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This supplementary material details the steps we follow to
prove Lemma 3 from [1], i.e., to show that rank(H) = K.J—.J
which implies that the equation H - Axx = 0 (equation (82) in
[1]) can only have solutions Ax = [AT(1),...,AT(K)]T of
the form A(1) = --- = A(K) when Condition 1b (repeated
below) is satisfied.

Condition 1b. For a fixed point X of Algorithm 1, the
elements of the set {D; ,(X)};cy are linearly independent
for any q, where

XqVx,hi(X)
> X Vxhi(X)
o k€Bn,q
D%q(X) = : 9 (99)
> XiVx.hi(X)

KEBn 14

which is a block-matrix containing (1+|Ny|) blocks of Q X Q
matrices.

The proof will be accompanied by an example network
topology, given in Figure 3, to visualize the structure of some
large matrices in the proof, yet we keep the proof itself generic.

At a fixed point X = X! = X of the DASF algorithm,
we have shown in Appendix B in [1] that at each node g € K
the local stationarity conditions can be written as

XIVx, f(X) ==Y N(@X]Vx,h;i(X), (100)

JjeET
kEBnq JET kEBpy
(101)
Vn € N, leading to the equations
D> NRXEVx,hyi(X)
e _ (102)
=Y > M@XEVx,hi(X), Yn €N,
JET kEBng

For clarity, we vectorize the the matrices X7 Vx, h;(X)
— — 2

such that h;; = vec (X} Vx, h;(X)) € R and create the

matrix Hy = [hyy,...,hy] € RQ**J Wk € K. Note that
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Fig. 3. The example 4—node network we will use to illustrate the equations.

the linear independence condition of {D, ,}; for any node ¢
is then equivalent to

H,

ZkEB Hj,

n1q

D, = (103)

ZkeBn H;,
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being full rank, i.e., rank(Dgq) = J. Then, (102) can be
rewritten as

ST OHAK)=| > Hi | Xq), VneN,, (104
keBng k€Bnq
where A(k) = [M(k),...,A;(k)]T. For example, in the

example network from Figure 3, we have for ¢ = 1:

HyA(2) = HaA(1),
H3A(3) + HiA(4) = (Hs + Ha)A(1).

(105)
(106)

Equation (104) corresponds to the linear system given as

an . >\)C = 0; (107)

with H,,, a block-row matrix, where each block corresponds
to anode [ € K:

~Yies,, Hr ifl=g
H,,() = H if 1 € By,

0 otherwise.

(108)

We can then stack vertically every H,, for every neighbor
n € N, of ¢, and for every node ¢ to obtain

H- e =0. (109)

In the example network of Figure 3, we have the matrix given
in (110), where we separated by horizontal lines the blocks
corresponding to each different node for clarity.



H2’1 —Hy Ho 0 0
H; —Hs; — Hy Hs Hy
H o I, —H, — Hs Hs 0
Hyo 0 —Hy 0 H,
H= 52| = |, i : (110)
H473 0 H, —Ho — Hy Hy
H274 H, Hs 0 —H, — H,
Hs 4 L 0 Hs —H; |
-H271_ [ —Hy Hy 0 0 i
H371 —H3 — H4 0 H3 H4
Hyy H, H, Hs —H; — Hy — Hj
_ H172 Hy —H, — H3 H3 0
H= Hi,| = 0 —Hy 0 Hy (116)
Hyy H, H, Hj —Hy; — Hy — Hj
H., H, 0 —H, 0
H473 0 H, —Hy — Hy H,
| Hxy4 | | H, Hj —H; — Hy — H3 |

Note that H is a Q* ", _ [Ni| x KJ matrix and since
Vg e K, nec N,

> Hpg(k) = —Hyy(1) (111)
kek\ {1}
Vi € K, all Ax € RE7 such that A(1) = --- = A(K) is a
solution of (109). A basis for this solution space is given by
e €9 ey
£ = I N R c RE7, (112)
€] €9 ey

where ey,’s represent the standard basis for R”. Since £ spans
a J—dimensional space, we have

rank(H) < KJ — J. (113)

To show that the solution of (109) all satisfy A(1) = --- =
A(K), we need to show that all solutions are in span(£), i.e.,
rank(H) = KJ — J, which is stated in Lemma 3 from [1],
repeated below and followed by a proof. By the dimensions of
H, this is only possible if we have Q*>", ., N| > KJ —J

or equivalently J < KQ—_Ql > kei Nkl
Lemma 3. [f Condition 1b holds, then rank(H) = K.J — J.

Proof. Let us take the bottom part of the matrix H corre-
sponding to the neighbors of the last node K, and take the
sum over its block-rows H,, i, n € N, defined in (108),
which results in a new summed block row

— H, ifl=K
Hype(l) = 4 ke Hie (114)

H, ifl #K.

In the example network, we have K = 4, therefore
H24:[H1 ‘ H2 ‘ H3 ‘ —Hl—HQ—Hg ]

(115)
We then insert vertically the matrices Hy i after each block
H qg # K, of H. Note that this insertion cannot
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change the rank of the matrix, as all the inserted rows are
sums of existing rows in H. We also remove the block-rows

H ... 7HZWK‘K]T, i.e., the block-rows corresponding to

node K, to obtain a new matrix H. For the example in Figure
3, this results in the matrix given in (116). Note that we have

rank(H) > rank(H) (117)

since the removal of rows can only reduce the rank.

We will first look at the rank of H and derive from
it the rank of H. For this, we will apply the Gaussian
elimination method using elementary row operations (EROs)
which are known to not change the rank. Referring to the block
decomposition of example (116), H has K block-columns,
and each of these block-columns of H will be referred to
as the block-column at position £ € K. We refer to the
matrix [HY ... ’ng ‘q,HEK}T, q # K, and the resulting
matrices obtained by apli)lying EROs to it as the submatrix
corresponding to node ¢. For example, in (116) the block-
column at position 3 of the submatrix corresponding to node
2 is equal to [HT,0, HI]7.

For each g # K, let us sum all block-rows H,,,, n € N,.
The result is then subtracted from the block-row Hy ¢ leading
to the final block-row of the submatrix corresponding to
each node ¢ being of the form [0]... |0 >, c,c Hy[0]...|0] -
> rex Hil, where the first non-zero matrix is at position
q # K. For our example network, we obtain

[ —Hs Ho 0 0 T
7}{13 — Hy 0 Hj 1:[4
2 k=1 Hy 0 0 2 k=1 He
H, —H, — Hy s 0
0 —Hy 0 Hy
0 Z::l Hy, 0 _Zizl Hy
Hy 0 —H; 0
0 H2 —H2 - H4 H4
4 4
L 0 0 > 1 H -2 H



An important observation is that, for each ¢ # K, the block-
column at position ¢ corresponding to the submatrix of node
g can be obtained by applying EROs to Dq defined in (103),
i.e., it is equal to Dq up to EROs. Since rank(Dg) = J by
Condition 1b, we can apply the necessary EROs to obtain the
following reduced echelon form for the submatrix correspond-
ing to node ¢ = 1:

{%’***} (119)
We can use the J pivots in the first J columns of (119) to

create zeros at all the entries underneath (in the submatrices
corresponding to g # 1) using EROs. As a result, we obtain

0 RD * *
;o (120
0 * RDk-1 *

where RDy is a matrix equal to Dy up to EROs. To see
why (120) holds, i.e., that each block-column at position k ¢
{1, K} of the submatrix corresponding to node k is indeed
equal to Dy up to EROs, we note that, initially, every row
above this block is either full of zeros or a row of Hj (see
(118) for a visual example). Therefore, the EROs we applied
to the full matrix to create zeros at all entries underneath the
J pivots in the block-column corresponding to node ¢ = 1 do
not change the fact that the block-column at position & of the
submatrix corresponding to node k is equal to Dy up to EROs.
Since EROs do not change the rank of a matrix, the submatrix
RD3 should again have rank JJ and so we can again create .J
pivots to create zeros underneath. Repeating this process for
2 < q < K — 1, we obtain

(121)
0o | I(;] « |

Since there are at least K — 1 block-columns containing .J

pivots, rank(H) > K.J—J. We previously established in (117)
that rank(H) > rank(H), hence rank(H) > K.J — J. We also
already established in (113) that rank(H) < KJ — J, and
therefore it should hold that rank(H) = KJ — J, which is

what had to be proven. O
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