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Stimulus-aware spatial filtering for single-trial neural response

and temporal response function estimation in high-density

EEG with applications in auditory research

Neetha Das†?‡, Jonas Vanthornhout?‡, Tom Francart?, Alexander Bertrand†

Abstract

A common problem in neural recordings is the low signal-to-noise ratio (SNR), particularly when using non-

invasive techniques like magneto- or electroencephalography (M/EEG). To address this problem, experimental designs

often include repeated trials, which are then averaged to improve the SNR or to infer statistics that can be used in the

design of a denoising spatial filter. However, collecting enough repeated trials is often impractical and even impossible

in some paradigms, while analyses on existing data sets may be hampered when these do not contain such repeated

trials. Therefore, we present a data-driven method that takes advantage of the knowledge of the presented stimulus,

to achieve a joint noise reduction and dimensionality reduction without the need for repeated trials. The method first

estimates the stimulus-driven neural response using the given stimulus, which is then used to find a set of spatial

filters that maximize the SNR based on a generalized eigenvalue decomposition. As the method is fully data-driven,

the dimensionality reduction enables researchers to perform their analyses without having to rely on their knowledge

of brain regions of interest, which increases accuracy and reduces the human factor in the results. In the context of

neural tracking of a speech stimulus using EEG, our method resulted in more accurate short-term temporal response

function (TRF) estimates, higher correlations between predicted and actual neural responses, and higher attention

decoding accuracies compared to existing TRF-based decoding methods. We also provide an extensive discussion on

the central role played by the generalized eigenvalue decomposition in various denoising methods in the literature,

and address the conceptual similarities and differences with our proposed method.

Index Terms

EEG processing, temporal response function, speech entrainment, spatial filtering, denoising, forward modeling,

attention decoding.

I. INTRODUCTION

Understanding how auditory stimuli influence neural activity is one of the goals of auditory neuroscience research.

Towards this goal, several methods have been proposed to model the relationship between the auditory stimuli

and the elicited neural responses. In magnetoencephalography (MEG) or electroencephalography (EEG) studies,

The work is funded by KU Leuven Special Research Fund C14/16/057 and OT/14/119, FWO project nrs. 1.5.123.16N and G0A4918N, FWO

PhD grant awarded to Jonas Vanthornhout (1S10416N), the ERC (637424 and 802895) under the European Union’s Horizon 2020 research and

innovation programme. The scientific responsibility is assumed by its authors.
† KU Leuven, Dept. Electrical Engineering (ESAT), Stadius Center for Dynamical Systems, Signal Processing and Data Analytics. Kasteelpark

Arenberg 10, B-3001 Leuven, Belgium.
? KU Leuven, Dept. Neurosciences, ExpORL. Herestraat 49 bus 721, B-3000 Leuven, Belgium.
‡ These authors contributed equally to this work.

September 24, 2019 DRAFT



2

forward models based on linear temporal response functions (TRFs) are often used to model the path between the

stimulus and each of the electrodes/sensors (Ding and Simon, 2012b; Lalor and Foxe, 2010). In this work, we

focus on the EEG modality but the methods discussed are not limited to EEG. In case of speech stimuli and multi-

talker scenarios, TRFs have often been used to linearly map speech stimulus features such as stimulus envelopes,

speech spectrograms, phonemes, etc. of both attended and unattended speakers, to the neural activity of the listener

(Di Liberto et al., 2015; Ding and Simon, 2012a,b; Power et al., 2012). TRFs not only have high temporal precision

but are also sensitive to attentional modulation (Akram et al., 2017; Power et al., 2012). Forward modeling thus

comes with the advantages of being able to investigate the TRFs and gain a better understanding of how our brain

handles auditory stimuli (Di Liberto and Lalor, 2016; Ding and Simon, 2012a,b), and also the possibility to identify

the brain regions involved with stimulus processing (Das et al., 2016; Ding and Simon, 2012b; Etard et al., 2018;

Power et al., 2012).

On the other hand, linear backward modeling, where the stimulus features are reconstructed from the neural

activity, is also a commonly used method (Biesmans et al., 2017; Ding and Simon, 2012b; Fuglsang et al., 2017;

Mesgarani and Chang, 2012; Mirkovic et al., 2015; O’Sullivan et al., 2014). Unlike the forward model, this approach

makes use of inter-channel covariances to design the decoder. The correlations between the reconstructed and the

original stimulus features are thus higher than those of the predicted and original neural responses in the forward

modeling approach. However, the decoder coefficients themselves can not directly be interpreted, unlike forward

models, where TRFs for different channels can be visualized using topoplots.

In algorithms that deal with neural activity, often dimensionality reduction is key. Dimensionality reduction works

on the assumption that the data of interest lies in a lower dimensional space than its original representation. As

mentioned earlier, forward models map the auditory stimulus to each of the electrodes, thus preserving spatial

information of stimulus-related cortical activity. However, unlike algorithms that employ backward modeling, they

do not use cross-channel information to regress out non-stimulus related activity (Wong et al., 2018). In such

cases, dimensionality reduction can help to transform neural recordings from a multi-electrode system, into a signal

subspace with fewer components (than electrodes) and better SNR of the stimulus following responses (Akram

et al., 2016, 2017; Ding et al., 2014). The algorithm may then use these components themselves to achieve its goal,

or project the components back to the electrode space, effectively performing a denoising operation, before further

processing. Thus, dimensionality reduction goes hand-in-hand with denoising.

Principal component analysis (PCA) is often used for dimensionality reduction, in which case the principal

components corresponding to lower variance are discarded (Cunningham and Byron, 2014; de Cheveigné et al.,

2018b). However, this approach relies on the assumption that low variance corresponds to non-relevant activity,

which can be a rather restrictive assumption to make, particularly for EEG data, where usually most of the variance

comes from artifacts and background neural activity that is unrelated to the stimulus. Another approach, independent

component analysis (ICA) (Bell and Sejnowski, 1995), works on the assumption that the components (or sources)

are statistically independent. It is often used to remove components corresponding to artifacts with specific patterns

(like eyeblinks) (Urigüen and Garcia-Zapirain, 2015). However, ICA does not perform well in the extraction of

signal components that are far below the noise floor, as is the case for neural responses to speech. Another method,
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joint decorrelation (JD) (de Cheveigné and Parra, 2014) follows the formulation of linear denoising source separation

(DSS) (Särelä and Valpola, 2005) to improve the SNR of the activity of interest in the neural data. In the most

commonly used version of DSS, a criterion of stimulus-evoked reproducibility is used, maximizing the evoked-

to-induced ratio. This, however, requires repeated trials, which renders it impractical for many EEG applications

(although for MEG data, a few trials are typically enough for DSS to obtain a useful dimensionality reduction

and denoising (Akram et al., 2016, 2017; Ding et al., 2014)). Canonical correlation analysis (CCA) also reduces

dimensionality by finding separate linear transformations for the stimulus as well as neural responses, such that in

the respective projected subspaces, the neural response and the stimulus are maximally correlated (de Cheveigné

et al., 2018a,b; Dmochowski et al., 2018; Hotelling, 1936).

Except for CCA, the methods mentioned above do not exploit the knowledge of the stimulus. The goal of this

work was to develop a joint dimensionality reduction and denoising algorithm for neural data which takes advantage

of the knowledge of presented stimulus. We propose such a data-driven stimulus-aware method, which finds a set of

spatial filters using the generalized eigenvalue decomposition, to maximize the SNR of stimulus following responses,

thereby also facilitating an accurate TRF estimation on shorter trial lengths. For neural responses to continuous

speech stimuli, we show that the proposed method results in an effective dimensionality reduction/denoising without

the need for data from repeated stimulus trials as in the DSS method or phase-locked averaging techniques.

We validate the performance of the proposed method in the following three contexts.

1) Short-term TRF estimation, where short trials are used to estimate TRFs that map the auditory stimulus

envelope to the neural responses. The estimated TRFs can be visualized to track the effect of attention on

the TRF shapes, and eventually to even decode attention in real-time without any prior training of decoders

(Akram et al., 2017; Miran et al., 2018).

2) Stimulus envelope tracking, where in a single speaker scenario, neural responses to the stimulus envelope are

predicted using forward modeling, i.e., finding TRFs that map the stimulus envelope to the neural responses.

The correlations between the original neural responses and the predicted stimulus following responses are

analyzed (Aiken and Picton, 2008; Di Liberto et al., 2015). The analysis of these correlations can not only

contribute to advancing our knowledge of how the brain responds to auditory stimuli under different conditions,

but also has potential to act as objective measures of speech intelligibility (Broderick et al., 2018; Di Liberto

et al., 2018; Ding and Simon, 2012a; Lesenfants et al., 2019; Vanthornhout et al., 2018).

3) Auditory attention decoding, where an estimate is made as to which of multiple speakers, a person is attending,

using forward modeling (Wong et al., 2018). Attention decoding finds applications in brain computer interfaces

(BCIs) such as neuro-steered hearing prostheses where accurate information about a person’s auditory attention

can be used to steer the noise suppression beamformer towards the direction of the attended speaker (Aroudi

et al., 2018; Das et al., 2017; O’Sullivan et al., 2017; Van Eyndhoven et al., 2017). In particular, for real-time

tracking of auditory attention, forward models are popular (Akram et al., 2016, 2017; Miran et al., 2018), in

which case, dimensionality reduction is an important ingredient.

We compare our method with the commonly used DSS method, which is known to outperform PCA and ICA for
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Fig. 1: Block diagram of the proposed method. The EEG and stimulus data in the training set is used for forward modeling.

The resulting TRFs are convolved with the stimulus to form stimulus following responses (desired signal). A GEVD on the

covariance matrices of these signals and that of the original EEG results in the spatial filter that can be used to improve the

SNR of the test EEG data. Note that the split in training and testing data was done for validation purposes.

estimation of weak neural responses, such as those obtained from auditory stimuli (de Cheveigné and Simon, 2008).

Furthermore, we show a non-straightforward algebraic link between our method and the CCA method, showing

that CCA can be viewed as a special case of the presented method. A direct consequence is that CCA can also be

used in a context of EEG denoising or short-term TRF estimation.

The outline of the paper is as follows. In Section II, we describe the algorithm for denoising and dimensionality

reduction. In Section III, we describe the validation within the three aforementioned contexts. The strengths of our

method as well as similarities and differences with existing denoising and dimensionality reduction methods are

discussed in Section IV. Finally, we summarize and conclude in Section V.

II. ALGORITHM

The main goal of this work is to find a spatial filter, or a group of spatial filters, that combine the EEG channels

in such a way that the power of the auditory stimulus following responses is increased in comparison to the rest

of the neural activity captured by the electrodes. We aim to achieve this goal using the following steps to train the

filters: 1) Estimate the spatial covariance of the desired neural response across the different EEG channels, using

the known stimulus as side information, 2) find a signal subspace within which the ratio of the power of the desired

neural response to the power of the background EEG signal (i.e. SNR) is maximized, 3) project the EEG data

into the new signal subspace, thereby performing a joint dimensionality reduction and denoising, 4) back-project

the denoised data into the channel space if necessary. After step 3 or 4, one can then use the denoised signals to

perform the desired task-related analysis such as, e.g., estimating per-trial TRFs or correlating the stimulus with the

denoised EEG data to more accurately quantify the neural entrainment. The steps of the algorithm are illustrated in

figure 1 and explained in detail below. Note that the split in training and testing data as indicated in figure 1 was

done for validation purposes.

A. Max-SNR formulation

The EEG signal, at a time index t, is defined as a C-dimensional vector m(t) = [m1(t),m2(t), ...mC(t)]T ∈ RC

where C denotes the number of channels, and mi(t) represents the EEG sample from the ith channel at time index

September 24, 2019 DRAFT



5

t. For example, in a scenario where the subject listens to a speech signal s(t), it is known that the neural responses

entrain to the envelope of the speech stream. Therefore, the EEG signal can be assumed to be the sum of the

activity driven by the speech stimulus x(t) and the rest of the neural response n(t) at time t.

m(t) = x(t) + n(t). (1)

Our goal is to find a set of spatial filters that maximizes the SNR at their outputs. Consider the matrix PK ∈ RC×K

which contains K spatial filters in its columns. By multiplying the EEG data m(t) with PT
K , the C EEG channels

are combined into K output channels where K < C, in such a way that the SNR at the output is maximized. For

the sake of simplicity, we first assume K = 1, thus reducing PK to a single spatial filter denoted by the vector

p ∈ RC . The maximum-SNR criterion thus becomes:

argmax
p

E{(pTx(t))2}
E{(pTn(t))2}

= argmax
p

pTRxxp
pTRnnp

, (2)

Assuming the stimulus following responses x(t) and the background EEG (noise) n(t) are uncorrelated, the maximal

SNR criterion is equivalent to solving the optimization problem of maximizing the signal to signal plus noise ratio

(SSNR) (see Appendix A for the proof) such that equation (2) is equivalent to the new equation

argmax
p

pTRxxp
pTRnnp

= argmax
p

pTRxxp
pTRmmp

, (3)

where Rmm = E{m(t)m(t)T } ∈ RC×C (mean centered) contains both noise and desired neural responses.

Thus the max-SNR formulation requires two covariance matrices - Rxx of the stimulus-following responses, and

Rmm of the original EEG data. Rmm can easily be computed from the raw EEG data, while the estimation of

Rxx is explained in the next subsection.

B. Stimulus-following neural response covariance estimation

The stimulus following neural response x(t) can be modeled by a linear temporal response function (TRF) (Ding

and Simon, 2012a,b; Lalor and Foxe, 2010) that maps the stimulus envelope (including Nl-1 time lagged versions

of it) s(t) = [s(t), s(t− 1), ..., s(t−Nl + 1)]T ∈ RNl to the neural response:

x(t) = WT s(t), (4)

where W ∈ RNl×C is a matrix containing the per-channel TRFs in its columns. W can be estimated by minimizing

the mean square error between x(t) and m(t) :

W̃ = argmin
W

E{||WT s(t)−m(t)||2}, (5)

where E{.} denotes the expected value operator. The solution of (5) is given by

W̃ = R−1
ss rsm, (6)
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where Rss = E{s(t)s(t)T } ∈ RNl×Nl is the covariance matrix of the stimulus envelope, and rsm = E{s(t)m(t)T } ∈

RNl×C is the cross-correlation matrix between the stimulus envelope and the EEG data.

Consider we have N samples of data, with which to estimate the TRF W̃. By concatenating the N vectors s(t)

and m(t) in the columns of the matrices S = [s(1), s(2), ..., s(N)] ∈ RNl×N and M = [m(1),m(2), ...,m(N)] ∈

RC×N , respectively, we can estimate the covariance matrix of the stimulus envelope as Rss ≈ (SST )/N and the

cross-correlation matrix between the stimulus envelope and the EEG data as Rsm ≈ (SMT )/N which can then

be used in (6) to estimate the TRF matrix W̃ as

W̃ = (SST )−1SMT . (7)

With the estimated TRF, the desired neural response X = [x(1),x(2), ...,x(N)] ∈ RC×N can be computed using

(4), the spatial covariance matrix of which can then be estimated as Rxx ≈ (XXT )/N .

Besides knowledge of the stimulus itself, the algorithm can also be used to take advantage of the knowledge of

the dependence of the TRF with respect to various conditions. For example, it is already known that the TRFs for

speech stimuli from the right side of the listener have different spatial patterns compared to TRFs for speech stimuli

from the left side of the listener (Das et al., 2016; Power et al., 2012). One way of exploiting this information would

be by separating the data into ‘attention to the left’ and ’attention to the right’ conditions, and separately finding

long-term TRFs WL and WR respectively. The desired neural responses xL(t) and xR(t), and consequently the

corresponding spatial covariance matrices RxxL and RxxR can then be estimated separately. In this manner, we

estimate multiple spatial covariance matrices that collectively model the condition-dependencies in the second order

statistics of the desired neural responses. In this case, we can maximize the average SNR across both conditions:

argmax
p

E{(pTxL(t))2}+ E{(pTxR(t))2}
E{(pTm(t))2}

= argmax
p

pTRxxLp + pTRxxRp
pTRmmp

= argmax
p

pT (RxxL + RxxR)p
pTRmmp

.

(8)

As a result, the matrix Rxx in equation (3) is replaced with RxxL+RxxR. We will demonstrate that this additional

modeling freedom can be exploited to design better spatial filters. Note that a more naive model in which a single

TRF is fitted over all conditions would result in a virtual TRF that does not match any of the true underlying

response functions, leading to a single Rxx matrix which is not equal to RxxL + RxxR.

C. Spatial filter estimation

Having estimated the spatial covariance matrix Rxx of the desired neural response x(t) (or an averaged Rxx

across multiple conditions as in equation (8)), the next step is to find the set of spatial filters that maximizes the

SNR at their outputs. Solving for the max-SNR criterion, the stationary points of equation (3) can be shown to

satisfy (Van Veen and Buckley, 1988)

Rxxp = λRmmp. (9)

which defines a generalized eigenvalue problem for the matrix pencil (Rxx,Rmm) (Biesmans et al., 2015; Golub

and Van Loan, 1996; Parra and Sajda, 2003), where all λ’s and p’s that satisfy equation (9) are denoted as the
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generalized eigenvalues and eigenvectors, respectively. Note that equation (9) can be transformed in an equivalent

eigenvalue problem

Rp = λp. (10)

involving the non-symmetric matrix R = R−1
mmRxx. From equation (9), it follows that

pTRxxp = λpTRmmp⇔ λ =
pTRxxp

pTRmmp
(11)

which implies that λ is equal to the output SNR of the spatial filter. Therefore, in order to maximize the SNR, we

should set p equal to the (generalized) eigenvector corresponding to the largest (generalized) eigenvalue λ.

So far, we have considered a spatial filter p which combines the C EEG channels in an optimal way to obtain

a channel with SNR maximized. This can be further extended to solving the problem of finding a filter bank

PK ∈ RC×K consisting of K spatial filters that maximizes the total output SNR, by finding K generalized

eigenvectors corresponding to the K highest eigenvalues from the GEVD of (Rxx,Rmm). Rmm can be computed

from the raw EEG data as Rmm ≈ (MMT )/N where M is zero-centered. We refer to the resulting spatial

filterbank as the stimulus-informed GEVD (SI-GEVD) filter.

Although they were originally described as a sequence of two PCA steps, algorithms like JD and DSS can also

be realized as a single decomposition by means of a GEVD of two covariance matrices. The key difference with

our approach is that in DSS and JD, the Rxx matrix is replaced with a surrogate covariance matrix in which

the contribution of the stimulus following response is enhanced with respect to the background EEG. This can be

achieved through averaging the neural responses over multiple repetition trials, or using application specific filters

or selecting high SNR epochs. However, since the resulting ‘enhanced’ covariance matrix still contains a residual

covariance of the (distorted) background EEG, the resulting filters will not be SNR-optimal. Furthermore, if this

residue becomes very high, e.g., because insufficient repeated trials are available for averaging, the filters provided

by DSS/JD method will not be of any practical value. Instead, in the SI-GEVD method, we avoid this averaging

step with a forward convolutional model between the continuous stimulus and the different EEG channels in order

to estimate the spatial second-order statistics of the neural response.

As mentioned in the introduction, the CCA method can also be viewed as a stimulus-aware subspace method.

However, as opposed to SI-GEVD, CCA manipulates the stimulus and the EEG data simultaneously to find

components on both sides with a maximal mutual correlation. Because of this joint manipulation with correlation

maximization as the main target, CCA is at first sight only remotely related to max-SNR approaches like SI-GEVD,

JD, or DSS, as its goal is not to maximize SNR directly. Remarkably, it can be shown that CCA is actually a special

case of SI-GEVD, i.e., when it is used in its simplest form with a single TRF estimate as in equation (3) (we provide

a proof in Appendix B). This also shows that there is a link between DSS, JD and CCA, where the ‘glue’ between

these methods is provided by the SI-GEVD formulation. The equivalence is not obvious at first sight and only holds

if the filters applied on the EEG side are purely spatial and do not include temporal statistics (as opposed to the

stimulus-side, where also time lags can be used). As a direct consequence, CCA can also be used as a denoising

algorithm, e.g., to estimate short-term TRFs as explained in the next section. However, the SI-GEVD has a more
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general model and allows for more flexibility, e.g., to incorporate condition-dependent variability in the TRFs, such

as the example given in equation (8). If we take into consideration the direction of the stimulus, the optimization

problem can be defined in such a way that the average SNR over all conditions (in our earlier example, ‘attention

to the left’ and ‘attention to the right’) is maximized, as formulated in equation (8). The SI-GEVD filter can then

be found from the GEVD of the matrix pencil (RxxL + RxxR,Rmm). This will lead to a bank of spatial filters

which aims to find a subspace that leads to a high SNR in both of these conditions. Note that, while the training

phase requires side information about the direction of attention, this information is not required during the test

phase after the spatial filters have been trained.

D. Project EEG signal onto the new subspace

The top K eigenvectors from the GEVD corresponding to the K largest generalized eigenvalues λ can be

used to reduce the dimensionality of the raw EEG data with C channels, to K filtered EEG components. If

PK = [p1,p2, ...,pK ] is the matrix containing the top K eigenvectors in its columns, then the compressed EEG

signal in the new subspace is

mproj(t) = PT
Km(t). (12)

There are many ways to choose K. The cumulative λ values can be plotted and the top K values which contribute

to 95% of the total SNR (sum of all λ values) can be chosen. The optimum K can also be chosen based on the

application. For example, in the case of auditory attention decoding using forward modeling or correlation analysis,

one can use cross validation to select the number of components K that eventually results in the highest attention

decoding accuracy or the best correlations respectively.

E. Back-projection to the electrode space

If desired1, back-projection to the electrode space can be done based on the matrix QC = (P−1
C )T , where the

square matrix PC contains all the generalized eigenvectors of the pencil (Rxx,Rmm) in its columns. Note that

PK contains a subset of the columns of PC . By selecting the subset with the same column indices from QC , we

obtain the matrix QK , which can be used to project the compressed data mproj(t) back to the electrode space with

minimal error in the least squares sense (see Appendix C):

m̄(t) = QKmproj(t). (13)

This results in a denoised version m̄(t) of the original EEG channels m(t). The denoised signals can then be used

for short-term TRF estimation, attention decoding, etc.

1In some applications, one may want to work on the compressed EEG signals directly rather than reconstructing the neural response in the

electrode space. For example, in Akram et al. (2017) short-term TRFs are estimated on a single component in the compressed space to track

an M100 peak.
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III. VALIDATION EXPERIMENTS

A. Data collection and pre-processing

1) Dataset I: This dataset consists of EEG data collected during the experiments described in Das et al. (2016).

The data consists of 64-channel EEG recordings sampled at 8192 Hz collected from 16 normal hearing subjects

(8 male, 8 female) between the age of 17 and 30 years. The subjects were asked to attend to one of two stories

that were simultaneously presented to them. We refer to Das et al. (2016) for details on the experiment conditions.

For the analyses in this paper (including those in section III-D), we used only the data corresponding to conditions

where the presented stimuli were filtered by head-related transfer functions (HRTFs) (≈38 minutes per subject), in

order to provide a realistic acoustic impression of the location of the speakers. In Das et al. (2016), it has been

shown that this data resulted in significantly better attention decoding performance in comparison to dichotically

presented unfiltered stimuli. The multi-channel Wiener filtering (MWF) method in Somers et al. (2018) was used

on the EEG data for artifact removal. The EEG data was bandpass filtered between 1 and 9 Hz. In Das et al. (2016);

Ding and Simon (2012b); Golumbic et al. (2013); Pasley et al. (2012), it was shown that cortical envelope tracking

in this frequency range results in the best attention decoding performance. The audio envelope was determined by

filtering the speech waveform with a gammatone filterbank (with 15 filters) followed by powerlaw compression

(exponent = 0.6) on the absolute value of each filter’s output signal (Biesmans et al., 2017). The resulting signals

from all subbands were then summed, after which the signal was downsampled to 32 Hz and filtered using the same

1-9 Hz bandpass filter as for the EEG signal, which then resulted in a smooth envelope. We decided to keep the

preprocessing identical to the original paper Das et al. (2016) as it is application specific, and hence has differences

with the preprocessing done in section III-A2 (based on Vanthornhout et al. (2018)). The EEG data was referenced

to the Cz electrode2 (therefore, C = 63). All data were normalized to have zero mean and unit standard deviation

per channel/lag.

2) Dataset II: This dataset consists of EEG data from Vanthornhout et al. (2018). In this study the EEG

(64 channels sampled at 8192 Hz) was recorded from 27 normal hearing subjects (8 male, 19 female, average

age: 23 years). The participants listened to a 14-minute continuous speech stimulus (the story Milan, narrated in

Flemish by Stijn Vranken) and to isolated sentences. The isolated sentences stimulus consists of a concatenation of

40 sentences, with a 1 s silence between each sentence, taken from the Flemish Matrix sentence test (Luts et al.,

2014). As each sentence is approximately 2 s long, this yields a stimulus of 120 s with 80 s of speech. Each isolated

sentences stimulus was repeated 3 or 4 times, yielding 6 to 8 minutes of EEG recordings. All stimuli were presented

diotically. In the original study (Vanthornhout et al., 2018) the isolated sentences were presented in silence and in

noise. For this study, we only used the data without background noise.

Preprocessing of the EEG data was done similar to Vanthornhout et al. (2018). The EEG was highpass filtered

(second order Butterworth with cut-off at 0.5 Hz) and downsampled to 256 Hz before applying the MWF for artifact

rejection (Somers et al., 2018). It was then re-referenced to the Cz electrode (therefore C = 63). Next, the EEG was

2Cz as the reference was an arbitrary choice. It is commonly used since electrodes in the ‘Z’ sites won’t necessarily reflect or amplify lateral

hemispheric cortical activity as they are placed over the corpus callosum.
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bandpass filtered within the delta band (0.5 - 4 Hz). This band was found to be the most useful to predict speech

intelligibility (Vanthornhout et al., 2018). Finally, the EEG was downsampled to 128 Hz. The stimulus envelope

was estimated using a gammatone filterbank with 28 filters. A powerlaw compression was then applied (exponent

= 0.6) to the absolute values in each of the subbands. The resulting 28 subband envelopes were bandpass filtered

(as was done for the EEG data) and averaged to obtain one single envelope, and downsampled to 128 Hz. The

EEG data and stimulus data were normalized (per channel/lag) to have zero mean and unit standard deviation.

3) Dataset III (synthetic dataset): For this dataset, the EEG data synthesis was based on a real EEG recording

from Dataset I, where the ‘mTRF’ toolbox (Crosse et al., 2016) was used to find the long-term TRFs WL and

WR for the 2 conditions:‘attention to the right’ and ‘attention to the left’ separately, mapping the attended speech

envelope (and it’s lagged versions up to 400 ms) to the EEG data across all subjects. The lag at which WL and WR

jointly had the maximum norm was chosen as the reference lag. The left and right attended TRFs corresponding to

the channel ‘C5’ was then taken to generate base TRF templates. For each condition, TRFs for all other channels

were taken to be scaled versions of this base template, with the scaling corresponding to the amplitude of the TRFs

in the corresponding channels at the reference lag. Thus 2 C-channel TRF matrices WbaseL and WbaseR ∈ RNl×C

containing the per-channel TRFs in its columns was synthesized. Lags of 0 to 400 ms were used corresponding to

Nl = 32 Hz × 400 ms + 1 = 14 samples.

The stimulus following responses were then synthesized by convolving the per-channel TRFs WbaseL and WbaseR

with the attended speech envelope and the results were put in matrices XL and XR ∈ RN×C where N is the

total number of EEG samples (38 minutes) simulated per condition. Noise N to be added to the stimulus following

responses XL and XR was synthesized by flipping in time, the concatenated 38 minute EEG from a randomly chosen

subject. The flipping operation ensures that the neural response in the EEG data is uncorrelated to the synthesized

neural response. EEG responses to the attended speech M ∈ R2N×C , which included both the conditions, were

simulated by adding noise N to XL and XR at different SNRs. SNR is defined here as 20 times the logarithm

(base 10) of the ratio of the root mean square (rms) values (averaged across channels) of the neural response (XL

or XR) to the rms values (averaged across channels) of the noise (N).

B. Short-term TRF estimation

We look at the problem of estimating TRFs from short trials. This is different from TRF estimation within the

SI-GEVD method itself where we are estimating long-term TRFs over a large amount of data (i.e., N is very large)

ensuring goog estimates. Unlike long-term TRF estimation, estimating TRFs from short trials is a challenging task

owing to the low SNR of the EEG data and the relatively few number of samples to estimate the TRFs from.

Therefore, by SI-GEVD filtering we expect to improve the SNR of the EEG data enabling us to better estimate

short-term TRFs over much shorter windows with fewer samples.

1) Data Analysis: In order to reliably estimate any improvement that SI-GEVD filtering might bring to the

problem of TRF estimation from short trials, we also need ground-truth data of which the true underlying TRF is

exactly known. To this end, we generated hybrid EEG data which consisted of real EEG to which a simulated neural

response was added at various possible SNRs, as described in the synthesis of Dataset III. Once the EEG data was
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synthesized using the two base TRF templates, we focused on estimating short-term TRFs from the SI-GEVD filtered

version, and assessing the quality of these TRF estimates in comparison to the base TRF template. We estimated

TRFs Wraw ∈ RNl×C from 120 s trials of the unfiltered EEG data M using a standard ridge regression technique

as implemented in the mTRF toolbox (Crosse et al., 2016). The regularization parameter for ridge regularization

was chosen to be 0.2 after analyzing the results over a range of values. In addition, a leave-one-trial-out cross

validation was used for estimating the SI-GEVD filter. This is explained as follows. For the ith trial, the EEG data

Mtest[i] = [m((i− 1)L+ 1),m((i− 1)L+ 2), ...,m(iL)] ∈ RC×L formed the ith test trial, while the EEG data

from all trials except the test trial, formed the training set Mtrain[i] ∈ RC×(2N−L), where L = 32 Hz × 120 s =

3840 samples and N = 32 Hz × 120 s × 19 trials per condition = 72960 samples. Similarly, the stimulus envelope

of the test trial was taken as Stest[i] = [s((i− 1)L+ 1), s((i− 1)L+ 2), ..., s(iL)] ∈ RNl×L where s(t) is a vector

containing Nl = 14 samples corresponding to Nl delays, as seen in equation (4). Stimulus envelopes from all trials

except the test trial of index i, were concatenated to form the training set Strain[i] ∈ RNl×(2N−L).

We estimate the SI-GEVD filters PK [i] on the training data Strain[i] and Mtrain[i] based on the method described

in section II, taking advantage of the direction of the stimulus (solving equation (8)). Since, in all cases, there were

2 dominant generalized eigenvalues, only 2 generalized eigenvectors (K = 2) were used as the SI-GEVD filter.

The test trial was then SI-GEVD filtered and back-projected to obtain the denoised EEG data M̄test[i]. The TRFs

WSI-GEVD[i] were then estimated from M̄test[i] and Stest[i] within the 120 s trial, in the same way as how Wraw[i]

were estimated.

As explained in section II-C, CCA can be viewed as a special case of SI-GEVD, which implies it can also be

used as a denoising filter, albeit without the flexibility in using side information about different conditions such as

left and right-attended. To demonstrate the benefit of this extra modeling power, we also implemented CCA and

used it as a denoising filter (similar to SI-GEVD), where the same leave-one-trial-out procedure was used. The

back-projection to the electrode space is here performed with a standard least-squares regression, as the equation

(13) only works for the generalized eigenvector formulation.

2) Results: For each 120 s trial, the estimated TRFs of all channels were concatenated into a single vector

estimated TRF: ŵraw[i] ∈ RCNl×1 from the raw EEG data, ŵCCA[i] ∈ RCNl×1 from the CCA-filtered data, and

ŵSI-GEVD[i] ∈ RCNl×1 from the SI-GEVD filtered EEG data. For each trial, the base TRFs of all channels (depending

on which condition the trial belonged to, i.e., left or right attended) were also concatenated to obtain a single vector

base TRF ŵbase[i] ∈ RCNl×1. We omit the indication for the left or right attended stimulus conditions for notational

convenience. In order to eliminate any differences due to scaling, a scaling factor was estimated by applying a least

squares fitting such that the estimated TRF vector (referred to, in general, as ŵ) was scaled to fit ŵbase[i] in

the minimum mean squared error sense. This allows for a more fair comparison, as it allows to compensate for

amplitude bias in the back-projection3, and since we are mainly interested in the shape and relative amplitude of

the TRFs across channels. The scaling was performed across channels (note that w is a vector in which the TRFs of

all channels are concatenated), and thus the relative differences in the per-channel amplitudes remained unchanged.

3The back-projection is based on a least squares estimator, which is known to be biased in the case of noise in the regressor matrix.
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Fig. 2: Relative MSE between base TRFs and estimated TRFs based on raw Vs CCA-filtered Vs SI-GEVD filtered EEG. Each

boxplot is built from the statistics of per trial relative MSEs (38 datapoints per method). Comparison between the methods were

done using Wilcoxon’s signed-rank test with Bonferroni correction: ‘****’ for p < 0.0001. Note that the Y-axis is in log scale.
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Fig. 3: An example base TRF (template) of channel ‘C5’ is compared with the TRF estimated from raw data Vs CCA-filtered

data Vs SI-GEVD-filtered data. The plotted TRFs are from a randomly chosen 120 s trial taken from Dataset III (synthetic EEG

data).

This scaling factor was found as follows:

α[i] = (ŵT [i]ŵ[i])−1ŵT [i]ŵbase[i]. (14)

The mean squared error (MSE) between the scaled estimated TRF vector and the base TRF vector was computed

for all the trials. The MSE values were normalized by the square of the norm of the base TRF vectors to find
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relative MSEs in the range of 0 to 1 resulting in the following definition:

MSErel[i] =
||α[i]ŵ[i]− ŵbase[i]||2

||ŵ2
base[i]||2

. (15)

For a range of SNRs, figure 2 shows the relative MSE for TRF estimation from raw EEG, CCA-filtered EEG

and SI-GEVD filtered EEG. A typical example of how the different methods perform is demonstrated in figure 3

showing the estimated TRFs compared to the base TRF of channel ‘C5’ for a randomly chosen trial. The relative

MSEs for the three approaches were compared using Wilcoxon’s signed-rank test (with Bonferroni correction). For

all the SNRs analyzed (0 dB to -25 dB), the relative MSEs from SI-GEVD filtering was found to be significantly

lower (p < 0.0001) than those from raw data, as well as CCA-filtered data, showing that SI-GEVD filter is effective

in denoising the data which translates into better TRF estimates over short trials.

C. Speech envelope tracking

The extent of tracking of an auditory stimulus by the neural responses can be analyzed by looking at the

correlations between the original EEG data and the predicted stimulus-following responses (estimated by convolving

the stimulus envelope with estimated TRFs). Such an analysis can help us understand how the brain responds to

auditory stimuli as well as provide objective measures of speech intelligibility. SI-GEVD filtering may be used to

boost the SNR of the EEG data which can then result in better correlations between predicted stimulus-following

data and the original EEG data.

1) Data Analysis: To analyze the effectiveness of the SI-GEVD filter in measures of envelope tracking, we used

the data from Dataset II. Details of the data collection and preprocessing can be found in section III-A2. The goal of

this analysis was to use forward modeling to predict speech following neural responses. Correlations of the original

EEG and the predicted EEG were then used to quantify the effectiveness of denoising using the SI-GEVD filter.

The data from the continuous speech stimulus was used only for training the TRFs, and not for training SI-GEVD

filters, or for testing. On the other hand, the isolated sentences was used both in the training as well as the testing

set for the estimation of the SI-GEVD filters and the TRFs, while performing leave-one-trial-out cross validation.

This dataset was split into 6 trials, each trial consisting of 20 s of EEG data. Thus, for each test trial (isolated

sentences from Dataset II), the SI-GEVD filter was trained on the remaining 5 isolated sentences trials and their

repetitions (3 repetitions × 5 trials × 20 s), and then the TRFs were trained on a) the remaining 5 isolated sentences

trials and their repetitions (3 repetitions × 5 trials × 20 s), and b) the data from the continuous speech stimulus

(14 minutes). SI-GEVD filtering can be done on continuous data, the splitting into trials was only done to facilitate

cross-validation.

The ith test trial Mtest[i] ∈ RC×L contained L = 128 Hz × 20 s = 2560 time samples per channel, while

the training set Mtrain[i] ∈ RC×N consisted of N = (3 repetitions of isolated sentences × 5 trials × L) + (14

minutes of continuous speech × 60 s × 128 Hz) time samples per channel. Stimulus envelopes Stest[i] ∈ RNl×L

and Strain[i] ∈ RNl×N consisted of lags up to 75 ms, and hence Nl = 128 Hz × 75 ms + 1 = 11 samples.

For each trial, the training set data was used to find the SI-GEVD spatial filter PC [i] and the back-projection

matrix QC [i]. After choosing the number of components to be used (the method of choosing K is explained
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further on), the EEG data from each test trial was denoised by applying the SI-GEVD spatial filter found from

the corresponding training set, and back-projected to the C-channel space. In this manner, all the EEG data were

denoised, and then used for TRF estimation. From the denoised training set, the TRFs WSI-GEVD[i] ∈ RNl×C that

mapped the attended stimulus data Strain[i] to the denoised EEG data M̄train[i] were computed using the mTRF

toolbox (with the regularization parameter for ridge regularization automatically chosen (on a per trial basis) as the

maximum absolute value among all the elements in the corresponding trial’s speech covariance matrix Rss). The

stimulus following responses of the test trial were predicted by convolving the TRFs obtained from the training set

with the stimulus envelope Stest[i] in the testing set:

XSI-GEVD[i] = WT
SI-GEVD[i]Stest[i]. (16)

The Spearman correlation coefficients between the EEG data (M̄test[i] (denoised)) and the predicted stimulus

following responses (XSI-GEVD[i]) were computed.

The correlation coefficients obtained were averaged across repetitions (from repeated stimulus trials) yielding

378 correlations (6 trials, 63 sensors). Next, we averaged the correlations in the sensor dimension using a trimmed

mean (percentage = 50%) to get one correlation per trial per subject. The number of components K was chosen

based on leave-one-trial-out cross-validation. For each of the 6 trials, we choose the number of components that

maximized the average correlation between the predicted EEG and the actual EEG on the other 5 trials.

We benchmark the results of SI-GEVD filtering with the current state-of-the-art method for joint denoising and

dimensionality reduction, namely DSS (Särelä and Valpola, 2005). It is noted that, in our case, only the isolated

sentences data contains repetitions, so we can only use this part of the data for training the DSS filters. These filters

then replace the SI-GEVD filters in the procedure mentioned above. The available isolated sentences repetition

trials were used to extract DSS components per subject - referred to as ‘DSS-3reps’. As mentioned earlier, the

SI-GEVD filters were also trained only on the isolated sentences data and thus excluding the continuous speech

data in order to have a fair comparison with the ‘DSS-3reps’ case. For the normal forward model (using Wraw)

based on unfiltered EEG data (‘raw’), the correlations from the best 8 channels (with the highest correlations) across

subjects are averaged (channels Pz, POz, P2, CPz, Oz, O2, PO3 and FC1). Note that in this context, CCA (when

used as a denoising filter as in section III-B) would coincide with SI-GEVD (proof in Appendix B), hence it is not

included in the analysis.

2) Results: Correlations from the raw, SI-GEVD filtered and DSS-filtered data were compared using Wilcoxon’s

signed-rank test with α = 0.05 (figure 4). The correlations from the SI-GEVD filtering data were found to be

significantly higher than those of raw data (p = 0.0082,W = 81). As can be seen in figure 5, power ratio plots

from DSS showed a gradual decrease of power ratio over components, indicating that the power of the stimulus

following responses were spread over more than a few components, and hence choosing a small K would be

insufficient to ensure a high SNR in the filtered data, while choosing a larger K will capture too much of the noise.

In figure 4, it can indeed be seen that SI-GEVD filtering results in correlations significantly higher than with DSS

filtering (p = 0.0001,W = 342 for ‘DSS-3reps’).
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Fig. 4: Mean correlations on 20 s trials: Comparison of mean correlations from forward modeling using raw data vs SI-GEVD

filtered data vs DSS filtered data (trained only on 3 repetitions per subject (DSS-3reps)). The blue dotted line indicates the

significance level (95 percentile) for performance above chance level for the correlations. Each boxplot is built from the mean

correlation per subject, also indicated by colored points. Improvements in mean correlations of subjects when SI-GEVD filtering

are indicated by green lines. Comparison between the methods were done using Wilcoxon’s signed-rank tests (with Bonferroni

correction): ‘**’ for p < 0.01, ‘***’ for p < 0.001.
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Fig. 5: Speech envelope tracking: For the 27 subjects indicated by different colours, the above plots show the power ratios for the

DSS approach and the generalized eigenvalues (λ’s) for the SI-GEVD approach (averaged across trials) for the 63 components.

The drops in the curves are sharper for the SI-GEVD case showing that fewer components are necessary to ensure high SNR

at the output in comparison to the DSS case.

In order to have a better understanding of the influence of the various GEVD components in the SI-GEVD

approach, we investigated the weights of the back-projection matrix (each column corresponds to a component), for

multiple components. Figure 6 shows the weights of each channel for the first component of the back-projection

matrix (QC) averaged over all training sets (each with one trial removed) and subjects. Note that the different

spatial filters consist of generalized eigenvectors, which are only defined up to an arbitrary scaling and sign, which
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Fig. 6: Visualization of the SI-GEVD spatial filter’s first component: Black dots indicate channels part of a cluster that is

significantly different from zero.

results in a corresponding inverse scaling on the columns of QC . Therefore, we normalized the columns of QC ,

so that the sum of the absolute values of the weights equal one, and corrected for sign flips before averaging

the different QC matrices for each removed trial. To find those channel weights which are significantly different

from zero across subjects, we used one sample cluster mass statistics (Maris and Oostenveld, 2007), with the null

hypothesis that the weights of the first component of the GEVD spatial filter are symmetrically distributed around

zero across subjects. A reference distribution is built by repeatedly (n = 5000) and randomly swapping the sign of

the weights in QK across subjects and calculating a t-statistic per channel. The observed t-statistic per channel is

then calculated without swapping the sign. We obtained the p-value of each channel by calculating the proportion

of random samplings that have a higher t-statistic than the actual t-statistic. In this test we also take the position of

the channels into account as neighbouring channels can have similar weights, using this information to reduce the

family-wise error rate (details in Maris and Oostenveld (2007)). This test will show significance when the weights

of the channel show a low variability and some divergence from zero over subjects. In figure 6, channels part of

a cluster that is significantly different from zero (p < 0.01, one sample cluster mass statistics) across subjects are

shown in red.

When using only the first component, we observed two regions with an opposite polarity that contribute most to

the significant difference. One is the fronto-central region, and the other is the parietal-occipital region. This is in

line with other related works that estimate spatial filters based on speech processing (Dmochowski et al., 2018) and

those that shows the topography of speech processing in the brain (Braiman et al., 2018; Hjortkjaer et al., 2018;

O’Sullivan et al., 2015). For the second component we did not find any significant clusters. This is consistent with

the results of the number of components needed to have optimal correlations and with the SNR of each component

(1 GEVD component for 16 out of 27 subjects). All of this is converging evidence that the SI-GEVD filter is very

effective in denoising and dimensionality reduction.

D. Auditory attention decoding

In BCIs such as neuro-steered hearing prostheses where a person’s auditory attention, if estimated accurately, can

be used to steer the noise suppression beamformer towards the direction of the attended speaker. An improvement
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in the SNR of the EEG data, using SI-GEVD filtering, can result in higher accuracies of AAD, resulting in better

performing BCIs.

1) Data Analysis: For attention decoding, we used the data from Dataset I. The preprocessed data set at a

sampling rate of 32 Hz was divided into 112 trials of 20 s per subject. Adopting a leave-one-trial-out cross-validation

approach, for each test trial, we used the remaining 111 trials as the training set for spatial filter estimation and

TRF estimation. The difference of this application’s algorithm with that of speech envelope tracking is that here

EEG is predicted from both the stimuli (attended and unattended), and an attention decoding decision is made based

on how well these predictions correlate to the original EEG data, as will be explained further on. This time, we

perform forward modeling in the SI-GEVD component space, and no back-projection is performed.

In the ith trial, EEG data Mtest[i] ∈ RC×L and the attended stimulus envelope Stest[i] ∈ RNl×L consisted of

L = 32 Hz × 20 s = 640 time samples, while the training set consisted of EEG data Mtrain[i] ∈ RC×N−L and

attended stimulus envelope Strain[i] ∈ RNl×N with N = 112 × L time samples. Stimulus envelope lags up to

400 ms were used. Therefore Nl = 32 Hz × 400 ms + 1 = 14 samples.

For each trial i, the training set data was used to find the SI-GEVD spatial filter PC [i]. TRFs with respect to the

attended stimulus were estimated from the training set using the SI-GEVD filtered data (no back projection). This

resulted in the TRF matrix WSI-GEVD ∈ RNl×K . The speech stimuli in the test trial, which was left out during the

training of the TRFs and the SI-GEVD filters, was convolved with these TRFs to predict the stimulus following

responses in the test trial. The predicted responses (from both the stimuli) were then compared with the SI-GEVD

filtered EEG data mproj(t) by computing the Spearman correlation over each component. The stimulus that resulted

in a reconstruction that yielded a higher mean correlation with the original EEG components was then considered

to be the attended stimulus.

In this application, we used a different number of spatial filters K for each subject. An optimal number of

components was found for each trial by cross-validating the difference between attended and unattended correlations

when GEVD components were added one at a time, until there was no more improvement. Then, for each subject,

K was chosen to be the highest among the optimal number of components among all trials. In the forward modeling

approach using raw EEG data, the correlations from the same 8 channels as used in section III-C were averaged

before making the attention decision. Similar to section III-C, we also benchmark the results against the DSS

method, which is also used in a similar context for attention decoding (Akram et al., 2017). To this end, we use

the trials for which the same stimulus was repeated 3 times in the EEG recording (Das et al., 2016) (4 minutes per

subject). The repetition data were averaged per subject to train subject-specific DSS filters (referred to as ‘DSS-

3reps’). Simulating a scenario where repetition trials are not available, we also extracted DSS components across

subjects averaging trials were the same stimuli were presented to different subjects (referred to as ‘DSS-universal’).

Note that such a filter training was not possible for the dataset used in speech envelope tracking (Dataset II) since

the subjects were presented with different sets of stimuli.

2) Results: In the SI-GEVD filtering approach, as per the criterion described before for the choice of the number

of GEVD components K, 3 GEVD components were used for 3 subjects, 2 GEVD components for 5 subjects,

and 1 GEVD component for the remaining 8 subjects. As can be seen in figure 7, the median decoding accuracy
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Fig. 7: Attention decoding performance on 20 s trials: SI-GEVD filtered data vs raw data vs DSS filtered data (trained only on

3 repetitions per subject (DSS-3reps), or trained on common stimulus presentations across subjects (DSS-universal)). The blue

dotted line indicates the significance level (95 percentile) for performance above chance level. Each boxplot is built from the

mean decoding accuracy per subject, also indicated by colored points. Improvements in mean decoding accuracies of subjects

when SI-GEVD filtering are indicated by green lines. In the plot, comparisons between methods were done using Wilcoxon’s

signed-rank tests (with Bonferroni correction): ‘***’ for p < 0.001, ‘****’ for p < 0.0001.
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Fig. 8: Auditory attention decoding: For the 16 subjects indicated by different colours, the above plots show the power ratios for

the DSS approach (‘DSS-3reps’) and the generalized eigenvalues (λ’s) for the SI-GEVD approach (averaged across trials) for

the 63 components. The drops in the curves are sharper for the SI-GEVD case showing that fewer components are necessary to

ensure high SNR at the output in comparison to the DSS case.

with the SI-GEVD approach was found to be 74.6%, which was 13% higher than that of raw EEG data (61.6%).

Using Wilcoxon’s signed rank test, this difference was found to be significant (p < 0.001,W = 119.5). In addition,

we extracted DSS components for the 2 cases: ‘DSS-3reps’ and ‘DSS-universal’. However, similar to the results

from section III-C, the power ratio plots of the DSS generalized eigenvalues showed a gradual decrease of power

ratio over components (see figure 8). Hence, there were not just a few dominant components that could separate
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Fig. 9: Mean attended (blue) and unattended (red) TRFs (channel ‘Tp7’, over trials) and their standard deviation (area around

the mean) for the 16 subjects. The TRFs were estimated from 120 s trials of each subject. Each trial consisted of either raw

EEG data (rows 1 and 3) or SI-GEVD filtering data (rows 2 and 4). The horizontal axis represents lags in ms.

the desired signal from noise. In short, we did not expect the DSS approach to meet the purpose of dimensionality

reduction. As can be seen in figure 7, both the DSS approaches result in performances poorer than the SI-GEVD

approach (p < 0.001,W = 134.5 for ‘DSS-3reps’ and p < 0.0001,W = 136 for ‘DSS-universal’). In the context

of attention decoding, the improved SNR due to SI-GEVD filtering of the test trial can lead to higher correlations

with the predicted EEG from the attended stimulus. This could be the reason for improved attended decoding results

as we have seen in figure 7.

To gain a better understanding of the denoising ability of our approach, we estimated short-term TRFs (as in

section III-B) for the attended and unattended stimuli on 120 s trials, from the raw EEG as well as the SI-GEVD

filtered EEG this time projected back to the electrode space and investigated whether attention decoding from the

TRFs directly (as in Akram et al. (2017)) would improve. For each 120 s trial, we found the mean and standard

deviation of the TRF of the channel ‘Tp7’ (one of the channels resulting in high AAD performance as shown in

Narayanan and Bertrand (2019)), across trials, as shown in figure 9.

We can see clear differences between the two approaches. The SI-GEVD approach results in patterns that have

a better separation between attended and unattended TRFs compared to those from raw EEG data. In order to

check the statistical significance, for each method we identified a reference lag at which the difference between the

mean of absolute attended TRF and mean of absolute unattended TRF was maximal. We then found the number

of trials for which, at the corresponding lag for each method, the absolute value of attended TRF was higher than

that of the unattended TRF. Using permutation tests (detailed description in Biesmans et al. (2017)), we found that,

compared to raw EEG data, SI-GEVD filtered data had significantly more trials where the absolute value (at the
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reference lag) of the attended TRF was higher than that of the unattended TRF (p < 0.0001). Knowing that peak

amplitudes of short-term TRFs estimated from MEG data (which has higher SNR than EEG in general) were found

to be modulated by attention (Akram et al., 2017), the better separation of attended and unattended TRFs from

short-term trials of the EEG data upon SI-GEVD filtering can be seen as a result of SNR improvement.

IV. DISCUSSION

We presented an algorithm for joint denoising and dimensionality reduction of EEG data, in the context of

auditory stimulus following responses. In order to obtain the spatial filters that project the data onto a max-SNR

subspace, we employed a stimulus-informed generalized eigenvalue decomposition (SI-GEVD) of the covariance

matrix of the stimulus-following neural response and the covariance matrix of the raw EEG signal. The former is

estimated using a long-term forward model (TRF) between the available stimulus signal and the raw EEG data, after

which the stimulus is convolved with the resulting TRF. We analyzed the performance of the proposed algorithm in

3 experiments in the context of auditory neuroscience - short-term TRF estimation, speech envelope tracking and

auditory attention decoding.

In the context of TRF estimation from short trials, we used hybrid synthesized EEG in order to have access to

the ground truth TRFs to assess performance. We found that, over a range of SNRs, SI-GEVD filtering effectively

denoised the EEG data, resulting in TRF estimates that match better with the base TRFs, in comparison to those from

EEG data without any spatial filtering. For speech envelope tracking in a single speaker scenario, the correlations

between the EEG data and the predicted stimulus following responses were also found to be significantly better when

using the denoised EEG data from the SI-GEVD filter, compared to DSS-filtered data or hand-picking channels.

For multi-talker scenarios, SI-GEVD filtering resulted in significantly higher attention decoding accuracies than

by averaging correlations over a set of raw EEG channels and then making attention decoding decisions. The

attention decoding performance was also found to be better than when DSS-based spatial filtering was employed.

It is important to note here that the DSS-based approach relies on data from stimulus repetitions, and the lower

performance for this method can be attributed to the lack of repetitions present in our data to have a good estimate

of the covariance matrix of the desired signal.

Many algorithms exist to perform dimensionality reduction and/or denoising without the use of GEVD, which

we will briefly discuss below. PCA is a method that focuses on capturing most of the variance in the data without

making a distinction between stimulus response and noise. This comes with the underlying assumption that the

desired responses are also those that exhibit the largest variance in the data (which is definitely not the case

for auditory responses). Reduced rank regression (Velu and Reinsel, 2013) is another dimensionality reduction

approach where, similar to SI-GEVD, forward modeling is used to estimate stimulus-following responses, but a

rank constraint is introduced on the TRF matrix. However, similar to PCA, the resulting spatial filters only aim to

capture most of the variance of the stimulus following responses while ignoring the spatial characteristics of the

noise. ICA is another common method for denoising, but it does not work well for extracting signal components

with highly negative SNRs, i.e., in cases where the sources are weaker than the background EEG activity. ICA also

does not make use of the stimulus as a side information. Another common way of dimensionality reduction is to
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handpick channels from brain regions that are expected to have the strongest neural responses to the stimulus of

interest, or simply use all channels, and calculate a mean over these channels for the parameter (e.g., correlation)

analyzed in the problem (Di Liberto et al., 2015; Wong et al., 2018; Zou et al., 2018). In section III, we have

shown that this can lead to highly suboptimal results. Another method is to exhaustively train and test the system

(e.g. attention decoders, or forward models) dropping one channel at a time (Fuglsang et al., 2017; Mirkovic et al.,

2015; Narayanan and Bertrand, 2018) until the desired goal is achieved with fewer channels.

As explained in section II, spatial filtering to denoise neural data thereby separating stimulus-related activity from

non-stimulus related activity was also addressed in de Cheveigné and Simon (2008) and de Cheveigné and Parra

(2014) where the DSS procedure from Särelä and Valpola (2005) was used. DSS uses PCA to pre-whiten the data.

The whitened data is then submitted to a bias function, followed by another PCA to determine the orientations that

maximize the bias function, i.e., essentially the power of the biased data. The bias function averages the epochs

under the same stimulus condition, thereby reinforcing stimulus-evoked activity. The second PCA step on the biased

data results in a rotation matrix which can be applied to the whitened data to get signal components which can be

kept or discarded depending on their bias score. The remaining components can be projected back to the sensor

space resulting in denoised responses. As explained in de Cheveigné and Parra (2014), the steps of pre-whitening

and PCA to find the rotation matrix can in principle be replaced by a GEVD on the correlation matrix of the

biased data (with enhanced stimulus following responses) and the correlation matrix of the raw data, as done in

the procedure explained in Section II. The key difference between SI-GEVD and DSS is the way we estimate

the covariance matrix of the stimulus response. SI-GEVD estimates a TRF between the (known) stimulus and the

recorded EEG data, after which the stimulus is convolved with the TRF to obtain an estimate of the stimulus

response in each channel. de Cheveigné and Simon (2008) uses the method of epoch-averaging on pre-whitened

data. Here, the stimulus does not have to be known, but a major practical limitation comes with the condition that

it can only be performed if there are enough repetitions of the same stimulus in the data to effectively enhance the

stimulus following responses by averaging. DSS is often used to denoise MEG responses with a relatively small

number of repetitions (Akram et al., 2016; Ding and Simon, 2012b; Miran et al., 2018), but the SNR in EEG

responses is considerably lower (Kong et al., 2015). In addition, the GEVD approach renders pre-whitening and

the PCA steps unnecessary, resulting in improved computational efficiency. Since DSS has already been shown to

outperform ICA and PCA (de Cheveigné and Simon, 2008), we did not include the latter methods in our analysis.

As opposed to PCA, ICA, DSS, JD, and many other spatial filtering techniques, the CCA method does use the

stimulus signal to find relevant components in the EEG data. It does this by jointly computing the optimal projection

of the stimulus and the EEG data, respectively, in order to maximize the correlation between both. We showed in

Appendix B that CCA is a special instance of the proposed SI-GEVD method. However, the SI-GEVD method

is more flexible to incorporate additional information such as brain function lateralization due to the direction of

the stimulus. This was also experimentally verified in section III-B, where it was demonstrated that the SI-GEVD

method is more effective in improving SNR compared to CCA.

The core of the SI-GEVD method is a generalized eigenvalue decomposition, which in fact plays a central role

in many other EEG enhancement algorithms in the literature. However, this key role of the GEVD is not always as

September 24, 2019 DRAFT



22

explicit as it was in our derivation of the SI-GEVD method. Indeed, as explained above, the JD or DSS methods in

their original formulation did not involve an actual GEVD, as the equivalence with a GEVD was only identified at

a later point in time. A similar example is the xDAWN algorithm (Rivet et al., 2009) which addressed the problem

of dimensionality reduction in the context of brain computer interfaces - specifically a P300 speller. The goal of

discriminating epochs containing a P300 potential was tackled by estimating the P300 subspace from raw EEG

data, and projecting the raw EEG onto this subspace, effectively enhancing the P300 evoked potentials (Rivet et al.,

2011, 2009). The xDAWN algorithm uses either an averaging operation across time-locked responses (similar to

DSS) or a forward encoding model (similar to SI-GEVD) where the stimulus onset triggers are used as the regressor

to estimate a template for the event-related potentials (ERPs), and consequently, the second order statistics of the

neural responses evoked by the target stimulus pulses. In Rivet et al. (2011), it has been identified that the two core

algebraic operations in xDAWN (the QR and singular value decomposition) used for estimation of the spatial filter

can be replaced by a single GEVD on the matrix pair of the correlation matrices of the stimulus evoked responses

and the raw EEG data. As such, xDAWN can be viewed as a special case of DSS or of SI-GEVD, albeit for the

case of pulsed stimuli, where the analysis is driven by time triggers rather than continuous stimulus waveforms

as targeted in this paper. It can be easily shown that a time-locked averaging becomes equivalent to a forward

regression based on time triggers when the time between any two consecutive stimulus pulses is larger than the

neural response to each of them. Therefore, in this particular case, xDAWN, DSS, SI-GEVD, and consequently

also CCA (see Appendix B), all collapse to one and the same procedure, which reveals an interesting link between

these -at first sight- very different methods.

Another algorithm that relies on GEVD is the common spatial pattern analysis (CSP) (Dornhege et al., 2006;

Müller-Gerking et al., 1999; Ramoser et al., 2000) which aims to solve a binary classification task. To achieve this,

the algorithm finds a set of spatial filters that maximize the variance of the projected data for one class, and minimize

the variance for the other, such that the output power of the filters can be used as features in a classification task.

The solution is found by a GEVD, yet with the main purpose to maximize the discriminative power of the output

features, rather than maximizing SNR. Therefore, the GEVD is applied to the two covariance matrices corresponding

to both classes, which is akin to Fisher’s linear discriminant analysis. Similar to the DSS approach in de Cheveigné

and Simon (2008), in CSP, epochs of data are sometimes averaged, per class, in order to have a good estimate of

the covariance matrix of the desired signal. Source power comodulation (SPoC) (Dähne et al., 2014) is another

GEVD-based algorithm that finds a spatial filter to decompose the neural data into components that are maximally

correlated with the intensity of the auditory input. The goal is then to maximize the co-modulation between the

power time course of the spatially filtered signal and the target variable (stimulus intensity). These algorithms, even

though they employ GEVD, are different from SI-GEVD in terms of the underlying problem they try to solve and

the definition/calculation of the (covariance) matrices that are used in the GEVD.

V. CONCLUSION

Dimensionality reduction and denoising are important steps in the procedure to analyze neural responses, and

particularly stimulus-following responses in EEG data which often has low SNRs. In this context, methods like DSS
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and PCA are often used in order to denoise and/or reduce the dimensionality of the data. When it comes to forward

modeling approaches, often researchers handpick channels based on their knowledge of locations of the strongest

stimulus following cortical activity. In this paper, we present and evaluate a stimulus-informed GEVD-based filtering

approach which makes use of predicted stimulus following responses to find a spatial filter that maximizes the SNR

at its output. Our method is fully data-driven, and has the advantage of not relying on repeated trials for the spatial

filter estimation. We have shown the benefits of using our approach by analyzing 3 different applications in the

field of auditory neuroscience, and compared the performance of the proposed method with other state-of-the-art

approaches like CCA, DSS or averaging over selected channels.

APPENDIX

A. Optimization problem equivalence

The SI-GEVD filter is found by solving of the optimization problem

argmax
p

pTRxxp
pTRnnp

(A.1)

resulting in the GEVD of the matrix pencil (Rxx,Rnn). It is shown below that solving the optimization problem

for maximizing the SSNR (derivation was taken from Wouters et al. (2018))

argmax
p

pTRxxp
pTRmmp

(A.2)

results in the same solution as that for maximizing the SNR (A.1).

argmax
p

pTRxxp
pTRmmp

= argmax
p

pTRxxp
pT (Rxx + Rnn)p

= argmin
p

pT (Rxx + Rnn)p
pTRxxp

= argmin
p

(1 +
pTRnnp
pTRxxp

)

= argmin
p

pTRnnp
pTRxxp

= argmax
p

pTRxxp
pTRnnp

(A.3)

Thus, it can be concluded that the GEVD of the matrix pencil (Rxx,Rmm) would result in the same SI-GEVD

filter as for (Rxx,Rnn).

B. Equivalence to canonical correlation analysis (CCA)

The SI-GEVD spatial filter p can be found by solving

Rxxp = λRmmp, (B.1)

where the equivalence of the solution to (9) has been shown in Appendix A. From equations (4),(6) and (7), the

stimulus following response X can be estimated as

September 24, 2019 DRAFT



24

X = W̃TS = MST (SST )−1S. (B.2)

In the SI-GEVD procedure, the spatial covariance matrix of the stimulus following response X is estimated as

Rxx ≈ (XXT )/N . Using equation (B.2), we have

Rxx ≈ (XXT )/N

= (MST (SST )−1SST (SST )−1SMT )/N

= (MST (SST )−1SMT )/N.

(B.3)

In addition, the spatial covariance matrix of the raw EEG data Rmm is estimated as Rmm ≈ (MMT )/N . The

equation (B.1) can, therefore, be rewritten as

(MST (SST )−1SMT )p = λ(MMT )p, (B.4)

(MMT )−1MST (SST )−1SMTp = λp, (B.5)

where the division my N has been removed from both sides. The SI-GEVD filter can thus be found as the eigen-

vector corresponding to the maximum eigenvalue in the eigenvalue decomposition of (MMT )−1MST (SST )−1SMT .

Now let us consider using canonical correlation analysis (CCA) to find a spatial filter pm ∈ RC for the raw

EEG data m(t) and a temporal filter ps ∈ RNl for the stimulus envelope (including Nl − 1 lagged versions of

it) s(t), such that the spatially filtered neural response mcca(t) = pm
Tm(t) and the temporally filtered stimulus

scca(t) = ps
T s(t) are maximally correlated. The optimization problem maximizing this correlation is given by

(Friman et al., 2002)

argmax
ps,pm

ps
TRsmpm√

ps
TRssps

√
pm

TRmmpm

(B.6)

where cross-correlation matrix Rsm = E{s(t)m(t)T } ∈ RNl×C can be estimated as (SMT )/N , and the EEG and

stimulus envelope covariance matrices can be estimated as Rmm ≈ (MMT )/N ∈ RC×C and Rss ≈ (SST )/N ∈

RNl×Nl respectively.

Solving this optimization problem, spatial filter pm for the EEG data is obtained as the eigenvector corresponding

to the highest eigenvalue of the eigenvalue problem (Friman et al., 2002; Hotelling, 1936):

(MMT )−1MST (SST )−1SMTpm = λmpm. (B.7)

Remarkably, when comparing this equation (B.5), we find that the SI-GEVD algorithm, which aims to maximize

the SNR of the EEG data (where the desired signal is defined as the stimulus following response) and the CCA

algorithm, which aims to maximize the correlation between the EEG data and the stimulus by means of a joint

transformation on both modalities result in the exact same solution. This proves that, in its simplest form, the

SI-GEVD boils down to CCA, making the latter a special case of the former. It is noted that this equivalence

breaks down if temporal information is also incorporated on the EEG side through the use of time lags (similar to

what is done now on the stimulus side).
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C. Back-projection to the electrode space

If PC contains the set of generalized eigenvectors of the matrix pencil (Rxx,Rmm) in its columns, and QC =

(P−1
C )T , it follows that

Rmm = QCΛmQT
C (C.1)

Rxx = QCΛxQT
C (C.2)

where Λm and Λx are diagonal matrices such that Λ = Λ−1
m Λx (Golub and Van Loan, 1996). Here Λ is the

diagonal matrix containing all the generalized eigenvalues. The goal is to find a filter V ∈ RK×C which projects

the compressed K-component data mproj(t) back to the electrode space with minimal error in the least squares

sense:

V = argmin
V

E{||VTmproj(t)−m(t)||2}. (C.3)

This is a standard minimum mean squared error problem of which the solution is given as

V = (E{mproj(t)mproj(t)
T })−1E{mproj(t)m

T }. (C.4)

This can be rewritten using the notation introduced in section II as

V = (PT
KRmmPK)−1PT

KRmm

= (ET
KPT

CRmmPCEK)−1ET
KPT

CRmm

(C.5)

where EK ∈ RC×K is a matrix that chooses the first K columns of PC so that PK = PCEK . Since QC = (P−1
C )T ,

from (C.1) it follows:

V = (ET
KQ−1

C (QCΛmQT
C)Q−T

C EK)−1ET
KQ−1

C (QCΛmQT
C)

= (ET
KΛmEK)−1ET

KΛmQT
C

= Λ−1
m,k[Λm,k|0]QT

C = [IK |0]QT
C

= ET
KQT

C = QT
K

(C.6)

where Λm,k is a diagonal matrix containing the first K diagonal values of Λm, and [Λm,k|0] represents the

concatenation of Λm,k with C −K columns of all zero values (equivalent to choosing the first K rows of Λm).

The derivation shows that the filter that should be used to back-project mproj(t) to the electrode space is VT =

QK = (P−1
C )TEK .
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