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Abstract—The trace ratio optimization (TRO) problem consists
of finding an orthonormal basis for the discriminative subspace
that maximizes the ratio of two trace operators on two co-
variance matrices corresponding to two distinctive classes or
signal components. The TRO problem is encountered in various
signal processing problems such as dimensionality reduction,
signal enhancement, and discriminative analysis. In this paper, we
propose a distributed and adaptive algorithm for solving the TRO
problem in the context of wireless sensor networks (WSNs), where
the two matrices involved in the trace ratio operators correspond
to the (unknown) spatial correlation of the sensor signals across
the nodes in the network. We first focus on fully-connected
networks where every node can communicate with each other,
but only compressed signals observations can be shared to reduce
the communication cost. After showing convergence, we modify
the algorithm to operate in WSNs with more general topologies.
Simulation results are provided to validate and complement the
theoretical results.

Index Terms—Trace Ratio Optimization, Distributed Opti-
mization, Linear Discriminant Analysis, SNR Optimization, Di-
mensionality Reduction, Wireless Sensor Networks

I. INTRODUCTION

THE trace ratio optimization (TRO) problem is the maxi-
mization of the ratio between two quadratic forms, where

the optimization variable X is required to have orthonormal
columns. Mathematically, it can be expressed as:

maximize
X

tr(XTAX)

tr(XTBX)

subject to XTX = I,

(1)

where A and B are positive definite matrices, I is the identity
matrix and “tr” and “T ” denote the trace and transpose
operators respectively. Note that Problem (1) is different from
a standard generalized Rayleigh quotient optimization, due
to the presence of additional orthogonality constraints on
X , and therefore the solution is not provided by a general-
ized eigenvalue decomposition (GEVD). The TRO problem
is commonly encountered in signal processing and machine
learning tasks [2]–[7] when the goal is to find an optimal
subspace projection for data points belonging to two different
classes. The subspace is generated by the columns of X while
A and B are chosen in a way that reflects the difference
between the classes. For example, in motor imagery brain-
computer interfaces based on electroencephalography (EEG),
one class could represent EEG activity during imaginary right-
hand movement, while the other could represent EEG activity
during right-foot movement. In that case, A would correspond
to the covariance matrix of the signals resulting from one of
these EEG activities while B would be the covariance matrix
of the signals from the other one [8].
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The TRO problem took its roots from Fisher’s linear dis-
criminant [9] and the Foley-Sammon transform (FST) [10],
[11]. These are essentially “greedy” formulations of (1), in
which X is replaced with a single-column vector. This single-
column problem is then solved multiple times (for each
column of X), while preserving orthogonality with respect
to previously computed columns. However, the optimality
does not hold for the space spanned by the whole set of
vectors, because of the greedy computation method. This was
pointed out in [12], while also providing a method to find
a generalized optimal set. It was however mentioned in [2]
that this latter technique suffers from separability issues on
the projected set of vectors. Therefore, the generalized Foley-
Sammon transform was defined in [2] as maximizing the
ratio of two trace operators, which led to the TRO problem
(1). Several methods to solve the general TRO problem have
been described in the literature, using the Grassmann manifold
[5], by semi-definite programming [7], and using an iterative
method related to the Rayleigh quotient iteration [2]–[4].

In this paper, we study the TRO problem in a distributed
context. As a target use case, we consider a wireless sensor
network (WSN) in which the sensor signals are spatially corre-
lated across the different nodes. A WSN consists of a multitude
of distributed wireless sensor nodes that are equipped with
sensing, computing and communication facilities. In general,
a commonly encountered objective in WSNs is to use the total
information available at all nodes to perform a certain task,
such as estimating or detecting a network-wide parameter or
signal. Estimation problems of this form are encountered, for
example, in acoustic sensor networks [13]–[16], body-sensor
and neuro-sensor networks [17]–[19], spectrum sensing for
cognitive (radio) sensor networks [20], [21] and many other
various applications [22]–[26]. On the other hand, significant
results have been obtained on distributed and decentralized de-
tection in the last decades, where detection of both known and
unknown sources have been studied [27]. Initial applications
were directed towards distributed radar and the problem has
been of interest in diverse areas of research since then [28],
such as the aerospace field [29].

In our case, we want to exploit the spatial correlation
between the sensor signals present in the network. Therefore,
the TRO objective is defined by the network-wide spatial
correlation matrices of the observed sensor signals across the
nodes of the WSN. We assume that these network-wide spatial
correlation matrices are unknown and should be implicitly
learned from the collected sensor data at run time. We propose
a distributed adaptive algorithm to solve the TRO problem in
such a context, in which the nodes transmit compressed sensor
observations to the other nodes in the network. The distributed
TRO (DTRO) algorithm is proven to converge to the solution
of the centralized TRO problem, as if each node would have
access to all sensor data in the network without the need to
explicitly estimate the full network-wide correlation structure.
A conference precursor describing the DTRO algorithm for
fully-connected WSNs has been published in [1]. In this paper,
we provide a more detailed analysis, a proof of convergence,
an extension to arbitrary topologies, and more extensive ex-
perimental analyses.

The outline of the paper is as follows. In Section II, we
review the centralized TRO problem and an algorithm to solve
it. Then, in Section III, we propose an algorithm to solve the
TRO problem in a distributed fashion (DTRO), in the particu-
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lar context of fully-connected networks (FC-DTRO). Section
IV extends the analysis and method to connected networks
with any topology, which we denote as topology-independent
DTRO (TI-DTRO). The communication and computational
aspects of the proposed algorithms are then discussed in
Section V. Finally, we provide in Section VI simulation results
of the DTRO algorithms in various settings to validate its
performance, along with discussions.

Throughout this paper, the notation χiq is used to refer to
a certain object χ at node q and iteration i. If χ is a signal,
we denote its compressed version by χ̂. On the other hand, if
χ is an object related to the TRO problem (e.g., a variable,
signal, set or function), χ̃ denotes the analogous object in the
DTRO setting (a more formal definition is provided further on
in equation (21)). The matrix IQ denotes the Q×Q identity
matrix. Apart from a few exceptions, scalars, scalar-valued
functions and vectors are written in lowercase letters, the latter
in bold, while matrices and sets are written in uppercase letters,
the latter in calligraphic font.

II. THE TRACE RATIO OPTIMIZATION PROBLEM

A. Problem Definition and Relationship to Other Problems
For convenience, and to introduce some new notation, we

repeat the formal definition of the TRO problem. Given two
positive definite matrices A,B ∈ RM×M , the TRO problem
aims at finding a matrix X ∈ RM×Q solving the following
problem:

maximize
X

%(X) ,
tr(XTAX)

tr(XTBX)

subject to XTX = IQ.

(2)

The optimization variable X therefore contains Q orthonormal
vectors in its columns spanning a subspace maximizing the
objective %, typically with Q�M . It is noted that the solution
of (2), is unique up to a unitary transformation [30].

The matrix pencil (A,B) of Problem (2) can have various
interpretations depending on the application. For example, in
linear discriminant analysis, the aim is to tightly group points
of a same class while separating each class from another
in the best way possible [31], yielding A to correspond to
the between-class scatter matrix of the data points, whereas
B would be the within-class scatter matrix. In a multi-
channel signal processing context, X can be interpreted as a
collection of orthogonal filter banks applied to different states
or components of a multi-channel signal, e.g., to discriminate
between signal and noise or between two underlying states
that alter the statistics of the signal. A and B would in that
case represent the two covariance matrices corresponding to
these two signal states or components (see also Section III-A).

In various applications, the optimal discriminant vectors are
often taken to be the generalized eigenvectors (GEVCs) of the
ordered matrix pencil (A,B) for easier computation of the
optimal vectors, as in [12]. Mathematically, both problems are
similarly formulated, the only difference being the constraint
set. The optimization problem related to the GEVD problem
can be written as:

maximize
X

%(X) =
tr(XTAX)

tr(XTBX)

subject to XTBX = IQ.

(3)

It can be shown [32] that the maximal value of % is the scaled
sum of the largest generalized eigenvalues (GEVLs) of the
matrix pencil (A,B). A solution of (3) is then given by the
GEVCs corresponding to those GEVLs. These GEVCs are
defined as the columns of the M ×Q matrix X† satisfying:

AX† = BX†Λ†, (4)

where Λ† ∈ RQ×Q is a diagonal matrix with the GEVLs on
its diagonal. It has been pointed out in previous studies ( [2],
[3], [30]) that although related, problems (2) and (3) differ in
the general case, the only exception being the setting Q = 1.
In that particular case, if ρ∗ is the optimal value of (2) and ρ†
the optimal value of (3), then ρ∗ = ρ† and if x† ∈ RM is a
solution of (3), then x∗ = ||x†||−1x† ∈ RM is a solution of
(2).

Despite the similarity of the solutions for Q = 1, the links
between the solutions of both problems are less trivial for
higher projection dimensions. It has been discussed in [2]–
[4], [30] that both problems are not interchangeable, resulting
in optimal projection matrices with different properties. In [4],
it is pointed out that the GEVD problem can be described as a
greedy way to solve the TRO problem. Interesting comparison
arguments between both methods have been given in [3], while
[5] explains that the GEVD problem will not necessarily give
a larger maximal value for %. Even though the GEVD problem
is easier to compute, it is noted in [33] that the solution of
the TRO problem has the advantage that it does not distort the
metric structure of the signals, by enforcing orthogonality on
the filters.

We also note that the TRO problem should not be confused
with the problem referred to as the “ratio trace” [3], which
can be considered as a relaxation of (3). This problem is
obtained by replacing the trace operators in the objective by
the determinant operator, while removing the constraints. All
possible GEVCs corresponding to the Q largest GEVLs of
the matrix pencil (A,B) are a subset of the solution set of the
ratio trace problem, the latter also including matrices obtained
by a scaling followed by an orthogonal transformation of the
columns of X† [3], [34].

B. The Trace Ratio Optimization Algorithm
Although there exist several ways to solve (2), we will

only review the one presented in [3], [30], as it serves as the
basis for the distributed algorithm presented in Section III.
The method shares similar steps with the Rayleigh quotient
iteration method [35]–[38], used for computing eigenvalues.

The iterative algorithm to solve the TRO problem is con-
structed by transforming the optimization problem to a scalar
one (i.e., in a single variable), by defining the auxiliary
functions h : S × R→ R:

h(X, ρ) , tr
(
XT (A− ρB)X

)
, (5)

where S , {X ∈ RM×Q : XTX = IQ} and f : R→ R as:

f(ρ) , max
X∈S

h(X, ρ). (6)

As shown in [2], the following theorem relates f to the
optimum ρ∗ of (2).

Theorem 1. [2] We have the following relationships between
f in (6) and the optimum ρ∗ of (2):
• f(ρ) = 0 ⇐⇒ ρ = ρ∗,
• f(ρ) > 0 ⇐⇒ ρ < ρ∗,
• f(ρ) < 0 ⇐⇒ ρ > ρ∗.

Furthermore, it is shown in [2] that an X∗ satisfying

X∗ ∈ arg max
X∈S

h(X, ρ∗), (7)

solves the TRO problem (2), and the converse is also true,
i.e., a solution of the TRO problem also maximizes h(X, ρ∗)
under the constraint X ∈ S. The initial problem is therefore
transformed into finding the root of the function f over the
variable ρ. It is noted that the evaluation of f(ρ) defined in (6)
is equivalent to taking the sum of the Q largest eigenvalues
(EVLs) of (A − ρB) [39]. Since the matrix A − ρB is
symmetric, the variable X maximizing the function h(·, ρ)
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Algorithm 1: Trace Ratio Maximization Algorithm [3]

input : A,B ∈ RM×M
output: X∗, ρ∗

X0 initialized randomly, ρ0 ← %(X0), i← 0
repeat

1) Xi+1 ← EVCQ(A− ρiB), where EVCQ(Z)
extracts Q orthonormal eigenvectors corresponding
to the Q largest eigenvalues of Z

2) Xi+1 ← Xi+1U i+1, where
U i+1 = argminU∈D||Xi+1U −Xi||F , with D the
set of signature matrices, i.e., diagonal matrices
containing either 1 or −1 on their diagonal

3) ρi+1 ← %(Xi+1) where % is defined in (2)
i← i+ 1

until Convergence

within the orthogonal constraint set S therefore corresponds
to the Q eigenvectors (EVCs) corresponding to those EVLs,
i.e., the X’s that satisfy:

(A− ρB)X = XΛ, (8)

where Λ is a diagonal matrix containing the Q largest EVLs.
The iterative step of the TRO algorithm in [3] is based

on computing a new ρ using X from (8), substituting it in
%(X) defined in (2) and repeating this process. Algorithm 1
summarizes the iterative TRO solver from [3], which has a
proven convergence to the optimal value ρ∗ and an optimal
argument X∗. In the general case, the convergence is quadratic
[4].

Since the EVCs obtained in Step 1 are unique up to a
sign, the signs are chosen so as to minimize the norm of the
difference between two iterations, which avoids “oscillations”
in the sign of the columns when approaching convergence, as
described in Step 2. We note that, at convergence, equation
(8) becomes

(A− ρ∗B)X∗ = X∗Λ∗, (9)

but the sign of the columns of X∗ can be arbitrarily chosen,
hence the solution of Algorithm 1 is only defined up to an
arbitrary sign of the columns of X∗, and all outputs solve
the TRO problem (2). Note that all solutions of Algorithm 1
are TRO solutions, but not all TRO solutions are a solution
of Algorithm 1, i.e., the solution set of the latter is more
restricted (with only a sign ambiguity instead of a unitary
transformation ambiguity). This is an important fact which will
be exploited later on in the convergence proof of the distributed
TRO algorithm. In the remaining of this paper, we denote by
X∗ a solution of (2) which is an output of Algorithm 1, i.e.,
X∗ is a TRO solution that also satisfies (9).

III. DISTRIBUTED TRO ALGORITHM IN
FULLY-CONNECTED NETWORKS (FC-DTRO)

We start this section by describing the TRO problem in the
context of signal processing before defining the problem in a
distributed WSN setting. For the sake of an easy exposition,
we initially present a distributed approach for solving the TRO
problem in a fully-connected broadcast network in which a
signal transmitted by any node is observable by all other nodes
in the network. This will be generalized to other topologies in
Section IV.

A. Adaptive TRO in Multi-Channel Signal Processing
In a multi-channel signal processing context, we consider

two M -channel time signals y(t) and v(t) ∈ RM , where
t is a sample time index. Supposing the signals are zero-
mean, their covariance matrix Ryy = E[y(t)y(t)T ] and

Rvv = E[v(t)v(t)T ] would replace A and B, where E[·]
denotes the expectation operator. The solution of (2) could be
interpreted as a discriminative spatial filter bank with M inputs
and Q outputs, for which the total (summed) energy of the
signals at the output can be used for discrimination between
these two classes. Another example can be given in signal
denoising [40], where y would represent “signal-plus-noise”
segments and v would represent “noise-only” segments. In that
case, the solution of (2) would act as an orthogonal spatial
filter bank for joint dimensionality reduction and denoising
purposes. In the remaining of this paper, we will adopt this
signal processing context and therefore define A = Ryy and
B = Rvv, which leads to:

maximize
X

%(X) ,
tr(XTRyyX)

tr(XTRvvX)
subject to X ∈ S.

(10)

We assume that the signals are short-term stationary and
ergodic, so that given a sufficiently large number of samples
N of the signals y and v, we can estimate the covariance
matrices using an estimation well-suited for the application at
hand, such as Ryy = E[y(t)y(t)T ] ≈ 1

N

∑N−1
t=0 y(t)y(t)T ,

and similarly for v. These assumptions would also imply that
Algorithm 1 is able to track the changing statistical properties
of the signals over time thereby making the iterative process
adaptive. The different iterations of Algorithm 1 can then be
spread out over different time windows of N samples. As
will be discussed in Section III-C, the distributed method we
propose to solve the TRO problem should also be viewed in
such an adaptive context, where the iterations are spread out
over time. The objective % can then be approximated as:

%(X) ≈
1
N

∑N−1
t=0 ||

∑
kX

T
k yk(t)||2

1
N

∑N−1
t=0 ||

∑
kX

T
k vk(t)||2

. (11)

In the remaining parts of this paper, we will generally use the
expectation operator E[·] for ease of notation and mathematical
tractability. However, in practice this operator will typically be
replaced with a finite-window sample average as in (11).

B. WSN Formulation
We consider a WSN with K nodes belonging to a

set K = {1, . . . ,K}, where each node k measures two1

Mk−dimensional signals yk(t) and vk(t). For notational
convenience, we will omit the time index t unless referring to
a specific time sample. Stacking every node’s signals together,
we obtain the M−dimensional signals y and v, with M =∑
k∈KMk and y =

[
yT1 , . . . ,y

T
K

]T
, v =

[
vT1 , . . . ,v

T
K

]T
.

Each node k has access to its own observations yk and
vk, but not to yl and vl, gathered at nodes l ∈ K\{k}.
This immediately eliminates using Algorithm 1 as is, because
in Step 1, we require the network-wide signals’ covariance
matrices Ryy and Rvv, which cannot be estimated in any
single node, unless all the sensor observations are transmitted
to a fusion center. This option is not a solution we will consider
because it creates a bandwidth bottleneck. The approach we
propose will solve the TRO problem in a distributed and
adaptive fashion, by allowing transmission of compressed local
signals.

In this section, we assume that the network is fully-
connected, i.e., each node broadcasts its (compressed) obser-
vations to all other nodes in the network. Denoting the current
iteration as i, we consider that all nodes k linearly compress
their observations using an iteration-dependent compression
matrix F ik ∈ RMk×P , with P ≤Mk:

ŷik = F iTk yk, v̂
i
k = F iTk vk, (12)

1Note that yk and vk could also denote the same sensor signal recorded
in two different conditions as explained in Section II-A.
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where ŷik and v̂ik are the P−dimensional compressed signals
of node k at iteration i, which will be broadcast to every
other node in the network. This results in a compression ratio
of Mk/P at every node k ∈ K. We will later show that if
P is set equal to Q, i.e., the number of columns of X in the
TRO problem (10), we can still compute the centralized TRO
solution in a distributed fashion, even though each node sends
compressed sensor data at only Q/Mk of the original rate.

C. Algorithm Description
A naive approach for solving the TRO problem in a dis-

tributed context would be to compute the EVD in Step 1 of Al-
gorithm 1 using a distributed (G)EVD algorithm such as, e.g.,
[40] [41]. The reason why we do not consider this approach is
because these distributed algorithms are iterative themselves.
Therefore, before arriving at Step 2 in Algorithm 1, we would
need to wait for the distributed (G)EVD procedure to con-
verge, thereby creating nested iterations inside the outer-loop
iterations of Algorithm 1. This would considerably slow down
the convergence speed and it would generate an algorithm
that operates at two different time scales (with fast iterations
inside slow iterations). The method we propose solves (10)
without nested iterations, but instead interleaves the iterations
of Algorithm 1 with those of the distributed GEVD algorithm
in [40] and therefore runs at a single time scale. We refer
to this algorithm as the (Fully-Connected) Distributed Trace
Ratio Optimization or (FC)-DTRO algorithm.

To derive the FC-DTRO algorithm’s steps, we will start by
noting that the global problem (10) can be reformulated by
partitioning the variables and signals of interest into blocks,
each corresponding to a node. Then, we will observe that with
well-chosen compression matrices F ik from (12), the nodes are
able to partially recreate the global problem (10), albeit with
extra constraints due to the reduced information available at
each node (this will result in equation (20) further on). Solving
this problem at node q will lead to a local estimation of the
block of the global variable X which corresponds to node
q and an updating rule for the other nodes. This procedure
is sequentially repeated at every node in the network. In the
remaining of this section, we will formalize these steps in a
rigorous fashion.

Let us partition the network-wide variable X ∈ RM×Q as:

X =
[
XT

1 , . . . , X
T
K

]T
, (13)

where Xk ∈ RMk×Q, corresponds to the part of X that is
applied to the sensor signals of node k. Then, the objective
in (10) can be rewritten as a sum of the elements in the
partitioning (13):

%(X) =

tr
(∑
k,l

XT
k Rykyl

Xl

)
tr
(∑
k,l

XT
k Rvkvl

Xl

) =
E
[
||
∑
kX

T
k yk||2

]
E
[
||
∑
kX

T
k vk||2

] , (14)

with k, l ∈ K, Rykyl
= E

[
yky

T
l

]
and Rvkvl

= E
[
vkv

T
l

]
.

This allows to express the network-wide objective using local
signals yk,vk. Node k is responsible for updating Xk, which
can be viewed as its local variable. In the FC-DTRO algorithm,
we set the compression matrices as:

F ik = Xi
k, (15)

with P = Q. Therefore, combining (12) and (15), we obtain
the compressed version of signal yk at node k and iteration i:

ŷik = XiT
k yk. (16)

The projection of the network-wide signal y onto the subspace
spanned by the columns of Xi is then given by:

ŷi , XiTy =
∑
k∈K

XiT
k yk =

∑
k∈K

ŷik. (17)

Similar arguments hold for v̂ik and v̂i. We see that the FC-
DTRO algorithm uses Xi

k both as a compression matrix and
as the part of the estimation of the optimal solution X∗. As a
result, (14) becomes:

%(Xi) =
E
[
||XiTy||2

]
E
[
||XiTv||2

] =
E
[
||
∑
k∈K ŷik||2

]
E
[
||
∑
k∈K v̂ik||2

] , (18)

such that each node is able to evaluate the network-wide
objective from the compressed data only.

The updates on the network will be done in a sequential
round-robin fashion, with only one updating node at a time.
Suppose the updating node at iteration i is node q, which
receives compressed observations from other nodes ŷik, v̂ik,
k ∈ K\{q}, as defined in (16). The total information available
at the updating node q, namely node q’s own sensor signals yq
and the compressed signals ŷik received from the other nodes
k ∈ K\{q}, can be stacked to form the M̃q−dimensional
vector:

ỹiq =
[
yTq , ŷ

iT
1 , . . . , ŷiTq−1, ŷ

iT
q+1, . . . , ŷ

iT
K

]T
, (19)

where M̃q = Mq +Q(K − 1), and similarly for ṽiq . Our aim
by defining this variable is to express an equivalent problem
to (10) at node q, with the available data.

At the beginning of iteration i, node q estimates the co-
variance matrices Riỹqỹq

= E
[
ỹiqỹ

iT
q

]
, Riṽqṽq

= E
[
ṽiqṽ

iT
q

]
∈

RM̃q×M̃q , by collecting a contiguous stream of N time sam-
ples of ỹiq and ṽiq . Then, defining the variable X̃q ∈ RM̃q×Q

for node q, we create the compressed version of the original
TRO problem (10), based solely on the data available at node
q:

maximize
X̃q

%̃iq(X̃q) ,
tr(X̃T

q R
i
ỹqỹq

X̃q)

tr(X̃T
q R

i
ṽqṽq

X̃q)

subject to X̃q ∈ S̃iq,

(20)

where S̃iq , {X̃q ∈ RM̃q×Q : X̃T
q K

i
qX̃q = IQ} and Ki

q ∈
RM̃q×M̃q is an orthonormalizing matrix which we will define
in the next paragraph, in (27). Note that the local problem
(20) at node q involves M̃q × M̃q matrices instead of M ×M
matrices, and is therefore much smaller in size than (10).

A question that now arises is how the network-wide problem
(10) can be linked to the local problem (20) at iteration i. To
this end, we introduce the matrix Ciq , which links the network-
wide signal y to the local signals ỹiq:

ỹiq = CiTq y. (21)

Looking at the definition of both variables, we see that:

Ciq =

 Bi<q 0
ATq 0 0

0 Bi>q

 ∈ RM×M̃q , (22)

where:

Aq = [0Mq×
∑

j<q Mj
|IMq
|0Mq×

∑
j>q Mj

], (23)

with 0m×n denoting an m × n all-zero matrix and
Bi<q is a block-diagonal matrix such that Bi<q =
BlkDiag(Xi

1, . . . , X
i
q−1), i.e. containing Xi

1, . . . , X
i
q−1 on

its (block-)diagonal and similarly, we have Bi>q =
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BlkDiag(Xi
q+1, . . . , X

i
q+1). We note that, based on (21), the

local and network-wide covariance matrices are related by:

Riỹqỹq
= CiTq RyyC

i
q. (24)

Plugging (24) into (20) implies that the network-wide variable
X in (10) is now defined by the following parameterization at
node q:

X = CiqX̃q =



Xi
1 G1

...
Xi
q−1 Gq−1

Xq

Xi
q+1 Gq+1

...
Xi
K GK


, (25)

where Xq is Mq ×Q, Gk’s are Q×Q and X̃q is partitioned
as:

X̃q =
[
XT
q , G

T
1 , . . . , G

T
q−1, G

T
q+1, . . . , G

T
K

]T
. (26)

The orthogonality constraint XTX = IQ can then be written
as X̃T

q K
i
qX̃q = IQ, obtained by the substitution in (25), with:

Ki
q = CiTq Ciq

= BlkDiag(IMq
, Li1, . . . , L

i
q−1, L

i
q+1, . . . , L

i
K),

(27)

and:
Lik = XiT

k Xi
k. (28)

Proposition 1. At each iteration i, the local objective value
computed at the updating node q based on (20) is the same
as the global objective value, i.e.,

%(X) = %̃iq(X̃q), (29)

and X̃q ∈ S̃iq implies X ∈ S.

Proof. Using the relationships Riỹqỹq
= CiTq RyyC

i
q and X =

CiqX̃q from (24) and (25) respectively, we have %̃iq(X̃q) =

%(CiqX̃q) = %(X). On the other hand, by the definition of Ki
q

in (27), IQ = X̃T
q K

i
qX̃q = X̃T

q C
iT
q CiqX̃q = XTX .

This result shows that the local objective value computed at
node q is the same as the global objective value and that a local
variable X̃q which belongs to the constraint set of Problem
(20) leads to a global variable satisfying the constraints of
the global problem (10). Therefore, if node q optimizes the
local problem (20), it optimizes a parameterized version of the
global problem (10). In (25), the variables that are computed
by node q are highlighted by a square around them, thus, the
parameterization in (25) implies that only Xq can be optimized
freely by node q, whereas the variables Xk, k 6= q, are
constrained to maintain the same column space as Xi

k, i.e., the
estimation of Xk at the beginning of iteration i (this can be
seen from the G−matrices in (25)). This additional constraint
makes the FC-DTRO method different from Algorithm 1,
and makes it necessary to change the updating node between
iterations, to be able to freely update the corresponding local
variables.

Nevertheless, we still follow similar steps as in Algorithm
1, creating the analogous local auxiliary problem at node q,
similar to (5) and (7):

X̃i+1
q , argmax

X̃q∈S̃i
q

tr
(
X̃T
q (Riỹqỹq

− ρiRiṽqṽq
)X̃q

)
, (30)

where ρi can be locally computed using node q’s own obser-
vations and the ones received from other nodes, following the
relationship given in (18):

ρi =
E
[
||XiT

q yq +
∑
k∈K\{q} ŷ

i
k||2
]

E
[
||XiT

q vq +
∑
k∈K\{q} v̂

i
k||2
] . (31)

Due to the constraint set S̃iq , (30) is a GEVD problem
(as opposed to an EVD problem at the equivalent stage of
Algorithm 1) for the matrix pencil (Riỹqỹq

− ρiRiṽqṽq
,Ki

q).
To be able to solve this problem, we note that node q also
needs Lik’s, which are therefore sent by their corresponding
node to q at the beginning of the iteration2.

At iteration i, node q is therefore solving for the variable
X̃q the following GEVD problem:

(Riỹqỹq
− ρiRiṽqṽq

)X̃q = Ki
qX̃qΛ̃q, (32)

where Λ̃q is a Q×Q diagonal matrix containing the GEVLs
of the matrix pencil (Riỹqỹq

−ρiRiṽqṽq
,Ki

q). In the sequel, we
define X = GEVCQ(A,B) as the Q−column matrix which
contains in its columns the generalized eigenvectors belonging
to the Q largest GEVLs of the matrix pencil (A,B), scaled
such that XTBX = IQ. The solution of (32) can then be
described as X̃i+1

q = GEVCQ(Riỹqỹq
− ρiRiṽqṽq

,Ki
q).

Remark 1. We assume in the remaining of this paper that both
matrices in the matrix pencil (Riỹqỹq

− ρiRiṽqṽq
,Ki

q) are full
rank and their largest Q+1 GEVLs are all distinct, so that the
solution X̃q in (32) is well-defined. In contrived cases where
this assumption does not hold, some technical modifications to
the algorithm are necessary to make the problem well-defined.
For the sake of an easy exposition, we make abstraction of this
problem for the time being and refer the reader to Appendix
C for precisions.

The final step of the FC-DTRO algorithm is to communicate
the updates to the other nodes. For that, we return to the
parameterization X = CiqX̃q . As discussed previously, node
q has the full freedom to optimize its local variable Xq ,
therefore, it can take the first Mq rows of X̃i+1

q as the estimate
Xi+1
q , whereas the other nodes k 6= q are constrained to

preserve their original column space. Let us partition X̃i+1
q as

in (26). Following the parameterization defined in (25) (based
on (13) and (22)), we obtain:

Xi+1
k =

{
Xi+1
q if k = q

Xi
kG

i+1
k if k 6= q

. (33)

After solving (32), node q partitions the solution as in (26)
and communicates the Gk’s to all other nodes k 6= q, so
that they can update their local variable Xk using (33). We
note that the global variable X is thus never fully constructed
in the algorithm, i.e., none of the nodes need access to the
network-wide variable. In Section III-E we will see that under
mild assumptions, communicating the matrices Gk is not even
necessary.

The steps of the FC-DTRO algorithm are summarized in
Algorithm 2. As in the case of Algorithm 1, Step 5 is added
to resolve the sign ambiguity in the GEVCs found in (32)
to avoid arbitrarily chosen signs by the algorithm. In Step
1, it is important to note that the same block of samples is
never communicated twice, i.e., the next updating node will

2Note that this can be assumed to be a negligible extra communication cost
compared to the transmission of N time samples of ŷi

k / v̂i
k in each iteration

to estimate Ri
ỹq ỹq

and Ri
ṽq ṽq

.
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Algorithm 2: Fully-Connected Distributed Trace Ratio Optimization (FC-DTRO)
output: X∗, ρ∗

X0 initialized randomly, i← 0
repeat

Choose the main updating node as q ← (i mod K) + 1
1) Node q receives Lik = XiT

k Xi
k and ŷik(t), v̂ik(t) for t = iN, . . . , (i+ 1)N − 1 from all other nodes k 6= q

2) Node q estimates Riỹqỹq
, Riṽqṽq

based on the stacking defined in (19)
3) ρi is updated as in (31)
4) X̃i+1

q ← GEVCQ(Riỹqỹq
− ρiRiṽqṽq

,Ki
q), where Ki

q is given in (27)
5) X̃i+1

q ← X̃i+1
q U i+1, where U i+1 = argminU∈D||Xi+1

q U −Xi
q||F and D is the set of Q×Q signature matrices

6) Partition X̃i+1
q as in (26), broadcast Gi+1

k ,∀k 6= q

7) Every node updates Xi+1
k according to (33)

i← i+ 1
until Convergence
Remark: For any iteration-updating node pair i, q, node q can locally compute the projected data
{XiTy(t)}t=iN,...,(i+1)N−1 as {

∑
k ŷ

i
k(t)}t=iN,...,(i+1)N−1

use a stream of N new samples to perform the update. This
inherently makes the algorithm adaptive and also allows to
track slow changes in the signal statistics as long as the rate
of change is slower than the convergence rate of the algorithm.
Figure 1 provides a block diagram representation of the tasks
completed at node q (Steps 3 and 5 omitted).

D. Convergence of the FC-DTRO Algorithm
From Algorithm 2, we note that if we were to remove the

updating of ρ (Step 3) in the FC-DTRO algorithm, we would
obtain an instance of the distributed adaptive covariance matrix
generalized eigenvector estimation (DACGEE) algorithm from
[40], applied to the GEVD problem for the matrix pencil
(Ryy − ρRvv, IM ) for an arbitrary (fixed) value ρ. This
demonstrates that the FC-DTRO algorithm interleaves itera-
tions of Algorithm 1 with the iterations of a distributed GEVD
algorithm. However, we cannot rely on the convergence of
Algorithm 1 to justify convergence of the FC-DTRO algorithm
because in each iteration, the latter solves partially, and not
fully, the network-wide GEVD problem. On the other hand,
the convergence of the DACGEE algorithm in [40] does not
imply convergence of the FC-DTRO algorithm either, as ρ
changes at each iteration, changing the eigenvalue problem to
solve at each iteration.

Nevertheless, it can be shown that the FC-DTRO algorithm
converges, as formalized in Theorem 2.

Definition 1. We define the equality up to a sign of the columns
as ∗=, i.e., X ∗

= Y if X = Y D with D ∈ D, where D is the set
of Q×Q signature matrix, i.e., diagonal matrices containing
either 1 or −1 on their diagonal.

Theorem 2. For any initialization X0 ∈ RM×Q, the updates
of Algorithm 2 satisfy limi→+∞Xi ∗= X∗ where X∗ is a
solution of Algorithm 1, i.e., Algorithm 2 converges to a
solution of the TRO problem (10).

Proof. See Appendix A.

To arrive to this conclusion, we require two intermediate
results. The global strategy is to first show that for iterations
i > 0, the sequence {ρi}i>0 is monotonic non-decreasing.
Since the sequence has an upper bound ρ∗, we will be able to
show convergence in the objective. Then, we will show that
any equilibrium point of Algorithm 2 can only be a solution
of (10). This will guarantee that the algorithm does not “get
stuck” in non-optimal points. These two results, summarized
in Lemmas 1 and 2 of Appendix A, will then allow us

to conclude that the FC-DTRO algorithm converges to the
optimal argument X∗, up to a sign ambiguity in the columns.

E. Reduced Communication Overhead
As mentioned previously, the updating rule (33) allows the

updating node q to fully choose a new estimate Xq , but for
k 6= q, Xk must preserve its original column space, described
by the relationship Xi+1

k = Xi
kG

i+1
k . In this section, we

elaborate on this latter update, which enforces to communicate
the matrices Gk from node q to the other nodes k 6= q.
We will see that in the case of fully-connected networks, the
information carried by these Gk matrices is not crucial for
Algorithm (2) to converge.

There are two major contributions of the matrices Gk to
Algorithm 2. The first one is the guarantee of orthogonality,
which can be seen through the relationship X = CiqX̃q .
Indeed, we have a guarantee that at any iteration i + 1,
the network-wide variable Xi+1 ∈ S , because X̃i+1

q ∈ S̃iq
as detailed in Proposition 1. The second use is to preserve
correspondence between the local variables Xk, i.e., to avoid
cases where the individual Xk’s converge to submatrices of
different optimal solutions X∗ (remember that a TRO solution
X∗ obtained using Algorithms 1 and 2 is only defined up to
an arbitrary change in the signs of the columns). In this case,
the stacked matrix of all Xk’s will not be a valid solution in
itself.

The most important information content of the matrices Gk
is actually found in the sign of the entries on their diagonal.
This information is collected in the diagonal, Q × Q matrix
Dk, i.e.:

Dk = sgn(Gk ◦ IQ), (34)

where ◦ denotes the element-wise multiplication (Hadamard
product); it can be shown that using the following alternative
updating rule instead of (33):

Xi+1
k =

{
Xi+1
q if k = q

Xi
kD

i+1
k if k 6= q

, (35)

does not affect convergence. This means that only the signs
of the diagonal of Dk have to be transmitted (rather than the
full Gk’s). We note that using the update rule (35) requires
node q to compute ρi+1 at the end of iteration i by plugging
X̃i+1
q in (20) and communicate it to the next updating node,

i.e., ρ cannot be estimated as in Step 3 of Algorithm 2 if we
use the updating rule (35) instead of (33). This change is valid
because of the stationarity assumptions of the signals y and
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Fig. 1: Block diagram representation of the steps followed by a given node q. The black part is executed at any time t in each
node. The colored parts are executed at each iteration increment i → i + 1. The blocks in blue are executed when node q is
the main updating node. Otherwise, the part in red is carried out. Dashed lines correspond to a transmission of parameters
(independent of the sample time t), full lines correspond to a transmission of (compressed) signal observations (one for each
sample time). At any given iteration i, the time index t belongs to {iN, . . . , (i + 1)N − 1}. In Section III-E, we will show
that the red part can actually be omitted without affecting convergence, such that no matrix Gk have to be shared. For visual
simplicity, we do not represent the computation of ρi, nor Step 5 in the figure.

v, meaning that the evaluation of ρ at the end of iteration i
and node q is equivalent to computing it at iteration i+ 1 and
node q+ 1 in Step 3 of Algorithm 2. Theorem 3 recapitulates
the results of using updating rule (35) instead of (33).

Theorem 3. Suppose X0 is initialized randomly and X0 =
X0. We denote by {Xi}i the sequence generated by Algorithm
2 using the updating rule (33) and {Xi}i the one generated
by Algorithm 2 using the updating rule (35) instead of (33).
Then, we have the following properties:
P1) Xi+1

q
∗
= Xi+1

q , for the updating node q at iteration i.
P2) limi→+∞Xi ∗= limi→+∞Xi ∗= X∗

Proof. See Appendix B.

Remark 2. Keeping the same notation as in Theorem 3, let
us additionally underline the matrices obtained when running
Algorithm 2 using the updating rule (35). Then, we have
X̃

(i+1)T

q CiTq C
i
qX̃

i+1

q = IQ since X̃
i+1

q solves (30). However,

with this updating scheme, we note that Xi+1 6= CiqX̃
i+1

q .
Therefore, XiTXi 6= IQ in general, but limi→+∞XiTXi =
IQ from the convergence result of Theorem 3. In other words,
the orthogonality constraint is not satisfied in each iteration,
yet it will be satisfied in the limit when the solution converges.

The communication overhead can be further reduced by not
sending matrices Dk either, i.e.:

Xi+1
k =

{
Xi+1
q if k = q

Xi
k if k 6= q

. (36)

However, this updating scheme comes at the cost of not
guaranteeing global convergence, but local convergence is
preserved, as discussed in the following result.

Corollary 1. We denote by {Xi}i the sequence generated
by Algorithm 2 using the updating rule (36) and define the
partitioning X∗ as:

X∗ =
[
(X∗1 )T , . . . , (X∗K)T

]T
, (37)

where X∗ is an M × Q matrix, solution of Algorithm 1.
Then, limi→+∞Xi

k
∗
= X∗k for all k ∈ K, but P2) is not

necessarily satisfied, i.e., we achieve convergence locally but
not necessarily globally.

Proof. See Appendix B.

In practice, one can use (36) for the majority of the time
to avoid sharing Gk or Dk matrices, while using (33) or (35)
once in a while to “match” the local solutions to each other. In
theory, this should only happen once after convergence of the
algorithm, yet for adaptive/dynamic scenarios, this matching
may have to be performed several times.

IV. TOPOLOGY-INDEPENDENT DTRO ALGORITHM
(TI-DTRO)

In practical applications, a WSN is often not fully-
connected. In this section, we study how Algorithm 2 can
be adapted to any connected topology (i.e., not necessarily
fully-connected). We will first describe the data flow in these
networks starting with the star network because of the way
this particular topology will naturally lead to the others.
Similar discussions have been made in [15], [41]–[44] for
other distributed algorithms with different objective functions.
In the following parts, we denote by Nk the set containing
the neighboring nodes of node k, i.e., all the nodes that can
communicate with node k (excluding node k itself).

A. Data Flow
In this subsection, we describe how the data flow of

fused/compressed signal observations is arranged in networks
that are not fully-connected. The transmission of the Gk and
Lk parameter matrices will be discussed in the next subsection,
where we will go into the details of how to modify Algorithm
2 to operate in such networks.

1) Star Networks: Suppose we have K nodes arranged in
a star fashion, i.e., all nodes are leaf nodes (nodes with only a
single neighbor) except one center node which is connected to
all others. In Figure 2, the graph labeled “Star” is an example
of such networks. As in the case of fully-connected networks,
each node k collects its Mk−dimensional observations yk and
vk, has an estimation Xi

k at iteration i of its local projection
matrix, and can communicate the compressed observations
ŷik = XiT

k yk and v̂ik = XiT
k vk. While the center node c

can broadcast its compressed sensor signals to all leaf nodes,
the leaf nodes k ∈ K\{c} can only share these vectors with
the central node c. Referring to (31), since the global objective
depends on the sum of the ŷik’s, the strategy we propose is
for the central node c to sum the received compressed signals
and to add its own compressed signal observations to the
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sum before forwarding the result to the main updating node.
Assume q 6= c is the updating node, then the center node c
first receives the compressed observations ŷik from all nodes
k ∈ Nc\{q}, and computes:

ŷic→q = XiT
c yc +

∑
k∈Nc\{q}

ŷik, (38)

which is then communicated to node q, v̂ic→q is similarly
defined. From the perspective of node q, the network is
therefore perceived as having only two nodes, namely itself
and the central node c. Analogously to (19), q stacks all the
available data in:

ỹiq =
[
yTq , ŷ

iT
c→q

]T
, (39)

and similarly for ṽiq which are then both used for estimating
X̃i+1
q as described in Algorithm 2. On the other hand, when

the central node updates, the discussion is the same as in the
fully-connected case, since every node can reach c.

2) Tree Topologies: Trees are networks without cyclic
paths, such as the graphs labeled “Tree”, “Regular Tree” and
“Path” in Figure 2. In these networks, we can apply a similar
strategy as in the star topology case. The idea behind gathering
information at the updating node q comes from the “sum-and-
forward” strategy. When a node k 6= q receives data from
all its neighbors except one, it sums the signals, adds its own
compressed signals ŷik and v̂ik and forwards the summed signal
to the remaining neighbor.

Mathematically, consider a tree with K nodes, and within
this network, suppose node k has received the summed com-
pressed signals from all its neighbors except one (here denoted
as node n). This is the trigger for node k to generate the fused
signal:

ŷik→n = XiT
k yk +

∑
l∈Nk\{n}

ŷil→k, (40)

and transmit the results to node n. If each node follows this
simple “triggering” rule, the data will naturally start flowing
towards node q (being fused along the way). This is illustrated
in Figure 3. Note that the data flow will automatically initiate
at the leaf nodes, as these have only one neighbor. Eventually,
the data gathered at the updating node q is:

ŷin→q = XiT
n yn +

∑
k∈Nn\{q}

ŷik→n =
∑
k∈Bnq

ŷik, ∀n ∈ Nq,

(41)
where Bnq is the subgraph containing node n when the link
between nodes n and q is cut, as shown in Figure 3.

Stacking all signals available at node q results in:

ỹiq =
[
yTq , ŷ

iT
n1→q, . . . , , ŷ

iT
n|Nq|→q

]T
, (42)

with {n1, . . . , n|Nq|} = Nq , and we define ṽiq similarly. Even
though node q does not have access to all ŷik’s individually, it
is still able to compute the global objective. Indeed, as shown
in (17) and (18), evaluating the global objective only requires
the sum of the compressed signals ŷik and v̂ik, which node q
has access to, since:

XiT
q yq +

∑
n∈Nq

ŷin→q =
∑
k∈K

ŷik, (43)

and similarly for the data vector v, which leads to:

ρi =
E
[
||XiT

q yq +
∑
n∈Nq

ŷin→q||2
]

E
[
||XiT

q vq +
∑
n∈Nq

v̂in→q||2
] . (44)
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Connected

Fig. 2: Examples of various network topologies with seven
nodes.

These results are similar to the star network case except for the
presence of a branch of hidden nodes “behind” the neighbors
of the updating node q, but from the perspective of any single
node, the network is perceived as a star, to which it is the
center node. Note that, in case all nodes need access to the
projected data XiTy and XiTv for each sample time, then,
the observations of the fused signals ŷi:

ŷi = XiT
q yq +

∑
n∈Nq

∑
k∈Bnq

XiT
k yk = ŷiq +

∑
n∈Nq

ŷin→q, (45)

and v̂i (defined similarly), as computed in node q should be
disseminated throughout the network, which would double the
required communication cost at all non-leaf nodes.

3) General Connected Graphs: We can easily extend pre-
vious discussions to the case of any random connected graph,
such as the “Connected” graph in Figure 2. We denote by
G the graph representing the network. The idea is to prune
the network so that the resulting graph is a tree, where in
each iteration, a different tree can be selected. We denote
T i(G, q) as the tree selected in iteration i, in which q is the
updating node. The pruning function T i’s dependence on q
is to achieve better efficiency. An important property of T i
should be to avoid cutting edges between the updating node
q and its neighbors to keep a higher number of degrees of
freedom at the updating node, i.e., to keep Nq as large as
possible. Indeed, note that the dimension of the stacked vector
(42) then becomes larger, which means that the local update
at node q has more degrees of freedom to achieve a higher
objective %̃iq(X̃

i+1
q ) = %(Xi+1) based on the maximization

in (30). An example of a pruning function achieving these
desired properties is the shortest path pruning [45], i.e., the
connections in the resulting tree guarantee a minimal length
path between all nodes k 6= q and q, which has the additional
advantage that it reduces the communication cost for dissem-
inating the projected data ŷi and v̂i throughout the network
as well as the Gk and Lk parameters, as discussed in the next
subsection.

B. Topology-Independent Distributed Trace Ratio Algorithm
The main ideas of Algorithm 2 described in Section III-C

remain applicable in this context, the main difference being the
data flow, explained previously, and the change in definitions
of variables it leads to.

Consider the tree graph T i(G, q) used in iteration i. As in
the fully-connected case, the projection of y and v onto Xi

can be written as a sum of the per-node projections as given
in (45) and ρi can be computed as in (44). Therefore, stacking
the observations in ỹiq as in (42), we can define an M × M̃q

matrix Ciq , with M̃q = Mq + |Nq| · Q, so that ỹiq = CiTq y,
where Ciq is given by:
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Algorithm 3: Topology-Independent Distributed Trace Ratio Optimization (TI-DTRO)
output: X∗, ρ∗

X0 initialized randomly, i← 0
repeat

q ← (i mod K) + 1
1) The network G is pruned to obtain a tree T i(G, q)
2) Node q receives Lin→q as in (48) and ŷin→q(t), v̂in→q(t) computed as in (41) for t = iN + 1, . . . , iN +N from all
n ∈ Nq

3) Node q estimates Riỹqỹq
, Riṽqṽq

based on the stacking defined in (42)
4) ρi is updated using (44)
5) X̃i+1

q ← GEVCQ(Riỹqỹq
− ρiRiṽqṽq

,Ki
q), where Ki

q = CiTq Ciq from (46)
6) X̃i+1

q ← X̃i+1
q U i+1, where U i+1 = argminU∈D||Xi+1

q U −Xi
q||F and D is the set of Q×Q signature matrices

7) Partition X̃i+1
q as in (49), disseminate Gi+1

n in Bnq,∀n ∈ Nq
8) Every node updates Xi+1

k according to (50)
i← i+ 1

until Convergence

Fig. 3: Example of a tree network where the updating node is
node 5, showing also B45, B65, B95 and Ci5.

Ciq =
[
ATq , B

i
−q
]
, (46)

with Aq as in (23). Figure 3 contains an example of such a
matrix Ciq for node 5 in the tree graph depicted in the same
figure. Bi−q is a block matrix containing Xi

k’s k 6= q. Each
block is therefore of the size of the corresponding Xi

k and we
denote by Bi−q(k, c) the block of Bi−q in the k−th “block-row”
and the c−th “block-column”. There is one block-column per
neighbor n ∈ Nq , and we denote by cn the block-column
belonging to neighbor n. Then, we have:

Bi−q(k, cn) =

{
Xi
k if k ∈ Bnq

0 otherwise . (47)

Node q solves the GEVD problem similar to (32) with Ki
q =

CiTq Ciq from (46), and ỹiq , ṽ
i
q have been obtained as in (42).

We note that this implies matrices Lik = XiT
k Xi

k to be shared
across the network in a similar fashion as the compressed
observations ŷik and v̂ik, which results in node q receiving:

Lin→q = XiT
n Xi

n +
∑

k∈Nn\{q}

Lik→n =
∑
k∈Bnq

XiT
k Xi

k, (48)

from all n ∈ Nq . The resulting solution X̃i+1
q is given in the

following form:

X̃i+1
q =

[
X

(i+1)T
q , G

(i+1)T
n1 , . . . , G

(i+1)T
n|Nk|

]T
, (49)

with nk ∈ Nq . Finally, Gi+1
n is disseminated in the full branch

Bnq of the network and the updating rule in a tree topology
is given as:

Xi+1
k =

{
Xi+1
q if k = q

Xi
kG

i+1
n if k 6= q, with k ∈ Bnq

. (50)

This reflects the fact that node q is not explicitly aware of
the nodes beyond its neighbors and the contributions of these
nodes are present only in the form of the summed observations
ŷin→q received from n ∈ Nq . Therefore, we expect slower
convergence compared to the fully-connected case because of
less degrees of freedom. This can be seen from the expression
of the projection of y onto the updated vector Xi+1:

X(i+1)Ty = X(i+1)T
q yq +

∑
n∈Nq

G(i+1)T
n

∑
k∈Bnq

XiT
k yk, (51)

whereas in the fully-connected case, we had:

X(i+1)Ty = X(i+1)T
q yq +

∑
k∈K\{q}

G
(i+1)T
k XiT

k yk, (52)

where the parameters that can be chosen by node q are Xq
and the Gk’s or Gn’s. In (52), there are K − 1 of such Gk’s
whereas in (51), there are only |Nq|.

Algorithm 3 summarizes the steps of the Topology-
Independent Distributed Trace Ratio Algorithm (TI-DTRO).
These modifications brought to the FC-DTRO algorithm to
obtain Algorithm 3 still allow for convergence, as stated in
the following theorem.

Theorem 4. Consider a connected network represented by the
graph G. For any initialization X0 ∈ RM×Q, the updates of
Algorithm 3 satisfy limi→+∞Xi ∗= X∗ where X∗ is a solution
of Algorithm 1, i.e., Algorithm 3 converges to a solution of the
TRO problem (10).

We do not provide a formal proof because of its similarity
with the proof of Theorem 2 in Appendix A, where the main
difference is the definition and size of variables depending
on the network topology, which can in this case also change
between iterations. While this substantially complicates the
notation, the main strategy to prove convergence remains
exactly the same.

On the other hand, an analysis analogous to the one in
Section III-E is harder in this case. Even though we observe
in general a convergence of the TI-DTRO algorithm when
using the updating rule (35) instead of (50) in simulations,
the sequence {ρi}i is not monotonic. As shown in Appendix
A, the monotonic increase of the objective is an essential part
of the proof of convergence hence we omit more details on
the updating scheme reducing the communication overhead for
the TI-DTRO Algorithm.



10

V. COMMUNICATION AND COMPUTATIONAL ASPECTS

A. Communication Costs
Based on the description of the DTRO algorithms in

Sections III and IV and as summarized in Figure 1, the
data and parameters that are being communicated between
two neighboring nodes at iteration i are the N samples of
Q−dimensional compressed signals ŷik and v̂ik and the Q×Q
matrices Lik and Gik, which implies the communication cost is
in O(NQ+2Q2) per transmission link and per iteration, where
O denotes the Landau notation. This result is the same for any
given link in the network, whether the latter is fully-connected
or not. In general N � Q, which makes the first term NQ the
dominant one. In comparison, in a centralized setting the N
samples of uncompressed signals of dimension Mk, are being
sent from each node k towards the fusion center leading to a
communication cost of O(NMk) for node k where typically
Mk > Q. The compression ratio at node k is therefore roughly
Mk/Q.

The updating scheme which reduces the communication
overhead discussed in Section III-E also allows to decrease
the number of parameters being sent from the updating node
to the rest of the network. Instead of sending Q2 real numbers,
using the updating rule (35) only requires communicating Q
binary numbers, whereas the updating rule (36) allows to
avoid the transmission entirely. However, these schemes might
not reduce significantly the communication cost in practice
since N � Q. Nevertheless, it reduces the overhead of
disseminating extra parameters through the network.

B. Computational Complexity
At each iteration i of Algorithms 2 and 3, the updating node

q needs to compute the two sample covariance matrices Riỹqỹq

and Riṽqṽq
which requires around M̃2

qN operations each,

while the GEVC computation has a complexity of O(M̃3
q ).

Resolving the sign ambiguity can be done by comparing the
norm of two Mq−dimensional vectors, which is done Q times,
once for each column of Xi

q , and therefore requires around
MqQ operations, which, considering a large enough sample
size N is negligible compared to the two previous computa-
tions. Node q’s computations therefore have a complexity of
O(M̃2

q (N + M̃q)). On the other hand, at non-updating nodes
k 6= q, 2MkQN and MkQ

2 operations are required to com-
press the local signals and to compute the Lik’s respectively.
These nodes then update the estimation of their local filters,
which is done in O(MkQ

2) operations. The computations at
nodes k 6= q have therefore a complexity of O(MkQN),
again considering a large N . In comparison, the adaptive
(sliding window) version of the centralized TRO algorithm
(Algorithm 1) would have a complexity of O(M2(N + M))
per window. For example, in a fully-connected network with
K = 30 nodes, Q = 1, N = 1000 and Mk = 15 ∀k, the
centralized adaptive algorithm requires ∼ 294×106 operations
per window of N samples (assuming a single iteration per win-
dow), whereas the distributed algorithm requires ∼ 2.02×106

operations per window.
It is important to note that in the case of non-fully-connected

networks, the M̃k’s depend on the number neighbors a node
has and not the total number of nodes in the network. There-
fore, the non-fully-connected topologies scale better compared
to fully-connected ones. To follow-up on the previous example,
if the average number of neighbors per node is equal to 3,
the distributed algorithm would require only ∼ 0.33 × 106

operations per window of N samples. However, as will
be demonstrated in the next section, the DTRO algorithm
converges the fastest in fully-connected networks in general,
among every topology considered in this paper. Hence in
practice, there is a tradeoff between computational complexity
and convergence speed.

VI. SIMULATIONS AND DISCUSSIONS

In this section, we provide simulation results of the DTRO
algorithms we have presented previously in various experi-
mental settings3.

A. Experiment Settings
We consider that each node has an equal number of sensors,

therefore Mk = M/K for any k. The data model we consider
for y and v is the following:

y(t) = Γd · d(t) + v(t), (53)

where d is a set of desired source signals and v is a
combination of spatially correlated noise and white noise:

v(t) = Γs · s(t) + n(t), (54)

and with Γd ∈ RM×Ld and Γs ∈ RM×Ls denoting the steering
or mixture matrices. Therefore, the model is a mixture of Ld+
Ls point sources of which Ls are interfering, represented by
s ∈ RLs , and continuously active, whereas the Ld desired
sources, represented by d ∈ RLd have an on-off behavior.
When the latter are “off”, the noise signal v can be observed.
The observations of s,d independently follow a zero-mean
normal distribution with variance 0.5, i.e., N (0, 0.5). On the
other hand, the elements of n independently follow N (0, 0.1).
In all the simulations, we consider that 10−Ls = Ld = Q and
that the number of samples used is N = 10000 per iteration
i.

All results shown are averaged over 200 independent Monte-
Carlo runs (MCRs), i.e., 200 different realizations of (53)-
(54). In each MCR, all elements of Γs,Γd are drawn in-
dependently at random from U([−0.5, 0.5]), where U is the
uniform distribution. The theoretical optima X∗ have been
estimated using the centralized TRO algorithm (Algorithm
1) using ρi+1 − ρi < 10−12 as a stopping criterion. In the
following discussions, a randomly generated tree where each
node has between 0 and 3 children (with 1.7 children on
average) is referred to as a “random tree”. Moreover, the order
of the updating nodes is a random permutation over the nodes,
and the pruning function T i(·, q) we used is the shortest path
computation. In these simulations, the matrices Gk are shared
between the nodes, i.e., the full updating scheme (33) and
(50) is used for the fully-connected and topology-independent
cases respectively. Numerical values of main parameters are
summarized in Table I for the various simulation settings
presented below.

B. Results
We assess the convergence based on the mean squared error

(MSE) between X∗ and the result from the DTRO algorithms
defined as:

ε(Xi) = min
U∈D

1

MQ
||XiU −X∗||2F . (55)

Note that in (55) we also implicitly resolve the sign ambiguity
by choosing the sign of each column Xi such that the MSE
is minimal.

In the top figure of Figure 4 we can see a comparison
between fully-connected networks and randomly generated
trees for a varying Q, while the number of nodes K is fixed
to 30 and Mk = 15. On the other hand, the bottom figure
shows the effects of the number of nodes K on convergence,
while Q is fixed to 3 and we fix the total number of sensors to
be M = 450. For both figures and the ones that will follow,
lines in bold represent median values across Monte Carlo runs
and shaded areas delimit quartiles. From these figures, we

3An open-source implementation of the algorithms can be found on https:
//github.com/CemMusluoglu/DTROcodes.

https://github.com/CemMusluoglu/DTROcodes
https://github.com/CemMusluoglu/DTROcodes
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TABLE I: Summary of parameters used in the simulations.

Experiment Varying Q Varying K
Varying

Topology
Convergence
Rate Analysis

Q {1, 3, 5, 7} 3 5 5

K 30 {10, 30, 50} 31 30

M , Mk M = 450, Mk = M/K, ∀k ∈ K
N 10000

MCRs 200

Fig. 4: Convergence in MSE of DTRO methods. The plots
corresponding to fully-connected networks are represented in
solid line whereas dashed lines represent results for random
trees. Top: Varying value of Q for a fixed number of nodes
K = 30. Bottom: Varying value of K for a fixed latent
dimension Q = 3.

observe that, in general, fully-connected networks converge
faster than their tree network counterpart in the same setting.
A higher projection subspace dimension Q also leads to faster
convergence. Both these behaviors are expected because they
translate to more information being shared between nodes and
more degrees of freedom during the updates.

Additionally, we expect smaller networks to converge faster
because the number of iterations between two consecutive
instances where a certain node is the updating one is smaller.
This is indeed observed in the tree topology networks, and in
the initial updating round in the case of fully-connected net-
works. However, in the fully-connected case, larger networks
start to show faster convergence than the smaller networks
after all nodes have updated at least once (i.e., once all nodes
were able to move away from their initialization points). The
explanation here is that the number of signals a node receives
in the fully-connected case scales linearly with the number of
nodes K. Therefore, the degrees of freedom in each update
step also scale linearly with K (this is reflected in the size
of the compressed covariance matrices and the number of Gk
matrices at the updating node). For a fixed value of M and Q,
this leads to larger downwards steps in the MSE function in
each iteration. In the tree networks, the number of degrees
of freedom at each node is determined by the number of
neighbors and not by the total size of the network, which is

Fig. 5: Convergence comparison for various network topolo-
gies along with their algebraic connectivity (AC). In the
legend, the following codewords are used for the graph type.
Path: Path shaped tree. Reg. 2 and 5: Regular tree, i.e., each
parent has equal number of children, the number being equal
to 2 and 5 respectively. Rand: Random tree. Star: Star shaped
tree. ER(p): Random graph generated using the Erdős-Rényi
model, with connection probability p. FC: Fully-connected
graph.

why they do not show this behavior.
In Figure 5, we compare the convergence of the DTRO

algorithms for various network topologies under the settings
K = 31, Q = 5 and Mk = 15. We see that, as in the previous
cases, the fully-connected network topology is the one con-
verging to the optimal value X∗ the fastest. It is then followed
by connected random networks generated following the Erdős-
Rényi (ER) model, generated using [46]. The remaining plots
correspond to various tree topologies, including star, path,
regular tree (i.e., each node has a fixed and equal number
of children nodes) and random tree topologies. These latter
are observed to have similar convergence properties between
each other. However, an interesting observation is that, in most
cases, the larger the algebraic connectivity (AC) of the graph
corresponding to the network, the faster the convergence. Since
the AC of a graph measures how connected a graph is, where
a large AC means a well connected graph, we can deduce
that the DTRO method converges faster in more connected
networks. Note that this is a rule of thumb, which is not always
perfectly satisfied (e.g., when comparing the ER(0.3) and the
star topology convergence in Figure 5).

Finally, we look at asymptotic convergence properties of
the DTRO algorithms in fully-connected and random tree
topologies (K = 30, Q = 5, Mk = 15). We measure the
asymptotic convergence rate using:

r(Xi) =
||Xi+1 −X∗||2F
||Xi −X∗||2F

. (56)

Figure 6 shows that limi→+∞ r(Xi) = 1 which implies a
sublinear asymptotic convergence rate.

In all previous figures, we observe breaking points in the
convergence speed of the algorithms. It can be verified that
this abrupt change happens at iteration K, i.e., the number of
nodes. This is because at K iterations, the algorithm has made
its first full round update. Since the algorithms are initialized
randomly and by the lack of full freedom for a node q to
update the local variables of other nodes, we observe a high
convergence speed towards the end of the first full round
update.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed distributed algorithms
for solving the trace ratio optimization problem in a dis-
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Fig. 6: DTRO algorithms’ asymptotic convergence rate in
fully-connected and random tree topologies.

tributed WSN setting, by solving local GEVD problems at the
nodes. After analyzing thoroughly the fully-connected case,
we have adapted the FC-DTRO algorithm to any connected
random graph to obtain the TI-DTRO algorithm. Convergence
guarantees of both algorithms have been stated and proven
and extensive simulation results demonstrate the convergence
properties of the algorithms in various settings. We have
analyzed the communication and processing cost of both the
centralized and the distributed TRO algorithms, and con-
cluded that the distributed algorithm has a significantly smaller
communication and processing burden, at the cost of slower
convergence (adaptation). Furthermore, we have pointed out
that the processing burden at each node scales linearly with
the number of neighbors per node.

As a next step, it can be thought of exploiting some structure
in the graph topology for faster convergence. For example, as
in [42], the FC-DTRO can be implemented in fully-connected
cliques of a graph, while the rest of the network uses TI-
DTRO. On the other hand, we have considered sequential
updating schemes in this paper, where only one node solves its
local optimization problem at any given time. An interesting
future work would be to consider asynchronous updates, where
more than one node can apply the steps of FC/TI-DTRO at
any iteration. In that case, an immediate problem is that the
resulting local variables are not optimal, since other nodes
would have already modified their local compression matrix
in the meantime. However, if convergence can be achieved, it
is expected to be significantly faster than the sequential setting.

APPENDIX A
PROOF OF THEOREM 2

As mentioned in Section III-D, there are two main results to
establish before concluding convergence. The first important
objective for showing convergence of Algorithm 2 is to show
that the sequence {ρi}i>0 is non-decreasing.

Lemma 1. Under the updates of Algorithm 2, the se-
quence {ρi}i>0 is monotonic non-decreasing and satisfies
limi→+∞ ρi = ρ∗.

Proof. Let us denote by q the updating node at iteration i
and we define X̃i

q = [XiT
q , IQ, . . . , IQ]T . Then, at the end of

iteration i > 0, we have:
h(Xi, ρi) , tr

(
XiT (Ryy − ρiRvv)Xi

)
(57)

= tr
(
X̃iT
q (Riỹqỹq

− ρiRiṽqṽq
)X̃i

q

)
(58)

= 0, (59)

where the second equation follows from (24) and Xi = CiqX̃
i
q

(see (25)). The last equation is obtained by observing that
ρi = %(Xi) = %(CiqX̃

i
q) = %̃iq(X̃

i
q) where the latter is defined

in (20), which after plugging it in (58) yields (59). On the
other hand, using (24)-(25), we can also write:

h(Xi+1, ρi) , tr
(
X(i+1)T (Ryy − ρiRvv)Xi+1

)
(60)

= tr
(
X̃(i+1)T
q (Riỹqỹq

− ρiRiṽqṽq
)X̃i+1

q

)
. (61)

Since X̃(i+1)T
q maximizes tr

(
X̃T
q (Riỹqỹq

− ρiRiṽqṽq
)X̃q

)
un-

der the constraint X̃T
q K

i
qX̃q = IQ (or equivalently X̃q ∈ S̃iq)

as given in (30)-(32), we have:

h(Xi+1, ρi) ≥ tr
(
X̃T
q (Riỹqỹq

− ρiRiṽqṽq
)X̃q

)
, (62)

∀X̃q ∈ S̃iq.
In particular, taking X̃q = [XiT

q , IQ, . . . , IQ]T , we have
CiqX̃q = Xi. Therefore, the algorithm updates satisfy
XiTXi = IQ for any i and since Ki

q , CiTq Ciq , it follows that
this choice for X̃q satisfies the constraint in (62). Plugging this
choice in (62), we obtain:

h(Xi+1, ρi) ≥ tr
(
XiT (Ryy − ρiRvv)Xi

)
(63)

= h(Xi, ρi) = 0, (64)
where the last equation follows from (59). Combining (61)
with (63)-(64) results in:

h(Xi+1, ρi) = tr
(
X̃(i+1)T
q (Riỹqỹq

− ρiRiṽqṽq
)X̃i+1

q

)
≥ 0,

(65)
which finally results in:

tr
(
X̃

(i+1)T
q Riỹqỹq

X̃i+1
q

)
tr
(
X̃

(i+1)T
q Riṽqṽq

X̃i+1
q

) ≥ ρi, (66)

where it is noted that the denominator is strictly larger than
zero due to the fact that Rvv (and consequently any Riṽqṽq

) is
positive definite. Note that the left-hand side of (66) is equal to
ρi+1 by definition, which implies that ρi+1 ≥ ρi, which proves
that the sequence {ρi}i>0 is monotonic non-decreasing. By
monotonicity, and since the sequence {ρi}i>0 has an upper
bound ρ∗, the sequence is Cauchy, which means:

lim
i→+∞

(ρi+1 − ρi) = 0. (67)

Therefore, ∀ε > 0, ∃Jε ∈ N: i > Jε ⇒ ρi+1 − ρi < ε. Using
the definition of ρi+1 = %(Xi+1), we write:

tr(X(i+1)TRyyX
i+1)

tr(X(i+1)TRvvXi+1)
− ρi < ε. (68)

Reordering the terms, this results in:

tr
(
X(i+1)T (Ryy − ρiRvv)Xi+1

)
︸ ︷︷ ︸

h(Xi+1,ρi)

< ε · tr
(
X(i+1)TRvvX

i+1
)
,

(69)
and by definition, h(Xi+1, ρi) = maxX∈S h(X, ρi), we fi-
nally have:

max
X∈S

h(X, ρi) < ε · tr
(
X(i+1)TRvvX

i+1
)
. (70)

Since ε can be made arbitrarily small for sufficiently large i,
since tr

(
X(i+1)TRvvX

i+1
)

is bounded and positive, and by
continuity of f [39], [47]:

lim
i→+∞

max
X∈S

h(X, ρi) = 0, (71)

and from (81)-(82), we conclude that:
lim

i→+∞
ρi = ρ∗.

The second result describes the optimality of the equilibrium
points of Algorithm 2.
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Lemma 2. Let X ∗ denote the set of all equilibrium points
of Algorithm 2. Then, any X ∈ X ∗ is a solution of the TRO
problem (10).

Proof. We assume that at iteration i, we have achieved equi-
librium, i.e., Xi+1 = Xi, and the updating node is q. By the
updating rule given in (33), we have Xi+1

k = Xi
kG

i+1
k ∀k ∈

K \ {q}, but the equilibrium condition leads to Gi+1
k = IQ

∀k 6= q such that X̃i+1
q =

[
XiT
q , IQ, . . . , IQ

]T
in (26). From

(32), we have:(
Riỹqỹq

− ρiRiṽqṽq

)
X̃i+1
q = CiTq CiqX̃

i+1
q Λ̃i+1

q . (72)

After equilibrium, the GEVLs do not change over iterations,
therefore Λ̃i+1

q = Λ̃iq . Using (24)-(25) and replacing X̃i+1
q

with X̃i
q (equilibrium assumption), we obtain:

CiTq
(
Ryy − ρiRvv

)
Xi = CiTq XiΛ̃iq. (73)

The first Mq rows of CiTq correspond to Aq as given in (23).
When selecting the first Mq rows of (73), we therefore obtain:

Aq
(
Ryy − ρiRvv

)
Xi = AqX

iΛ̃iq (74)

= Xi
qΛ̃

i
q. (75)

At equilibrium, we can apply the same reasoning to every node
such that (75) will hold for any node q. After stacking all the
corresponding equations, we obtain:

(
Ryy − ρiRvv

)
Xi =

 X
i
1Λ̃i1
...

Xi
KΛ̃iK

 . (76)

Left multiplying (73) by
[
XiT
q , IQ, . . . , IQ

]T
, we obtain:

XiT
(
Ryy − ρiRvv

)
Xi = XiTXiΛ̃iq = Λ̃iq, (77)

where the last equation follows from the orthogonality con-
straint XiTXi = IQ, ∀i > 0 (as obtained in the proof of
Lemma 1). We observe that the left-hand side of (77) does
not depend on the node q, therefore Λ̃iq is equal for all nodes
and so we can set Λ̃ik = Λi, ∀k ∈ K. We can then rewrite
equation (76) as:(

Ryy − ρiRvv

)
Xi = XiΛi. (78)

Therefore, at equilibrium, the columns of Xi can only contain
EVCs of (Ryy−ρiRvv). Additionally, at equilibrium, ρi+1 =
ρi, hence:

ρi+1 =
tr(X(i+1)TRyyX

i+1)

tr(X(i+1)TRvvXi+1)
= ρi, (79)

and reordering the equation, we have:
tr(X(i+1)TRyyX

i+1 − ρiX(i+1)TRvvX
i+1) = 0, (80)

which implies that h(Xi+1, ρi) = 0 from definition (5). Since
Xi+1 contains EVCs of (Ryy−ρiRvv), it maximizes h(·, ρi),
and we have:

max
X∈S

h(X, ρi) = h(Xi+1, ρi) = 0 ⇐⇒ f(ρi) = 0 (81)

⇐⇒ ρi = ρ∗, (82)
where the first equivalence comes from (6) and the second
one from Theorem 1. Since ρ∗ = ρi = %(Xi), the equilibrium
point Xi must be a solution of the TRO problem (10).

Convergence of Algorithm 2 is obtained by combining Lem-
mas 1 and 2 and analyzing the iterations before convergence.

Proof of Theorem 2. From (32), we note that the only pos-
sible ambiguity at Step 4 of Algorithm 2 is the sign of the
columns of X̃i+1

q . By continuity of the function % and the fact
that the sequence of objectives {ρi}i>0 converges to ρ∗, for

all ε > 0, there exists an integer Jε and a signature matrix
U i+1 ∈ D such that:

||X̃i+1
q U i+1 − [XiT

q , IQ, . . . , IQ]T ||F < ε, (83)
and in particular:

||Xi+1
q U i+1 −Xi

q||F < ε, (84)
when i > Jε for the updating node q. We determine these
matrices U i+1 at Step 5 of Algorithm 2 by minimizing the
left-hand side of the previous equation and apply it to the full
local variable X̃i+1

q , Then, knowing that Xi+1 = CiqX̃
i+1
q and

Xi = Ciq · [XiT
q , IQ, . . . , IQ]T , we have:

lim
i→+∞

||Xi+1 −Xi||F = 0. (85)

Let us return now to (73), which followed from (72) under the
equilibrium assumption Xi+1 = Xi. In the case where equi-
librium is not reached, a node-specific (unknown) correction
term ∆i

q should be added in (73) in order for the equality to
hold:

CiTq (Ryy − ρiRvv)Xi + ∆i
q = CiTq XiΛ̃iq. (86)

Then, following a similar development as in the proof of
Lemma 2, we select the first Mq rows of each side of the
previous equation, and apply the same reasoning to every node,
to obtain the stacked equations:

(Ryy − ρiRvv)Xi + ∆i =

 X
i
1Λ̃i1
...

Xi
KΛ̃iK

 , (87)

where ∆i is an error term containing all the ∆i
q’s. Similarly,

there exists an error term Eiq in the equivalent of (77) in the
non-equilibrium case:

XiT (Ryy − ρiRvv)Xi + Eiq = Λ̃iq. (88)

However, from (85), the difference between Xi’s tend to zero
therefore the error terms vanish, such that (88) leads to:

lim
i→+∞

||XiT (Ryy − ρiRvv)Xi − Λ̃ik||F = 0, ∀k ∈ K. (89)

This means all Λ̃ik, ∀k ∈ K, all coincide in the limit to the
same diagonal matrix, which is equal to Λi = XiT (Ryy −
ρiRvv)Xi. Therefore, and since also the error term in (87)
will vanish when i→ +∞, we find:

lim
i→+∞

||(Ryy − ρiRvv)Xi −XiΛi||F = 0. (90)

Since Λi is diagonal, and using the result of Lemma 1, it fol-
lows that {Xi}i>0 converges to EVCs of Ryy−ρ∗Rvv. More-
over, (85) shows that the columns of Xi cannot switch as i gets
large. Hence, the sequence {Xi}i>0 satisfies limi→+∞Xi ∗=
X∗, where X∗ contains Q principal EVCs of Ryy − ρ∗Rvv
and maximizes %, which concludes the proof.

APPENDIX B
PROOFS OF THEOREM 3 AND COROLLARY 1

Proof of Theorem 3. In this proof, variables with an under-
line correspond to the ones obtained by using the updating
rule (35) in Algorithm 2 instead of (33). We assume that both
algorithms receive the same stream of data for y and v at each
iteration. Consider that ρ is fixed for now. Then, at iteration
i, the updating node q finds X̃i+1

q , which solves (32):

CiTq (Ryy − ρRvv)CiqX̃
i+1
q = Ki

qX̃
i+1
q Λ̃i+1

q , (91)
and in the case of the update rule (35), we can write:

CiTq (Ryy − ρRvv)CiqX̃
i+1

q = Ki
qX̃

i+1

q Λ̃
i+1

q , (92)
the analogous equation.

We will now prove the theorem by induction. Suppose that
we are in iteration i in which node q is the updating node and
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assume that there exist iterations i(k) ∀k 6= q such that the
property P1) of the theorem holds, i.e.:

X
i(1)+1
1

∗
= X

i(1)+1
1 , . . . , X

i(q−1)+1
q−1

∗
= X

i(q−1)+1
q−1 ,

X
i(q+1)+1
q+1

∗
= X

i(q+1)+1
q+1 , . . . , X

i(K)+1
K

∗
= X

i(K)+1
K .

(93)

Therefore, there exist matrices D
i(1)
1 , . . . , D

i(K)
K ∈ RQ×Q

such that:
X
i(1)+1
1 = X

i(1)+1
1 D

i(1)
1 , . . . , X

i(q−1)+1
q−1 = X

i(q−1)+1
q−1 D

i(q−1)
q−1 ,

X
i(q+1)+1
q+1 = X

i(q+1)+1
q+1 D

i(q+1)
q+1 , . . . , X

i(K)+1
K = X

i(K)+1
K D

i(K)
K .

(94)
Then, for i(k) + 1 > 0, let us take i(k) as the last iteration

at which the updating node was the node k before iteration i,
for every node k 6= q. As seen in update equation (33), at each
subsequent iteration, node k’s local variable gets multiplied on
the right with a new matrix Gk provided by the main updating
node q. The cumulative factor up to the start of iteration i is:

Gi
k =

i−1∏
j=i(k)+1

Gj+1
k , (95)

where Gj+1
k is obtained from the partitioning (26) of X̃j+1

q(j)

at iteration j, where q(j) is the node updating at iteration j.
From (33) and (95), this results in:

Xi
k = X

i(k)+1
k Gi

k. (96)
Similarly, for the updating scheme (35), we have:

Di
k =

i−1∏
j=i(k)+1

Dj+1
k (97)

Xi
k = X

i(k)+1
k Di

k. (98)
Using (96), (98) and (94), for any k ∈ K\{q}, we may write:

Xi
k = X

i(k)+1
k Gi

k (99)

= X
i(k)+1
k D

i(k)
k Gi

k (100)

= Xi
kD

i
kD

i(k)
k Gi

k, (101)
where the last equation is obtained by observing that any
signature matrix D satisfies D · D = I and then right-
multiplying both sides of (98) by Di

k. Then, denoting by
Tq ∈ RM̃q×M̃q the block diagonal matrix such that:

Tq = BlkDiag(IMq
,Di

1D
i(1)
1 Gi

1, . . . ,D
i
q−1D

i(q−1)
q−1 Gi

q−1,

Di
q+1D

i(q+1)
q+1 Gi

q+1, . . . ,D
i
KD

i(K)
K Gi

K),
(102)

we can see that the relationship between Ciq and Ciq is:
Ciq = CiqTq, (103)

and equation (91) becomes:
TTq C

iT
q (Ryy − ρRvv)CiqTqX̃

i+1
q = TTq K

i
qTqX̃

i+1
q Λ̃i+1

q .
(104)

The aim is now to show that Tq is invertible. From Remark
1, since Ki

q is full rank, then so is Ciq , ∀q, i. Looking at the
definition (22) of Ciq , we deduce that ∀k, Xi

k is full rank. Since
this holds for any iteration i, in particular Xi+1

k = Xi
kG

i+1
k

is also full rank. Then, by rank properties of matrix products,
matrices Gk are all full rank. The multiplication in each block-
diagonal of Tq as given in (102) by non-singular matrices do
not change the rank of the resulting matrix.

Therefore, Tq is full rank, and by being square, it is also
invertible. Finally, we can left-multiply (104) on both sides
with T−Tq , and observe that the solutions to (91) and (92)
satisfy the following relationship:

X̃
i+1

q
∗
= TqX̃

i+1
q . (105)

For the initial conditions, i.e., i(k) + 1 = 0, the algorithms

are both initialized with X0 = X0. Therefore, equation (93)
is satisfied with strict equality since X0

k = X0
k ∀k, where we

would have D
i(k)
k = IQ, ∀k in (94). Then, we can deduce

from (103) and (105) that:

Xi+1 = CiqX̃
i+1
q

∗
= CiqX̃

i+1

q . (106)
According to Algorithm 2, in the updating scheme (33), the
sequence of objectives computed is given by {%(CiqX̃

i+1
q )}i

and in the updating scheme (35) by {%(CiqX̃
i+1

q )}i. Since
the starting point ρ0 is the same for both methods, the full
sequences of objectives are also the same. By induction, we
have that equation (105) is satisfied for all iterations i. In
particular, for the updating node q at iteration i, we have:
Xi+1
q = [IMq

|0]X̃i+1
q

∗
= [IMq

|0]
(
TqX̃

i+1

q

)
= [IMq |0]X̃

i+1

q = Xi+1
q , (107)

since [IMq
|0]Tq = [IMq

|0]. This proves property P1).
For property P2), we first note that, by Theorem 2,

limi→+∞Xi+1
k

∗
= X∗k , ∀k. Suppose that we take an Xi:

Xi =
[
(X∗1B1)T , . . . , (X∗KBK)T

]T
, (108)

where Bk ∈ RQ×Q are signature matrices, i.e., they allow to
change the signs of the columns of X∗k ’s, such that Xi

k
∗
= X∗k ,

∀k but possibly Xi
∗
6= X∗. This implies that convergence has

already been achieved locally but the stacked matrix Xi is not
a solution of (10) due to the sign mismatches in the columns
across the different Xk’s. It can be deduced from Theorem 2
that, if we were to update using (33), we would obtain:

Xi+1 ∗= X∗. (109)
Then, this implies that Gi+1

k
∗
= Bk, for all non-updating

nodes k. Therefore, in the case of updating with (35), we can
conclude from (34) that:

Di+1
k

∗
= Bk ⇒ Xi+1 ∗= X∗. (110)

Since we have a guarantee of local convergence, we see that
the updating scheme (35) also satisfies:

lim
i→+∞

Xi ∗= X∗.

Proof of Corollary 1. If we do not communicate the signs by
following the updating scheme (36), we can replace Di

k by the
Q×Q identity matrix ∀k, i in the previous proof. We see that
we would still achieve local convergence but in the general
case, we would not obtain the optimal network-wide variable
because of block-wise sign differences in its elements, since
(110) would not be possible to achieve in that case.

APPENDIX C
MODIFICATIONS FOR RANK-DEFICIENCY

Although from a statistical point of view this would be a rare
event, we discuss in this section some possible modifications
that can be applied to the methods presented previously for
special cases where the assumptions of Remark 1 do not hold.
Similar discussions and solutions have been presented in [48].

Suppose that there exist iterations at which the matrix
(Riỹqỹq

− ρiRiṽqṽq
) or Ki

q is not full rank. This implies that
Ciq is not full rank which in turn means that there is at least a
node k for which Xi

k has linearly dependent columns. A way
to fix this problem would be to make node k replace all but
one of the linearly dependent columns by random vectors.

On the other hand, suppose that the largest Q+1 GEVLs of
the matrix pencil (Riỹqỹq

− ρiRiṽqṽq
,Ki

q) are not all distinct,
making the solution of (32) ill-defined. Then, one solution
would be to skip node q at iteration i, while assuming the
problem will not occur again. Otherwise, suppose there are
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d < Q + 1 different GEVLs in the first Q + 1 GEVLs
(when ordered in decreasing order). We are looking for an
X̃q such that its range space is in Viq , where Viq denotes the
space spanned by all GEVCs corresponding to the d largest
GEVLs, while making a minimal change from the current Xi

to ensure local convergence at node q. If the basis vectors of
Viq are put in the columns of the matrix V iq ∈ RM×Q, then
X̃i+1
q = V iqP

i+1
q , where P i+1

q ∈ RQ×Q is obtained through
solving:

P i+1
q = argmin

Pq

||V iqPq − [XiT
q , IQ, . . . , IQ]T ||F

subject to PTq Pq = IQ,
(111)

which is known as the Orthogonal Procrustes Problem [49].
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