10)

which can be computed as soon as node k receives ŷl→k from
all its neighbors l ∈ Nk, except node n. We see that this
recursive expression starts at leaf nodes (nodes with only one
neighbor) and extends naturally to node q, which eventually
receives

ŷi
n→q(t) = XiT

n yn(t) +
∑

k∈Nn\{q}

ŷi
k→n(t) =

∑
k∈Bnq

ŷi
k(t)

(11)
from all its neighbors n ∈ Nq . Bnq is the subgraph rooted
at node q that contains n ∈ Nq , i.e., the set of nodes which
would be disconnected from the subgraph containing node q
if we were to cut the connection between node n and q (see
Figure 1). A similar fuse-and-forward process is performed for
the terms (9), resulting in fused parameters B̂i

n→q [1].
The data received by node q can then be structured in order

to act as a local version of the global data. For this purpose,
we define the M̃q−channel signal ỹi

q at node q as the local
signal yq stacked with the compressed signals it receives from
its neighbors, given by

ỹi
q(t) = [yT

q (t), ŷ
iT
n1→q(t), . . . , ŷ

iT
n|Nq|→q(t)]

T . (12)

The matrix B̃i
q is defined similarly. Then, we define the local

variable X̃q at node q as

X̃q = [XT
q , G

T
n1
, . . . , GT

n|Nq|
]T ∈ RM̃q×Q, (13)

where Xq ∈ RMq×Q and Gn ∈ RQ×Q, ∀n ∈ Nq . This
variable acts as a spatial fusion filter on the locally available
data at node q, analogous to the way X acts on y and B for
the global problem. From (12) and (13), we can then write

X̃T
q ỹ

i
q(t) = XT

q yq(t) +
∑
n∈Nq

GT
n ŷ

i
n→q(t), (14)

and replacing the signals ŷi
n→q by their definition in (11), we

have

X̃T
q ỹ

i
q(t) = XT

q yq(t) +
∑
n∈Nq

∑
k∈Bnq

GT
n ŷ

i
k(t), (15)

= XT
q yq(t) +

∑
n∈Nq

∑
k∈Bnq

(Xi
kGn)

Tyk(t). (16)

A similar expression can be derived for X̃T
q B̃

i
q .

These local counterparts of the global expressions lead us
to define the local problem at node q using the previous
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Fig. 1. [10] Example of a tree network where the updating node is node
5. Each neighbor of node 5 creates its own cluster containing the nodes
“hidden” from node 5 behind them, shown here as B45, B65, B95. The
resulting transition matrix is given by Ci

5.

parameterization of X , which is a compressed version of the
global problem (2):

minimize
X̃q∈RM̃q×Q

φ(X̃T
q ỹ

i
q(t), X̃

T
q B̃

i
q)

subject to ηj(X̃
T
q ỹ

i
q(t), X̃

T
q B̃

i
q) ≤ 0 ∀j ∈ JI ,

ηj(X̃
T
q ỹ

i
q(t), X̃

T
q B̃

i
q) = 0 ∀j ∈ JE .

(17)

The fact that (2) and (17) have an equivalent structure implies
that the same solver can be used for both.

From (16), we observe that the local inner product X̃T
q ỹ

i
q(t)

at node q is related to the network-wide inner product XTy(t)
if X is defined as (details in [1])

X = Ci
qX̃q, (18)

with

Cq(X) =

 0
IMq

Θ−q(X)
0

 ∈ RM×M̃q ,

Ci
q ≜ Cq(X

i),

(19)

where IMq
is placed in the q−th block-row, and Θ−q(X) is

a block matrix with K block-rows and |Nq| block-columns.
An example of such a matrix Ci

q is provided in Figure 1,
which can be formally defined as follows. Each block-column
corresponds to one of the neighbors n ∈ Nq of q, which we
re-index as mn ∈ {1, . . . , |Nq|}. The block at the k−th block-
row and mn−th block-column is then defined as[

Θ−q(X)
]
(k,mn) =

{
Xk if k ∈ Bnq
0 otherwise.

(20)

This transition matrix allows us to relate the global data or
global variables with their local counterparts:

ỹi
q(t) = CiT

q y(t), B̃i
q = CiT

q B, X = Ci
qX̃q (21)

and also write the local problem (17) in a compact way:

minimize
X̃q∈RM̃q×Q

f(Ci
qX̃q)

subject to hj(C
i
qX̃q) ≤ 0 ∀j ∈ JI ,

hj(C
i
qX̃q) = 0 ∀j ∈ JE .

(22)

Moreover, denoting the constraint set of the global problem
(2) or (6) as S and the constraint set of the local problem (17)
or (22) as S̃iq , it can be shown that (see [1, Lemma 1])

X̃q ∈ S̃iq ⇐⇒ Ci
qX̃q ∈ S, (23)

i.e., a point X̃q in the constraint set of the local problem (17)
leads to a corresponding point which by definition is also in the

Algorithm 1: Distributed Adaptive Signal Fusion
(DASF) Algorithm
Code available in [11]
output: X∗

Initialize X0, i← 0.
repeat

Choose the updating node as q ← (i mod K) + 1.
1) The network G is pruned into a tree T i(G, q).
2) Every node k collects a new batch of N samples

of yk. All nodes compress these to N samples of
ŷi
k as in (8). B̂i

k is computed using (9).
3) The nodes sum-and-forward their compressed
data towards node q via the recursive rule (10)
(and a similar rule for the B̂i

k’s). Node q
eventually receives N samples of ŷi

n→q given in
(11) along with B̂i

n→q similarly defined, from all
its neighbors n ∈ Nq .

at Node q do
4a) Compute X̃i+1

q as the solution of (17)
where ỹi

q , B̃i
q and X̃i

q are defined in (12) and
(13). If the solution of (17) is not unique,
select the solution which minimizes
||X̃i+1

q − X̃i
q||F with X̃i

q defined as in (25).
4b) Partition X̃i+1

q as in (13).
4c) Disseminate Gi+1

n to all nodes in Bnq ,
∀n ∈ Nq .

end
5) Every node updates Xi+1

k according to (26).
i← i+ 1

Note: The fused output signal ŷ(t) for the current batch of N samples
can be computed at node q as X̃

(i+1)T
q ỹi

q(t).

constraint set of the global problem (2). Using this notation,
we define the solution of the local problem (17) or equivalently
(22) as

X̃i+1
q ≜ argmin

X̃q∈S̃i
q

f
(
Ci

qX̃q

)
,

= argmin
X̃q∈S̃i

q

φ
(
X̃T

q ỹ
i
q(t), X̃

T
q B̃

i
q

)
(24)

Considering instances where (17) or (22) would have multiple
global minima, we choose X̃i+1

q as the solution minimizing
the distance ||X̃i+1

q − X̃i
q||F , where

X̃i
q ≜ [XiT

q , IQ, . . . , IQ]
T . (25)

Finally, the matrices Gi+1
n1

, . . . , Gi+1
n|Nq|

obtained from the

partitioning (13) of X̃i+1
q need to be disseminated in the

network, so that every node can update their local estimator
Xk as

Xi+1
k =

{
Xi+1

q if k = q

Xi
kG

i+1
n if k ̸= q, k ∈ Bnq , n ∈ Nq,

(26)

which follows from the parameterization (18) of X .

This process is then repeated at a different node at each
iteration, as summarized in Algorithm 1.
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III. CONVERGENCE AND OPTIMALITY

In this section, we analyze the convergence of the sequence
of points (Xi)i that are generated by the DASF algorithm.
Note that Xi is formed by stacking all the local Xi

k’s at all
nodes k ∈ K, or equivalently, by using (18) which shows
that Xi = Ci

qX̃
i
q . We show that under some mild technical

conditions (which are generally satisfied in practice), the
DASF algorithm converges to a stationary point of (2), and
with some additional conditions even to the globally optimal
signal fusion rule X∗, i.e., (Xi)i → X∗ ∈ X ∗. As a result,
the fused output signal XiTy(t), which can be computed as
X̃iT

k ỹi
k(t) at any node k, will become equal to (X∗)Ty(t)

when the sample time t is large (note that the iteration index
i is linked to the time index t). This convergence is without
any of the nodes knowing the full signal y or matrix B, and
despite the compression and fusion performed at each node.

For mathematical tractability, we make abstraction of esti-
mation errors appearing from approximating the signal statis-
tics using a finite N , which means the proofs only hold in
the asymptotic case where N → +∞. In other words, we
assume that all signal statistics are perfectly estimated, which
is only an approximation of the practical case where the signal
statistics are (re-)estimated based on blocks of N samples.
In practice, a finite N has to be used, in which case the
algorithm will hover around the optimal solution due to these
aforementioned estimation errors in each iteration. We note
that this is also the case for the centralized equivalent of the
algorithm, in case the latter has to estimate the signal statistics
over finite windows, e.g., in a tracking context.

A. Convergence of the Objective

The following result states the convergence of the objective
function under Algorithm 1’s update rule.

Lemma 1. Let (Xi)i be any sequence of iterates satisfying
Algorithm 1’s update rule for an instance P of (2) or (6).
Then, all (Xi)i>0 belong to the constraint set S of (6)
and

(
f(Xi)

)
i>0

is a monotonically decreasing convergent
sequence.

Proof. Because X̃i+1
q satisfies the constraint set S̃iq (see (24))

for any update i, we conclude from (23) that each Xi, satisfies
the constraint set S of the network-wide problem (6) for any
i ≥ 1 (as also shown in [1, Lemma 1]). Furthermore, since
X̃i+1

q is the solution of (24), we have f(Ci
qX̃

i+1
q ) ≤ f(Ci

qX̃q)

for any X̃q ∈ S̃iq . In particular, this inequality is verified
for X̃q = X̃i

q as defined in (25) for which Ci
qX̃

i
q = Xi.

This is because X̃i
q indeed also belongs to the constraint set

S̃iq in (24), because of (23) and the fact that Xi belongs
to S if i ≥ 1 (see the beginning of the proof). Then, we
have f(Ci

qX̃
i+1
q ) = f(Xi+1) ≤ f(Ci

qX̃
i
q) = f(Xi). Since

the sequence is monotonically decreasing and since it has a
lower bound (defined by the global minimum of P), it must
converge.

Lemma 1 guarantees that the sequence of objective values(
f(Xi)

)
i

associated with the iterates generated by the DASF
algorithm converges and that the iterates correspond to feasible

points of Problem (2) or (6). However, this does not imply
convergence of the sequence (Xi)i itself, which is typically
much more challenging to guarantee, even for centralized
optimization algorithms such as line-search or trust region
methods [12]–[16]. Moreover, even if the convergence of
(Xi)i can be proven for the DASF algorithm, we still need
to show that it converges to an “interesting” point, i.e.,
a stationary point of Problem (6), and preferably a global
minimum. In the next two subsections, we will introduce
two technical conditions (on top of the assumptions 1-3 in
Subsection II-A) which will be combined in Section III-D to
state convergence and optimality results for (Xi)i. We end
this subsection with a corollary of Lemma 1 showing that the
elements of (Xi)i>0 lie in a compact set which is required to
show convergence of the DASF algorithm (see Section III-C
and Appendix C).

Corollary 1. If either Assumption 3a or 3b is satisfied, then
the elements of the sequence (Xi)i>0 obtained from the DASF
algorithm lie in a compact set.

The proof of Corollary 1 comes directly from the monotonic
decrease of the objective obtained in Lemma 1.

B. Technical Conditions for Stationarity of Fixed Points

The first condition comes in two versions, where either one
of the two has to be satisfied in order to prove that the fixed
points of the algorithm are stationary points. These conditions
are akin to the linear independence constraint qualification
(LICQ) in classical optimization theory [9], and can be seen
as compressed versions of these. We define a fixed point X of
the DASF algorithm as a point that is invariant under a DASF
update step at any updating node q, i.e., Xi+1 = Xi = X
independently of the updating node q at iteration i.

Condition 1a. For a fixed point X of Algorithm 1, the ele-
ments of the set {XT∇Xhj(X)}j∈J are linearly independent.

Since the set {XT∇Xhj(X)}j∈J consists of J matrices of
size Q×Q, the number of constraints J is upper bounded as

J ≤ Q2, (27)

in order to allow the set to be linearly independent. As we
will see in the proof of Theorem 1, this condition ensures
that the Lagrange multipliers of the local problem are unique
at a fixed point, eventually leading to the global optimality
conditions being satisfied. Note that Condition 1a is highly
likely to be satisfied in practice if (27) is satisfied, as a linear
dependency would be highly coincidental if there are less
matrices in the set than entries in each matrix (the points
where this condition is violated is then a discrete set of points
within a continuum of points). It is noted that Condition 1a
can sometimes be shown to be satisfied a priori, based on
the structure of the constraint set in the DSFO problem to
which it is applied, without knowing the fixed points of the
algorithm. The following example demonstrates how this can
be proven when the constraint set is the Stiefel manifold, i.e.,
XTX = IQ, which is the case in, e.g., principal component
analysis.
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Example 1. Let S be the Stiefel manifold, i.e., we have
the constraints XTX = IQ. There are J = Q(Q−1)

2 dis-
tinct constraints, where each constraint function is written as
hml(X) = x(m)Tx(l)−1{m = l}, where x(m) is the m−th
column of X , m, l ∈ {1, . . . , Q}, l ≤ m and 1 is the indicator
function. The derivative with respect to X can be found to be

∇Xhml(X) = x(m)eTl + x(l)eTm, (28)

where the e’s are the standard basis vectors of RQ. Multiplying
this expression by XT from the left and applying the constraint
XTX = IQ (assuming X ∈ S), we have

XT∇Xhml(X) = emeTl + ele
T
m. (29)

Note that the right-hand side of (29) is independent of X .
Since the J elements of {emeTl + ele

T
m}m,l, l ≤ m, are

linearly independent, Condition 1a is satisfied if X ∈ S. From
[1, Lemma 1], every Xi that is produced by Algorithm 1
belongs to S, therefore Condition 1a is satisfied for i > 0.

Condition 1a allows us to state a first important result:

Theorem 1. Let P be an instance of (2) or (6). Then, if
Condition 1a is satisfied, any fixed point of Algorithm 1 must
be a stationary point of P satisfying its KKT conditions.

Proof. See Appendix A.

By definition, convergence of an algorithm can only be
towards a fixed point of the algorithm, hence Theorem 1
guarantees that if the DASF algorithm converges, it converges
to a stationary point of the global problem. For the special
case of problems that are unconstrained, we do not require
Condition 1a to hold (as it would lead to an empty set), in
which case Theorem 1 can be simplified as follows.

Corollary 2. Let P be an instance of (2) or (6) which is
unconstrained. Then, any fixed point of Algorithm 1 must be
a stationary point of P satisfying its KKT conditions.

Alternatively, we propose a less restrictive – albeit more
complicated – condition for cases with more constraints than
Q2 (see (27)), which is especially of interest for problems
where Q = 1, for which Condition 1a would only allow a
single constraint.

Condition 1b. For a fixed point X of Algorithm 1, the
elements of the set {Dj,q(X)}j∈J are linearly independent
for any q, where

Dj,q(X) ≜



XT
q ∇Xq

hj(X)∑
k∈Bn1q

XT
k∇Xk

hj(X)

...∑
k∈Bn|Nq|q

XT
k∇Xk

hj(X)

 , (30)

which is a block-matrix containing (1+ |Nq|) blocks of Q×Q
matrices.

For a given node q, the elements of the set {Dj,q(X)}j∈J
are now (1 + |Nq|)Q × Q matrices and therefore their size
depends on the nodes and the topology of the network. This

means that we require the number of constraints J to satisfy:

J ≤ (1 + min
k∈K
|Nk|)Q2. (31)

This condition assumes that the pruning of the network
T i(G, q) preserves all the links with the neighbors of the
updating node q. Furthermore, the proof in Appendix B will
reveal that the number of constraints should also satisfy a
second bound, which is also necessary for Condition 1b to
hold:

J ≤ Q2

K − 1

∑
k∈K

|Nk|. (32)

The reason is less obvious, but is related to specific inter-
dependencies between the Dj,q’s across different nodes q
(see Appendix B). It is noted that both bounds (31)-(32) are
necessary, i.e., satisfying the first does not necessarily imply
that the second one is satisfied and vice versa.

Similarly to the previous condition, Condition 1b is typically
satisfied in practice when J satisfies both bounds in (31)-(32),
i.e.,

J ≤ min

(
Q2

K − 1

∑
k∈K

|Nk|, (1 + min
k∈K
|Nk|)Q2

)
. (33)

Nevertheless, it is still possible that there exists a fixed point
that is “close” to violating this condition, in which case the
convergence of the DASF algorithm might become very slow
if it reaches a neighborhood of such a fixed point. We refer to
Section V on how to deal with these rare situations.

The following example illustrates why Condition 1b is less
restrictive than Condition 1a.

Example 2. Suppose that S = {X ∈ RM×Q | XTB =
A, A ∈ RQ×L}, which is a typical constraint used in linearly
constrained minimum variance (LCMV) beamforming [6]. We
have J = QL constraints and each constraint function is given
by hml(X) = x(m)Tb(l) − Aml, where x(m) is the m−th
column of X , b(l) is the l−th column of B and Aml is the
entry (m, l) of the matrix A. It is straightforward to show
that requiring the elements XT∇Xhml(X) = XTb(l)eTm to
be linearly independent for every m and l, i.e., satisfying
Condition 1a, is equivalent to requiring rank(A) = L. If
Q < L, this condition cannot be satisfied. Looking now at
Condition 1b, we have XT

k ∇Xk
hml(X) = XT

k bk(l)e
T
m for

every k ∈ K, where bk(l) is the block of b(l) corresponding
to node k. Then, we can show that satisfying Condition 1b is
equivalent to requiring that the matrix

[BT
q X

i
q,
∑

k∈Bn1q

BT
k X

i
k, . . . ,

∑
k∈Bn|Nq|q

BT
k X

i
k]

T (34)

has rank L at at a fixed point Xi, where the Bk’s are obtained
from the partitioning of B as in (3). This is possible even
when Q < L, i.e., if node q has sufficient neighbors such that
(1 + |Nq|)Q ≥ L.

Theorem 2. Let P be an instance of (2) or (6). Then, if
Condition 1b is satisfied, a fixed point of Algorithm 1 must
be a stationary point of P satisfying its KKT conditions.

Proof. See Appendix B.



7

Finally, we note that these conditions are complementary in
the sense that Condition 1a is not necessary for Condition 1b
to hold, and vice versa.

C. Technical Conditions for Convergence

Conditions 1a and 1b are sufficient to show that fixed points
of the DASF algorithm are stationary points. The next step is
to show that accumulation points3 of the algorithm are fixed
points (and therefore stationary points of (2) or (6)), for which
we require a second condition.

Condition 2. The local problems (17) or (22) satisfy Assump-
tions 1-3.

It is important to note here that this condition is usually
satisfied in practice because the local problems have the
same structure as the global problem (2), which was already
assumed to satisfy Assumptions 1-3. It is therefore reasonable
to assume that these local problems also inherit these same
properties. In Section IV, we will give several examples to
illustrate how Condition 2 can be checked in various problems.
We will also present some examples of rare cases where this
condition is not satisfied and provide fixes for it.

The well-posedness of the problem as required in Assump-
tion 1 requires a continuity assumption on the point-to-set
mapping from the space of inputs of the problem to its solution
space. Formally, let F̃q : RM×Q ⇒ RM̃q×Q be the following
point-to-set mapping:

F̃q(X) ≜ argmin
W̃q :Cq(X)W̃q∈Sq(X)

f(Cq(X)W̃q), (35)

where Cq(X) is defined in (19) and Sq is the point-to-set
mapping corresponding to the local parameterized constraint
set for X when node q is the updating node:

Sq(X) = {W ∈ S |Wk ∈ C(Xk) ∀k ̸= q} (36)

with the subscript k referring to the per-node partitioning of
X and W as in (7) and C(Xk) the set of all matrices with the
same size and the same column space as Xk. To appreciate
how the set (36) relates to the local constraint set, note that
Sq(Xi) = {X = Ci

qX̃
i
q | X̃i

q ∈ S̃iq}. We require from our
well-posedness property in Assumption 1 and Condition 2 that
F̃q should be a continuous mapping (see [17, Definition 17.2]
for a formal definition). Intuitively, this means that we expect
that an arbitrarily small change in the inputs results in the
addition or removal of points arbitrarily close to other points
in the output set. In Section IV, we will illustrate on a few
selected examples how the continuity of such a mapping can
be checked.

Let the point-to-set mapping M̃q : RM×Q ⇒ RM̃q×Q be
defined as

M̃q(X) ≜ argmin
W̃q∈F̃q(X)

||Wq−Xq||2F +
∑
k ̸=q

||Wk− IQ||2F , (37)

where W̃q = [WT
q ,WT

1 , . . . ,WT
q−1,W

T
q+1, . . . ,W

T
K ]T , i.e.,

M̃q selects the point in the set F̃q(X) that is closest to

3We define an accumulation point of a sequence (Xi)i∈N as the limit of
a converging subsequence (Xi)i∈I of (Xi)i∈N, with I ⊆ N.

[XT
q , IQ, . . . , IQ]

T . We then define the point-to-set mapping
Mq : RM×Q ⇒ RM×Q as

Mq(X) ≜ Cq(X)M̃q(X). (38)

A single iteration of Algorithm 1 can then be summarized as

Xi+1 ∈Mq(X
i). (39)

In very contrived cases, it could happen thatMq(X
i) is not a

singleton, i.e., there exists more than one solution at a certain
iteration i which are equidistant to the previous estimate Xi.
In that case, selecting by any means one particular solution is
sufficient to resolve this ambiguity.

Theorem 3. Suppose that for an instance P of (2) or (6),
under the updates of Algorithm 1, Condition 2 is satisfied.
Then:

1) Any accumulation point X of (Xi)i is a fixed point of
the map Mq : RM×Q ⇒ RM×Q for any q.

2) limi→+∞ ||Xi+1 −Xi||F = 0.

Proof. See Appendix C.

An important corollary is that any accumulation point is a fixed
point of the full DASF algorithm as it is a fixed point for an
update at any node q. However, note that Theorem 3 still does
not guarantee convergence to a single point. The latter can be
established if we assume the following condition:

Condition 3a. The number of stationary points of the global
problem P is finite.

Theorem 4. If Conditions 2 and 3a are satisfied, then (Xi)i
converges to a single point.

Proof. See Appendix C.

The condition on the finiteness of the number of stationary
points can be relaxed to the following condition:

Condition 3b. The number of solutions of each local problem
(22) is finite or the solver of the local problems (22) can only
obtain a finite subset of the solutions of (22).

In other words, we only require the finiteness of the number
of solutions obtainable through the solver used for solving the
local problems. For example, when maximizing tr(XTAX)
over XTBX = I , there are infinitely many options for
a solution X∗ represented as X∗ = V ∗U where U is an
orthogonal matrix and V ∗ contains the principal generalized
eigenvectors of the matrix pencil (A,B). However, a solver
using a generalized eigenvalue decomposition to solve this
problem can only output V ∗ itself up to a sign change of
its columns, hence the solver is only able to select solutions
from a finite subset of the complete solution set.

Theorem 5. If Conditions 2 and 3b are satisfied, then (Xi)i
converges to a single point.

The proof of Theorem 4 can be straightforwardly applied to
Theorem 5 as well.
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D. Convergence to Stationary Points and Global Minima

We can now combine all of the previous results to eventually
obtain complete convergence results of the DASF algorithm to
stationary points of Problem (6).

Theorem 6. Suppose that for an instance P of (2) or (6), under
the updates of Algorithm 1, Conditions 1, 2, 3 (for 1 and 3
either the form a or b) are satisfied, then (Xi)i converges
and limi→+∞ Xi = X , where X is a stationary point of P
satisfying its KKT conditions.

Proof. From Theorems 4 and 5, (Xi)i converges to a single
point X . Therefore X is a fixed point of Algorithm 1 (Theorem
3). From Theorems 1 and 2, fixed points of the DASF algo-
rithm are stationary points of P satisfying its KKT conditions,
proving the theorem.

Theorem 6 can lead to stronger convergence guarantees if
all minima of the problem P are global minima (i.e., the value
of the objective function is the same in all minima), which
will be explained next. It is noted that many of the common
spatial filtering design criteria satisfy this assumption, includ-
ing PCA, canonical correlation analysis, minimum variance
beamformers, generalized eigenvalue decomposition and trace
ratio optimization.

Theorem 7. Under the same settings of Theorem 6, if all
minima of P are global minima, the only stable fixed points
of Algorithm 1 are in X ∗.

Proof. For any fixed point X /∈ X ∗, there exists a descent
direction in S (as X cannot be a minimum), and therefore
there exists a perturbation ∆X , with X + ∆X ∈ S, such
that f(X +∆X) ≤ f(X). Due to the monotonic decrease of
(f(Xi))i (see Lemma 1), the sequence (Xi)i is kicked out of
equilibrium and cannot return to it, hence the equilibrium is
unstable. Therefore, in the absence of local minima, the only
stable fixed points of Algorithm 1 must be in X ∗.

Corollary 3. If all minima of f over S are global minima and
all conditions of Theorem 6 are satisfied, (Xi)i converges to
the global minimum of (2) or (6) with high probability4.

This corollary follows immediately from Theorems 6 and 7.
Indeed, from Theorem 6, we know that (Xi)i converges to a
stationary point. Since all fixed points that are not in X ∗ are
unstable (Theorem 7), the algorithm will eventually escape
from the neighborhoods of such unstable equilibria and will
end up in a point of X ∗.

Corollary 4. If the global problem (2) or (6) is a convex
problem with a strongly convex objective f and all conditions
of Theorem 6 are satisfied, (Xi)i converges to the unique
global minimum X∗.

Proof. Theorem 6 guarantees convergence to a stationary point
of Problem (6). The result comes from the fact that for a
convex problem with a strongly convex objective, the unique
stationary point is the global minimum.

4The phrasing “with high probability” here refers to the fact that it is
expected that the algorithm cannot end up in an unstable equilibrium, as
it would always escape from it due to numerical or estimation noise.

The previous corollary can be further relaxed by removing the
requirements of Conditions 1a and 1b for a problem which is
unconstrained (see Corollary 2):

Corollary 5. If the global problem (2) or (6) is unconstrained
with a strongly convex objective f and Condition 2 is satisfied,
(Xi)i converges to the unique global minimum X∗.

IV. SELECTED EXAMPLES

In this section, we illustrate how the different convergence
results and conditions translate to some commonly encoun-
tered spatial filtering problems, and how the problems can
be manipulated in order to satisfy the conditions in case
they are violated. In the following, y and d are stochastic
signals, and we denote their covariance and cross-covariance
matrices Ryy = E[y(t)yT (t)] and Ryd = E[y(t)dT (t)]. We
also define the corresponding compressed matrices Ri

ỹqỹq
=

E[ỹi
q(t)ỹ

iT
q (t)] = CiT

q RyyC
i
q and Ri

ỹqd
= E[ỹi

q(t)d
T (t)] =

CiT
q Ryd for the local problems.
As will be shown, we typically require Ryy to be non-

singular for Condition 2 to be satisfied, in particular for the lo-
cal problem to be well-posed (Assumption 1), as Assumptions
2 and 3a (or 3b) are satisfied automatically if the global prob-
lem satisfies these. We will see that a question that will arise is
whether the local Ri

ỹqỹq
is non-singular. If this is not satisfied,

we cannot ignore situations where a small change in the local
problem parameters leads to discontinuous changes in their
solution sets, making Condition 2 (in particular Assumption
1) invalid. The following result relates the (non-)singularity of
CiT

q RCi
q to the (non-)singularity of R.

Lemma 2. Suppose that a matrix R ∈ RM×M is non-singular.
Then, given Ci

q ∈ RM×M̃q as defined in (19), if Ci
q has full

rank, the matrix CiT
q RCi

q is also non-singular.

The proof is omitted as this is a well-known property of the
rank of a matrix. Lemma 2 will be used in many of the
examples that are discussed in this section.

Remark 1. Note that — by construction — the matrix Ci
q has

full rank unless one of the matrices Xk has linearly dependent
columns. The latter is a contrived case and is to be avoided
anyway, since it would imply that redundant data is transmitted
via ŷk (in which case the algorithm should only transmit the
non-redundant part). The result of Lemma 2 can therefore be
interpreted in such a way that if the global problem is well-
posed, then so is the local one because from this result, we
have a guarantee that the local problems’ covariance matrix
will also be non-singular.

A. Least Squares / Minimum Mean Square Error and Ridge
Regression

The least squares (LS) / minimum mean square error
(MMSE) problem can be written as

minimize
X∈RM×Q

E[||XTy(t)− d(t)||2], (40)

which is an unconstrained problem with a convex quadratic
objective, since Ryy is positive semi-definite by definition. A
solution X∗ of (40) needs to satisfy the normal equations given
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as RyyX
∗ = Ryd. If additionally Ryy is positive definite, then

it is invertible, and the objective is strongly convex leading to
the unique solution X∗ = R−1

yyRyd of the global problem. In
this case, (40) is well-posed and satisfies Assumptions 1 and
3, while Assumption 2 is automatically satisfied as there are
no constraints. We write the corresponding local problem (17)
as

minimize
X̃q∈RM̃q×Q

E[||X̃T
q ỹ

i
q(t)− d(t)||2]. (41)

Since (41) does not have any constraints, Condition 1a is
trivially satisfied (see also Corollary 2). Similarly to the
centralized case, X̃q is a solution of (41) if and only if it
satisfies the normal equations

Ri
ỹqỹq

X̃q = Ri
ỹqd

. (42)

In general cases, Ri
ỹqỹq

= CiT
q RyyC

i
q is invertible from

Lemma 2, and the solution of the local problem at iteration i
and node q is unique (satisfying Condition 3a) and equal to

X̃i+1
q = (Ri

ỹqỹq
)−1Ri

ỹqd
. (43)

We then have F̃q(X
i) = {X̃i+1

q }, which is continuous since
matrix inversion is continuous (see Cramer’s rule). Hence
Condition 2 is satisfied if Ri

ỹqỹq
is non-singular. Since (40)

is unconstrained, we satisfy the conditions of Corollary 5,
and we conclude that the DASF algorithm applied to the LS
/ MMSE problem converges to the optimal solution X∗.

In cases where Ri
ỹqỹq

is singular, the normal equations have
infinitely many solutions and (41) therefore admits infinitely
many solutions as well. However, a small change in inputs
can lead to Ri

ỹqỹq
suddenly becoming non-singular, reducing

the number of solutions from infinitely many to a single one,
which would not satisfy Condition 2. We can resolve this
problem by additionally requiring the column space of X̃q to
be orthogonal to the null space of Ri

ỹqỹq
, which corresponds

to the solution with minimum norm [18, Chapter 3, Section
2]. The solution of this surrogate problem is always uniquely
defined and varies continuously with Ri

ỹqỹq
and Ri

ỹqd
, even

at points where Ri
ỹqỹq

becomes singular. In practice though,
Ri

ỹqỹq
will never be singular (see also Remark 1), and the

additional constraint is always trivially satisfied, making the
surrogate problem equivalent to the original one.

If Ryy is singular (therefore implying that Assumptions
1 and 3 do not hold in the general case for (40)), one can
consider adding an ℓ2−norm constraint or penalty to (40),
leading to the ridge regression (RR) problem. As this can be
rewritten as a least squares problem where Ryy is replaced
by Ryy + αIM , the resulting matrix becomes non-singular.
In this case, both the local and global problems will satisfy
the well-posedness assumption, and therefore Corollary 5
straightforwardly applies, such that convergence to the global
solution is guaranteed.

B. Linearly Constrained Minimum Variance

The linearly constrained minimum variance (LCMV) prob-
lem is a convex problem often used in beamforming applica-

tions [6], and written as
minimize
X∈RM×Q

E[||XTy(t)||2] = tr(XTRyyX)

subject to XTB = A,
(44)

with the linear term B ∈ RM×L, M > L. If Ryy is
positive definite and rank(B) = L, Problem (44) has a
strongly convex objective and the unique solution is given by
X∗ = R−1

yyB(BTR−1
yyB)−1AT . Problem (44) is then well-

posed and satisfies Assumption 1. As shown in Example 2,
the gradient of each constraint function hml of (44) is given
by ∇Xhml(X) = b(l)em, where b(l) corresponds to the l−th
column of B. Therefore, Assumption 2 is satisfied when B is
full (column) rank. Finally, since the objective is continuous
and the objective strongly convex, the sublevel sets of the
objective are compact. Adding the constraints XTB = A
preserves compactness as the intersection of a closed set with
a compact one is compact, satisfying Assumption 3. The local
LCMV problem is written as

minimize
X̃q∈RM̃q×Q

tr(X̃T
q R

i
ỹqỹq

X̃q)

subject to X̃T
q B̃

i
q = A,

(45)

at iteration i and node q. As discussed in Example 2, Condi-
tion 1a is satisfied if A has rank L, or alternatively Condition
1b is satisfied if the matrix given in (34) has rank L. Excluding
the rare cases where Ci

q is rank deficient (which can be
dealt with, see Remark 1), Ri

ỹqỹq
is invertible from Lemma

2, and it can be shown from the property that B is full
rank that B̃iT

q (Ri
ỹqỹq

)−1B̃i
q is also invertible. Therefore, the

unique solution of the local problem (implying Condition 3a
is satisfied) is given by an analogous expression to the one of
the global LCMV problem:

X̃i+1
q = (Ri

ỹqỹq
)−1B̃i

q[B̃
iT
q (Ri

ỹqỹq
)−1B̃i

q]
−1AT . (46)

From the continuity of matrix inversion, Condition 2 is satis-
fied. This implies that we can apply Corollary 4 to conclude
that the DASF algorithm will converge to the globally optimal
LCMV solution. We note that Condition 1b is satisfied in
practice with high probability when J satisfies the upper
bound (33) as illustrated in Figure 2. However, there still exist
situations where slow convergence is observed in cases where
Condition 1b is “close” to being violated. We propose a fix
for those situations in Section V-A. Note that Condition 1b is
sufficient for showing convergence to the optimal point but it
is not a necessary condition, as in Figure 2, we can still see
(slow) convergence for some cases when J does not satisfy
(33).

C. Generalized Eigenvalue Decomposition and Principal
Component Analysis

Let us consider the problem:

minimize
X∈RM×Q

−E
[
||XTy(t)||2

]
= −tr(XTRyyX)

subject to E[XTv(t)vT (t)X] = XTRvvX = IQ,
(47)

where y and v are M−dimensional time signals. Note that
(47) can be transformed into (2) by minimizing the negative
or the reciprocal of the objective. A global solution of this
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Fig. 2. Convergence comparison of the DASF algorithm solving the LCMV
problem (44) for Erdős-Rényi random graphs with connection probability 0.8
(ER(0.8)) and randomly generated trees (Rand). The bold lines represent the
mean values across 100 Monte Carlo runs, while the shaded areas delimit the
standard error of the mean around them. β represents the upper bound given
in (33) on the number of constraints J .

problem is obtained by computing the Q principal general-
ized eigenvectors when computing the generalized eigenvalue
decomposition (GEVD) of the matrix pencil (Ryy, Rvv). This
GEVD problem is often encountered in discriminant analysis
or max-SNR filtering [3], [6], [19]. It also contains the stan-
dard eigenvalue decomposition (EVD) problem or principal
component analysis (PCA) as a special case, which is obtained
when the constraint set of (47) is replaced with XTX = IQ,
i.e., the Stiefel manifold (or equivalently, when v is a white
noise process). Therefore, the discussions below apply to the
EVD and PCA problems as well.

If both Ryy and Rvv are positive definite and the Q +
1 largest generalized eigenvalues (GEVLs) of (Ryy, Rvv)
are all distinct, Problem (47), is well-posed [20], therefore
satisfying Assumption 1. A solution of (47) is given by
X∗ = GEVDQ(Ryy, Rvv), where we consider that, given
a matrix pencil (A,B), GEVDQ(A,B) is a matrix con-
taining the Q generalized eigenvectors of the pencil in its
columns, corresponding to its largest GEVLs. We note that
the solution of this problem is not unique, and applying
any orthogonal transformation on X∗ = GEVDQ(Ryy, Rvv)
is also a valid solution. Similarly to Example 1, we have
∇Xhml(X

∗) = Rvv(x
∗(m)eTl + x∗(l)eTm). It can be shown

that the linear independence of the set {∇Xhml(X
∗)}m,l

is equivalent to the linear independence of the columns of
RvvX

∗. Under Assumption 1, Rvv is positive definite, hence
invertible and since X∗ contains generalized eigenvectors of
(Ryy, Rvv) in its columns, it is by definition full column rank.
Therefore the solutions of (47) satisfy the LICQ conditions
hence Assumption 2 is satisfied. Additionally, the sublevel
sets of the objective of (47) are closed, while the constraint
of (47) defines a compact set. From the compactness of their
intersection, we satisfy Assumption 3. From (47), we observe
that the corresponding local problem (17) is given by

minimize
X̃q∈RM̃q×Q

−tr(X̃T
q R

i
ỹqỹq

X̃q)

subject to X̃T
q R

i
ṽqṽq

X̃q = IQ,

(48)

and for any fixed iteration i and node q, a solution of the local
problem is

X̃i+1
q = GEVDQ(R

i
ỹqỹq

, Ri
ṽqṽq

). (49)

Similarly to Example 1, we can show that ∇Xhml(X) =
Rvv(x(m)eTl + x(l)eTm). Therefore, for any X satisfying the
constraints of (47), we have XT∇Xhml(X) = emeTl +ele

T
m,

which, for every (m, l), form a linearly independent set hence
Condition 1a is satisfied at any iteration.

On the other hand, we do not have a guarantee that the
algorithm does not converge to a local problem where the Q+1
largest generalized eigenvalues of the local matrix pencil are
all distinct. This would lead to a violation of the continuity of
the problem as required in Condition 2, which is otherwise
satisfied. This event, however improbable, can be monitored
and a particular fix is described in Subsection V-B.

As noted previously, there exists infinitely many solutions
of Problem (47) therefore Condition 3a cannot be satisfied.
However, suppose the solver we choose to solve the local prob-
lems (48) computes the generalized eigenvalue decomposition
of the matrix pencil (Ri

ỹqỹq
, Ri

ṽqṽq
) as in (49). Then, the

solver can only output one of the 2Q possible solutions of the
local problems at each iteration, namely one of the matrices
containing the Q most significant generalized eigenvectors of
the matrix pencil (Ri

ỹqỹq
, Ri

ṽqṽq
), which are equal up to a

sign change of the columns. This allows to eliminate all other
solutions of (48) from the set of candidate solutions, making
the solution set obtainable by the solver finite and leading to
Condition 3b being satisfied.

Under these conditions, we conclude from Theorem 6 that
the DASF algorithm converges to a stationary point of the
GEVD problem. As all minima/maxima of (47) are global
minima/maxima, we obtain convergence to the global solution
according to Corollary 3.

D. Trace Ratio Optimization

The trace ratio optimization (TRO) problem [21], [22] is
defined as

minimize
X∈RM×Q

−
E
[
||XTy(t)||2

]
E
[
||XTv(t)||2

] = − tr(XTRyyX)

tr(XTRvvX)

subject to XTX = IQ.

(50)

Considering that Ryy and Rvv are positive definite, there
exists a scalar ρ such that a solution of this problem is given by
X∗ = EVDQ(Ryy−ρRvv) [21], where EVDQ(A) is a matrix
containing the Q eigenvectors corresponding to the Q largest
eigenvalues of A in its columns. This solution returned by the
TRO solver defined in [21] is unique up to a sign change of its
columns if the Q+1 eigenvalues of Ryy−ρRvv are distinct, in
which case the problem is well-posed, satisfying Assumption
1. It can be shown in a similar fashion as to IV-C that (50)
satisfies Assumptions 2 and 3. Additionally, From Example
1, we know that the Stiefel manifold satisfies Condition 1a.
The local problem that node q solves at iteration i is written
as

minimize
X̃q∈RM̃q×Q

−
tr(X̃T

q R
i
ỹqỹq

X̃q)

tr(X̃T
q R

i
ṽqṽq

X̃q)

subject to X̃T
q Γ̃

i
qX̃q = IQ,

(51)
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with5 Γ̃i
q = CiT

q Ci
q . There exists a scalar ρiq such that the

solution of the local problem is given by

X̃i+1
q = GEVDQ

(
Ri

ỹqỹq
− ρiqR

i
ṽqṽq

, Γ̃i
q

)
, (52)

if both matrices of the pencil are positive definite (this holds
if Ci

q is full rank from Lemma 2) and the Q + 1 largest
GEVLs are distinct (in Subsection V-B, we will cover the
case where this is not satisfied). Therefore, the local problems
are generally well-posed, satisfying Condition 2. Similarly to
the GEVD example, a solver using (52) to solve (51) satisfies
Condition 3b. As there are no local minima, in practical cases
we obtain convergence to a global minimum from Corollary
3.

E. Canonical Correlation Analysis

The goal of canonical correlation analysis (CCA) is to find
two spatial filters for two different multi-channel signals such
that their outputs are maximally correlated [4], [5]. The CCA
problem can be (re)written as [5]

minimize
X,W∈RM×Q

−E
[
tr
(
XTy(t)vT (t)W

) ]
= −tr(XTRyvW )

subject to E[XTy(t)yT (t)X] = XTRyyX = IQ,

E[WTv(t)vT (t)W ] = WTRvvW = IQ.
(53)

Assuming that Ryy and Rvv are positive definite
the solution of Problem (53) is given by X∗ =
GEVDQ(RyvR

−1
vvRvy, Ryy) and W ∗ = R−1

vvRvyX
∗Λ−1/2,

where Λ is a Q × Q diagonal matrix containing the Q
largest GEVLs of the pencil (RyvR

−1
vvRvy, Ryy). If the

Q+ 1 largest GEVLs of this pencil are all distinct, the CCA
problem is well-posed, satisfying Assumption 1. Similarly
to IV-C, it can be shown that (53) satisfies Assumptions 2
and 3. As shown previously, Condition 1a is satisfied at any
iteration i. We can write the local problems as

minimize
X̃q,W̃q∈RM̃q×Q

−tr(X̃T
q R

i
ỹqṽq

W̃q)

subject to X̃T
q R

i
ỹqỹq

X̃q = IQ,

W̃T
q Ri

ṽqṽq
W̃q = IQ.

(54)

From Lemma 2 and Remark 1, we conclude that both Ri
ỹqỹq

and Ri
ṽqṽq

are non-singular. The solution of the local problems
is then

X̃i+1
q = GEVDQ

(
Ri

ỹqṽq
(Ri

ṽqṽq
)−1Ri

ṽqỹq
, Ri

ỹqỹq

)
(55)

W̃ i+1
q = (Ri

ṽqṽq
)−1Ri

ṽqỹq
X̃i+1

q (Λi
q)

−1/2, (56)

where Λi
q is the Q×Q diagonal matrix containing the Q largest

GEVLs of the pencil given in (55). If the Q + 1 GEVLs are
all distinct, the local problem (54) is again well-posed and
Condition 2 is satisfied. If this is not the case, the same fixes
we discussed in the examples of the GEVD and TRO problems
can be applied. As in these latter examples, Condition 3b
is also satisfied when choosing a solver which computes the
solutions of (54) using (55)-(56). Therefore, the corresponding

5The expression XTX can be rewritten in the form required by ZB in
(2) if B is set to B = IM , which results in (XTB) · (XTB)T . It is then
observed from (21) that B̃i

q = Ci
q .

DASF algorithm will converge to the centralized CCA solution
from Corollary 3.

V. FIXES IN CASE OF VIOLATIONS OF CONDITIONS

A. Avoiding Violations of Condition 1b

In certain cases, the linear independence requirements of
Condition 1a or 1b cannot be a priori guaranteed. In such
cases, even though they are expected to hold (since they are
only violated in a discrete set of points within a continuum of
possibilities), it is possible that the DASF algorithm passes a
neighborhood of a fixed point X where the conditions are not
satisfied, especially when J is close to the upper bound (33) or
even larger (see Figure 2). When an updating node q observes
that the elements of {Dj,q(X

i)}j are close to being linearly
dependent, the algorithm is potentially converging to a fixed
point that does not satisfy the linear independence require-
ments. This can be checked at the node itself, e.g., when the
J−th singular value of [vec(D1,q(X

i)), . . . , vec(DJ,q(X
i))] is

close to zero6. In that case, we propose that the neighbors k of
node q split their local Xi

k into a sum of two matrices Xi
k,a and

Xi
k,b (which both have linearly independent columns) such that

Xi
k = Xi

k,a+Xi
k,b, and start to temporarily communicate two

sets of compressed signals ŷi
k,a = XiT

k,ayk and ŷi
k,b = XiT

k,byk.
This implies that the elements of {Dj,q(X

i)}j have grown in
dimension thereby making the linear independence require-
ment of the set {Dj,q(X

i)}j more likely to be met. As soon
as the algorithm escapes the suboptimal point, node k can
again merge Xk,a and Xk,b for future iterations, returning to
the minimal communication bandwidth setting.

B. Avoiding Violations of Condition 2

In the very contrived cases where the algorithm would
produce a subsequence converging to a stationary point at
which Condition 2 does not hold, convergence of the overall
sequence cannot be guaranteed anymore and the algorithm
will possibly oscillate between points which are solutions of
the local problems, but not necessarily corresponding to global
solutions. Indeed, without Condition 2, we cannot guarantee
that limX→XMq(X) is well-defined (i.e., is unique and a
singleton). A practical and pragmatic fix for such scenarios
is to monitor both the potential oscillatory behavior and the
continuity of F̃q(X

i) and skip the update at the node where
a problem occurs. To detect such an oscillation, select an
arbitrarily small ε > 0, and monitor whether |f(Xi+1) −
f(Xi)| · ||Xi+1 − Xi||−1

F > ε which can be interpreted as
a sufficient decrease condition. If this condition is violated, a
potential oscillation is flagged. In addition, one could monitor
whether a particular near-discontinuity condition is met, which
is problem specific. This condition can be interpreted as a
sufficient decrease condition. In the case of GEVD and TRO
problems discussed above, monitoring the difference between

6Note that, depending on the problem, constructing Dj,q’s at node q might
require some additional data exchange, namely each node k should compute
and transmit XiT

k ∇Xk
hj(X

i)’s towards node q. However, this would not
add a significant burden to the communication cost as these matrices are
Q×Q, while there are also many cases where the compressed gradients are
already required to be communicated due to the problem’s structure.
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the Q−th and (Q + 1)−th largest eigenvalue is sufficient to
detect such a discontinuity. If both such a near-discontinuity
and an insufficient decrease are flagged, the update at that node
should be skipped.

VI. CONCLUSION

In this paper, we have analyzed the technical convergence
properties and conditions of the DASF algorithm and provided
formal proofs of convergence. The conditions required for
convergence were shown to be satisfied in many practical prob-
lems, assuming some bounds on the dimension of the problem
are satisfied, which depend on the number of constraints and
the network topology. We have provided some illustrative ex-
amples to demonstrate how the — sometimes rather technical
— conditions can be validated in practice. These examples
also showed in which contrived cases a problem could occur,
e.g., in case of singularities or eigenvalue collisions in sensor
signal covariance matrices, which are expected to be rare in
practice. Nevertheless, we have discussed various methods to
fix these convergence problems for the rare cases where these
should occur.

APPENDIX A

Proof of Theorem 1. Let us write the KKT conditions of
Problem (6), as mentioned in Assumption 2 [23]:

∇XL(X,λ) = 0, (57)
hj(X) ≤ 0 ∀j ∈ JI , hj(X) = 0 ∀j ∈ JE , (58)
λj ≥ 0 ∀j ∈ JI , (59)
λjhj(X) = 0 ∀j ∈ JI , (60)

where

L(X,λ) ≜ f(X) +
∑
j∈J

λjhj(X) (61)

is the Lagrangian with λj ∈ R the Lagrange multiplier
corresponding to the constraint hj and λ in bold is used as
a shorthand notation for the set of all Lagrange multipliers.
These KKT conditions can also be formalized for the local
optimization problem (22) defined at the updating node q.
Since X̃i+1

q solves the local problem (22), it must satisfy the
KKT conditions of the local problem, and therefore based on
the parameterization in (22), the stationarity condition can be
written as

∇X̃q
L(Ci

qX̃
i+1
q , λ̃(q)) = 0, (62)

where λ̃(q) represents the set of Lagrange multipliers corre-
sponding to the local problem (22) at node q and iteration
i. Note that (62) contains the Lagrangian of the centralized
problem (6), yet it is parameterized based on (22) to transform
it into the local problem at node q. From the chain rule with
X = Ci

qX̃q , we have

CiT
q ∇XL(Ci

qX̃
i+1
q , λ̃(q)) = 0. (63)

The KKT conditions for optimality of the local problem (22)
can then be written as

CiT
q ∇X

[
f
(
Ci

qX̃
i+1
q

)
+
∑
j∈J

λj(q)hj

(
Ci

qX̃
i+1
q

) ]
= 0,

(64)

hj

(
Ci

qX̃
i+1
q

)
≤ 0 ∀j ∈ JI , hj

(
Ci

qX̃
i+1
q

)
= 0 ∀j ∈ JE ,

(65)
λj(q) ≥ 0 ∀j ∈ JI , (66)

λj(q)hj

(
Ci

qX̃
i+1
q

)
= 0 ∀j ∈ JI , (67)

where the λj(q)’s are the Lagrange multipliers at updating
node q and iteration i. Since (65) is exactly the same as (58),
we conclude that the local primal feasibility condition is also
satisfied globally (which we already knew from (23) and [1,
Lemma 1]). Let us now look at the three other equations
and assume that the algorithm has reached a fixed point, i.e.,
Xi+1 = Xi = X . From this fixed point assumption, we can
replace Ci

qX̃
i+1
q = Xi+1 with Ci

qX̃
i
q = Xi = X in (64) such

that the local stationarity condition can be rewritten as

CiT
q ∇X

[
f(X) +

∑
j∈J

λj(q)hj(X)
]
= 0. (68)

Selecting the first Mq rows of (68), we have (note that from
(19), the matrix CiT

q selects the q−th block-row from X as
the first Mq rows)

∇Xqf(X) = −
∑
j∈J

λj(q)∇Xqhj(X). (69)

Since this result is valid for any node q due to the fixed point
assumption, we may stack the variations of equation (69) for
every node q ∈ K:∇X1f(X)

...
∇XK

f(X)

 = ∇Xf(X) = −


∑

j∈J λj(1)∇X1hj(X)
...∑

j∈J λj(K)∇XK
hj(X)

 .

(70)
Multiplying (68) by X̃i

q defined in (25) and using the fact that
Ci

qX̃
i
q = Xi = X (this follows from (25) and the definition

of Ci
q in (19)-(20)), we obtain

X
T∇Xf(X) = −

∑
j∈J

λj(q)X
T∇Xhj(X). (71)

From Condition 1a, the set {XT∇Xhj(X)}j is linearly inde-
pendent and therefore the Lagrange multipliers {λj(q)}j that
satisfy (71) are unique. Moreover, since the left-hand side of
(71) does not depend on the node q, we have that λj(q) = λj

for any node q. Therefore, (70) becomes

∇Xf(X) = −
∑
j∈J

λj∇Xhj(X), (72)

which implies that (X, {λj}j) satisfy the global stationarity
conditions (57). Since (X, {λj}j) satisfies the local dual
feasibility and the local complementary slackness conditions
(66) and (67) (with Ci

qX̃
i+1
q = Xi+1 replaced by X due to it

being a fixed point), it also satisfies their global counterparts
(59) and (60). Hence, (X, {λj}j) satisfies all the global KKT
optimality conditions. This proves that any fixed point of
Algorithm 1 is a stationary point of the global problem (6).
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APPENDIX B

Proof of Theorem 2. The arguments in this proof are very
similar to the ones in the proof of Theorem 1, where the
main difference is to show the uniqueness of the Lagrange
multipliers when {Dj,q(X)}j is a linearly independent set for
any q ∈ K at fixed points X = Xi+1 = Xi. Therefore we
only make changes to that part of the proof.

From the definition of Ci
q in (19)-(20), left-multiplying

each block-row of (68) by the corresponding block-column
of X̃(i+1)T

q as structured in (13), we have

X(i+1)T
q ∇Xq

[
f(Xi) +

∑
j∈J

λj(q)hj(X
i)
]
= 0,

(73)

G(i+1)T
n

∑
k∈Bnq

XiT
k ∇Xk

[
f(Xi) +

∑
j∈J

λj(q)hj(X
i)
]
= 0,

(74)
∀n ∈ Nq . Note that we here again assume that the algorithm
has reached a fixed point for which Xi+1 = Xi = X (as this
was also assumed to derive (68)), which implies that we can
make the substitutions Xi+1

q = Xi
q = Xq and Gi+1

n = IQ for
all n ∈ Nq (see (26)) within (73)-(74). By doing so and, from
the definition (30) of Dj,q(X), (73) and (74) become

CiT
Xq
∇Xf(X) +

∑
j∈J

λj(q)Dj,q(X) = 0, (75)

where Ci
Xq

is the matrix Ci
q but the identity matrix of the

first block-column in (19) has been replaced by Xi
q = Xq .

From (75) and the linear independence assumption over the
set {Dj,q(X)}j (see Condition 1b), the Lagrange multipliers
λj(q) for all j ∈ J that satisfy (75) must be unique. We
can repeat the same argument for any updating node, which
implies that (73)-(75) holds for any node q, each time with its
own unique set of Lagrange multipliers. We will now prove
that this unique set of Lagrange multipliers is the same for
any updating node q.

Slightly rewriting (73)-(74) (with Xi+1 = Xi = X and
Gi+1

n = IQ) gives

XT
q ∇Xq

f(X) = −
∑
j∈J

λj(q)X
T
q ∇Xq

hj(X), (76)∑
k∈Bnq

XT
k∇Xk

f(X) = −
∑
j∈J

∑
k∈Bnq

λj(q)X
T
k∇Xk

hj(X),

(77)
where (76)-(77) holds for every q ∈ K and for all n ∈ Nq .
Substituting (76) into (77), we obtain∑

j∈J

∑
k∈Bnq

λj(k)X
T
k∇Xk

hj(X)

=
∑
j∈J

∑
k∈Bnq

λj(q)X
T
k∇Xk

hj(X).
(78)

Vectorizing the matrices in (78) such that hj,k =

vec
(
XT

k∇Xk
hj(X)

)
∈ RQ2

and defining Hk =

[h1,k, . . . ,hJ,k] ∈ RQ2×J ∀k ∈ K, we obtain∑
k∈Bnq

Hkλ(k) =

 ∑
k∈Bnq

Hk

λ(q), (79)

where λ(k) = [λ1(k), . . . , λJ(k)]
T . At node q and for its

corresponding neighbor n ∈ Nq , we can then write the
following linear system of equation:

Hnq · λK = 0, (80)

where λK = [λT (1), . . . ,λT (K)]T ∈ RKJ and Hnq ∈
RQ2×KJ is a block-column matrix where the l−th block of
size Q2 × J is given by

Hnq(l) =


−
∑

k∈Bnq
Hk if l = q

Hl if l ∈ Bnq
0 otherwise.

(81)

Stacking vertically the matrices Hnq , for every neighbor n ∈
Nq and every node q ∈ K, results in H ∈ RQ2 ∑

k |Nk|×KJ

and we write
H · λK = 0. (82)

Note that from (81), the sum of all Q2 × J block-columns
of Hnq(l) must be equal to the zero matrix. Therefore, every
λK such that λ(1) = · · · = λ(K) is in the null space of
H and would satisfy (82). The dimension of the set {λK ∈
RKJ | λ(1) = · · · = λ(K)} is equal to J and therefore
rank(H) ≤ KJ−J . To ensure that these are the only solutions
of (82), we require rank(H) = KJ−J . Note that a necessary
condition to satisfy this is that KJ − J ≤ Q2

∑
k |Nk|, i.e.,

KJ−J is less than the number of rows of H, or equivalently
J ≤ Q2

K−1

∑
k |Nk|, leading to the upper bound given in (32).

Lemma 3. If Condition 1b holds, then rank(H) = KJ − J .

Proof. The proof of this lemma is provided as supplementary
material to the paper as it is too elaborate to fit in this main
text.

Since rank(H) = KJ − J , the set {λK ∈ RKJ | λ(1) =
· · · = λ(K)} contains the full null space of H and hence all
the solutions of (82). Because we now have established that
all the Lagrange multipliers are the same, we can conclude
that (70) holds in this case as well, allowing to obtain the
same result as in (72). The remaining arguments of the proof
of Theorem 1 can be applied here to conclude that each fixed
point is a point satisfying the KKT conditions (57)-(60) of the
original problem (6).

APPENDIX C

Proof of Theorem 3. From Corollary 1, all points in (Xi)i
remain in a compact set. Since each compact set has at least
one accumulation point X , there exists an infinite subsequence
of (Xi)i which converges to X . Because the number of nodes
is finite, there exists a node k ∈ K that acts as an updating
node in an infinite number of iterations that are sampled in this
subsequence. In other words, we can find some node k such
that there exists a set of iteration indices Ik ⊆ N such that
(Xi)i∈Ik

converges to X and (i mod K)i∈Ik
= (k)i∈Ik

, i.e.,
the iteration indices Ik correspond only to iterations where
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node k is the updating node in Algorithm 1. From Berge’s
Maximum Theorem [24], the continuity of F̃k and g(W,V ) ≜
||W−V ||F implies that M̃k and thusMk = CkM̃k as in (38)
are upper semicontinuous. This implies that any accumulation
point X

(+1)
of the set (Xi+1)i∈Ik

must satisfy

X
(+1) ∈Mk(X). (83)

As from Lemma 4 (see end of this appendix), we have
Mk(X) = {X} (i.e., X is a fixed point ofMk), (83) implies
that

X
(+1)

= X. (84)

Inductively applying the above argument for the new subse-
quence (Xi+1)i∈Ik

and accumulation point X
(+1)

and for
node k + 1 mod K yields

X
(+l)

= X ∀l ≥ 0. (85)

As X
(+l)

is any accumulation point (Xi+l)i∈Ik
, all the

accumulation points of (Xi+l)i∈Ik
are equal to X and all

the sequences

(Xi)i∈I(k+l mod K)
≜ (Xi+l)i∈Ik

(86)

converge to the same point X . From Lemma 4 (here applied
to the node k+ l mod K instead of k), X

(+l)
is a fixed point

ofM(q+l mod K) and X is therefore a fixed point ofMk for
any k, proving the first part of the theorem.

We now prove that limi→+∞ ||Xi+1 − Xi||F = 0 by
contradiction. Let us assume that the above statement is not
true. We first note that X,W → ||X −W ||F is a continuous
mapping and Xi and Xi+1 both live in a compact set (see
beginning of the proof). Since the continuous image of a
compact set is itself a compact set, (||Xi+1 −Xi||F )i has at
least one accumulation point. There must therefore be some
index set I such that

lim
i∈I→∞

||Xi+1 −Xi||F > 0, (87)

that is, there is one convergent subsequence converging to a
point different from zero. Indeed, if zero was the only accumu-
lation point, the sequence would be convergent (see Lemma
5). Furthermore, based on the same reasoning as the beginning
of this proof, there is some I ′k ⊆ I such that (Xi)i∈I′

k
is a

convergent sequence such that (i mod K)i∈I′
k
= (k)i∈I′

k
for

some k. We have shown above that the convergence of such
a sequence (Xi)i∈I′

k
implied that

lim
i∈I′

k→∞
Xi = lim

i∈I′
k→∞

Xi+1. (88)

Therefore, by continuity of the Frobenius norm, it must be
that

lim
i∈I′

k→∞
||Xi+1 −Xi||F = 0. (89)

As (89) contradicts (87), every convergent subsequence of
(||Xi+1−Xi||F )i∈N converges to 0 and (||Xi+1−Xi||F )i∈N
is therefore a convergent sequence.

Proof of Theorem 4. Let us assume that the mapping (39)
corresponding to the DASF algorithm has a finite set of fixed
points denoted Φ. As the set of fixed points is finite, it must
be that there exists some δ > 0 such that for any pair of

fixed points X,W ||X −W ||F > δ. From Lemma 5, as the
sublevel sets of f are compact, (Xi)i converges to the set of
its accumulation points A. From Theorem 3, this set A must
be a subset of Φ, and therefore finite.

We will now show that A must be a singleton. From Lemma
5, we have

∀ε,∃iε > 0 : inf
W∈A

||W −Xi||F < ε, ∀i > iε. (90)

From Theorem 3, we have

∀ε, ∃iε > 0 : ||Xi+1 −Xi||F < ε, ∀i > iε. (91)

From (90) and (91), there exists an iε > 0 such that

∀i > iε ∃X,X
(+1) ∈ A :||X −Xi||F < δ/3,

||X(+1) −Xi+1||F < δ/3,

||Xi+1 −Xi||F < δ/3. (92)

We then have from the triangle inequality

||X(+1) −X||F ≤ ||X
(+1) −Xi||F

+
∥∥Xi+1 −Xi

∥∥
F
+ ||Xi+1 −X

(+1)||F < δ. (93)

If X ̸= X
(+1)

then this would imply that ||X(+1)−X||F > δ
(by definition of δ). However, this would be a contradiction
with (93). Therefore, X and X

(+1)
must be equal. Since (92)

holds for any i, we find by induction that A is a singleton.
From Lemma 5, this results in the convergence of (Xi)i.

Lemma 4. Let Ik ⊆ N be such that (Xi)i∈Ik
converges to X

and (i mod K)i∈Ik
= (k)i∈Ik

, i.e., we only consider iterates
related to some node k. Then if F̃k : RM×Q ⇒ RM̃Q×Q is a
continuous mapping7, X is a fixed point of the map Mk, i.e.,
Mk(X) = {X}.

Proof. From Corollary 1, all points in (Xi)i remain in a
compact set therefore (Xi+1)i∈Ik

has an accumulation point
X

(+1)
. The continuity of F̃k, and thus of Ck(X)F̃k, implies

that it is also upper semicontinuous. Therefore we have (by
definition, see [17])

X
(+1) ∈ Ck(X)F̃k(X). (94)

We can now prove that

min
W∈Sk(X)

f(W ) = f(X
(+1)

) = f(X). (95)

The first equality directly follows from (94) and the definition
(35) of F̃k, that is

min
W∈Sk(X)

f(W ) = min
W̃q :Cq(X)W̃q∈Sk(X)

f(Cq(X)W̃q) = f(X)

(96)
∀X ∈ Ck(X)F̃k(X). The second equality in (95) follows
from the fact that X is an accumulation point and that f is
continuous together with the fact that (f(Xi))i is monotoni-
cally decreasing (Lemma 1) (i.e., all accumulation points have
the same objective value). Because of (95), and since X is by
definition in Sk(X), it must be that X ∈ Ck(X)F̃k(X) and

7As seen in the proof of Lemma 4, this can be relaxed to upper semicon-
tinuity, but we keep the continuity condition for consistency with previous
results.
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thus [XT
k , IQ, . . . , IQ]

T ∈ F̃k(X). Using this in (37) with X
replaced by X results in {X} =Mk(X).

Lemma 5. In a compact metric space, a sequence converges
to the set of its accumulation points. Additionally, the sequence
converges if and only if it has a single accumulation point.

Proof. Let (Xi)i be some sequence in a compact metric space.
Let A denote the set of accumulation points of (Xi)i. We
have ∀X∗ ∈ A,∃I ⊆ N : ∀ε > 0,∃iε > 0 : ||X∗ −Xi||F <
ε, ∀i ∈ I > iε. We wish to prove that ∀ε > 0,∃iε > 0 :
infX∈A ||X −Xi||F < ε, ∀i > iε. Let us assume that our
claim is not true. Then

∃ε > 0,∀iε > 0,∃i > iε : inf
X∈A

||X −Xi||F ≥ ε. (97)

which implies that there exists some infinite set I ⊆ N such
that

∃iε > 0 : inf
X∈A

||X −Xi||F ≥ ε, ∀i ∈ I > iε. (98)

Since the space is compact, the subsequence (Xi)i∈I has
itself a convergent subsequence converging to a point in A,
contradicting (98).

The convergence in the case of a single accumulation point
follows directly from the previous result and the converse is
a well-known result.
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