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Abstract—The trace ratio optimization problem consists of
maximizing a ratio between two trace operators and often
appears in dimensionality reduction problems for denoising or
discriminant analysis. In this paper, we propose a distributed
and adaptive algorithm to solve the trace ratio optimization
problem over network-wide covariance matrices, which capture
the spatial correlation across sensors in a wireless sensor network.
We focus on fully-connected network topologies, in which case
the distributed algorithm reduces the communication bottleneck
by only sharing a compressed version of the observed signals at
each given node. Despite this compression, the algorithm can be
shown to converge to the maximal trace ratio as if all nodes would
have access to all signals in the network. We provide simulation
results to demonstrate the convergence and optimality properties
of the proposed algorithm.

Index Terms—Dimensionality reduction, distributed optimiza-
tion, trace ratio, discriminant analysis, SNR optimization, wire-
less sensor networks.

I. INTRODUCTION

The trace ratio optimization (TRO) problem consists of
finding a low-dimensional subspace projection, such that the
total energy across all subspace dimensions of the projected
data points is maximized for one data class and minimized
for another one. This requirement appears in various signal
processing and machine learning problems [1]–[6]. The TRO
problem takes its roots from Fisher’s linear discriminant [7]
and the Foley-Sammon transform (FST) [8], [9]. In [10],
an efficient way to compute the FST is described, which
guarantees a minimum within-class and maximum between-
class scatter for each single-dimensional space spanned by the
individual discriminant vectors, i.e., one by one in a greedy
fashion. However, due to its greedy definition, this optimal
ratio between within-class and between-class scatter does not
hold for the space spanned by the whole set of these vectors.
This was pointed out in [11] and a method to find a generalized
optimal set was proposed. However, as mentioned in [1], the
method suffered from separability issues on the projected set
of vectors. The same paper defined the generalized Foley-
Sammon transform, which has a quotient of trace operators
as the objective to maximize, which eventually has led to the
TRO problem.

Algorithms solving this TRO problem have been proposed
by [4] using the Grassmann manifold, [6] by semidefinite
programming, and [1]–[3] using an iterative method on an
auxiliary function. The original TRO is also often replaced
by a generalized eigenvalue problem [12]–[14], which can
again be viewed as a greedy relaxation of the TRO problem
[3], which makes it akin to the greedy formulation in the
original FST, while also introducing a different constraint set
on the spanning vectors. As a result, a generalized eigenvalue
decomposition (GEVD) does not solve the true TRO problem,
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but a different (yet related) greedy problem in a different
constraint set.

In this paper, we study the TRO problem in a distributed
setting in the context of wireless sensor networks (WSNs)
where there is spatial correlation across the sensors. In this
case, the TRO problem is defined by the network-wide spatial
covariance matrices, which are assumed to be unknown. Such
cases appear for example in body-sensor or neuro-sensor
networks [15], [16] in which miniaturized sensor devices
exploit spatial correlation to decode and classify neural signals
(e.g left vs. right hand imaginary movement [17]). Our goal
is to solve the TRO problem in such distributed settings
with a reduced communication bandwidth compared to the
centralized setting. While the corresponding distributed gen-
eralized eigenvalue problem has been studied in [18], the
true TRO problem has not been studied in such a distributed
context. In this conference contribution, we focus on fully-
connected network topologies, although the results can be
extended to more general topologies as well, based on similar
strategies as in [19]. We propose an adaptive distributed TRO
algorithm, which only exchanges compressed signals across
the nodes to reduce the communication bottleneck. Although
the compression is lossy, in the sense that the original signals
cannot be perfectly reconstructed, it is lossless at the same
time in the sense that convergence to the optimal network-wide
solution of the TRO problem can be guaranteed, i.e., each node
has access to the projected samples onto the TRO subspace.
We provide simulations on synthetic data which demonstrate
the convergence properties of our proposed method along with
an empirical analysis on the convergence rate.

II. REVIEW OF THE TRACE RATIO OPTIMIZATION (TRO)
PROBLEM

A. Definition and Interpretation of the TRO Problem
The TRO problem aims to find a subspace spanned by the

columns of the M ×Q matrix X such that the following trace
ratio is maximized:

maximize
X

%(X) ,
tr(XTAX)

tr(XTBX)
subject to X ∈ S,

(1)

where “tr” denotes the trace operator, A,B are symmetric
positive (semi-)definite1 M × M matrices and S = {X ∈
RM×Q : XTX = IQ}, with IQ the Q × Q identity matrix.
X is the optimization variable and contains in its columns
Q orthonormal vectors with Q � M . Depending on the
context, the matrices A and B can have different meanings.
For example, in linear discriminant analysis, the aim is to
tightly group points of a same class while separating each
class from another in the best way possible [20]. Therefore,
in that context, A would be the within-scatter matrix and B
the between-scatter matrix of the data points. This method has

1To ensure that the maximum exists, the matrix B has to satisfy some
additional rank properties, which will be explained in Section II-C.



been used to learn the weights of a Mahalanobis distance in
[21].

In a signal processing context, the matrices A and B can be
viewed as covariance matrices corresponding to two stationary
M -channel signals, denoted by y(t) and v(t) ∈ RM . Then,
A and B would represent Ryy = E[y(t)y(t)T ] and Rvv =
E[v(t)v(t)T ] where E[·] denotes the expectation operator. For
example, in motor imagery brain-computer interfaces based
on electroencephalography (EEG), y(t) could represent EEG
activity during imaginary left hand movement, while v(t)
could represent EEG activity during imaginary right hand
movement [17]. Solving (1) then provides a spatial filter bank
with M inputs and Q outputs, of which the output power
can then be used to discriminate between these two signal
classes. In the case of signal denoising, y and v would
be observed during “signal-plus-noise” segments and “noise-
only” segments respectively [18], in which case X would act
as a denoising filter bank.

In the following parts of this text, we consider that % in (1)
is defined such that A = Ryy and B = Rvv, i.e.,

maximize
X

%(X) ,
tr(XTRyyX)

tr(XTRvvX)
subject to X ∈ S.

(2)

Moreover, we will assume that all signals are short-
term stationary and ergodic with zero mean, therefore
1
N

∑N
t=1 y(t)y(t)T ≈ E[y(t)y(t)T ] = Ryy for a convenient

number of time samples N , and similarly for v. We will
mostly define the variables according to y, but every definition
will have its equivalent for v. We will omit the time index t
for notational convenience.

B. Comparison to Generalized Eigenvalue Methods
If Q = 1, then the TRO problem becomes equivalent

to the generalized Rayleigh coefficient, maximized by the
generalized eigenvector (GEVC) corresponding to the largest
generalized eigenvalue (GEVL) of the pair (Ryy, Rvv). Re-
sults between a generalized eigenvalue problem and the TRO
problem start to diverge in general when Q > 1, i.e., the
GEVCs corresponding to the Q largest GEVLs of the pair
(Ryy, Rvv) do not solve the TRO problem but instead maxi-
mize (2) under another constrain set, namely XTRvvX = IQ.
While replacing (2) with a GEVD problem is a popular
strategy in the literature, there have been various arguments
to opt for solving the true TRO problem (2) instead of the
corresponding GEVD problem. In particular, [22] explains
that enforcing orthogonality on the filters leads to higher
discriminating power because these projections do not distort
the metric structure. Moreover, in [4] it is shown that the
GEVD solution will not necessarily result in a larger optimal
value for %, compared to the TRO case, and [2] claims that
the natural way to describe the problem at hand is with the
TRO formulation.

C. Solving the TRO problem in a centralized context
Various iterative methods have been proposed to solve the

TRO problem. In this paper, we focus on the method in [2],
as it will be the basis for the distributed algorithm in Section
III. We assume further that the rank of Rvv is strictly larger
than M − Q so that the denominator is non-zero ∀X ∈ S
and the maximum value ρ∗ which % can assume exists and
is finite, as shown in [23], where it is also explained that the
maximum is obtained for X∗ ∈ RM×Q, unique up to a unitary
transformation.

To define the iterative algorithm for solving the TRO
problem, we first point out that the problem has an equivalent

Algorithm 1: Trace Ratio Maximization Algorithm [2]

input : Ryy, Rvv ∈ RM×M

output: X∗, ρ∗

X0 initialized randomly, ρ0 ← %(X0), i← 0
repeat

1) Xi+1 ← EVCQ(Ryy − ρiRvv), where EVCQ(A)
extracts Q orthonormal eigenvectors corresponding
to the Q largest eigenvalues of A.

2) ρi+1 ← %(Xi+1)
i← i+ 1

until Convergence

form, which can be seen by defining the auxiliary function
h : S × R→ R :

h(X, ρ) = tr(XT (Ryy − ρRvv)X). (3)
In [1], it is shown that an optimal X∗ that satisfies (2) must
also satisfy the following sufficient conditions:

max
X∈S

h(X, ρ) = 0 ⇐⇒ ρ = ρ∗, (4)

and
X∗ ∈ arg max

X∈S
h(X, ρ∗). (5)

Hence, we transform the initial problem to finding the root
of the function maxX∈S h(X, ρ). For a given scalar ρ, this
function outputs the sum of the Q largest eigenvalues (EVLs)
of (Ryy − ρRvv) and the X that maximizes (3) contains
the orthonormal eigenvectors (EVCs) corresponding to these
EVLs:

(Ryy − ρRvv)X = XΛ, (6)

where Λ is a diagonal matrix containing the Q largest EVLs.
With this knowledge, an iterative method to solve the TRO
problem is given in Algorithm 1, which was originally de-
scribed in [2], where also convergence to a solution of the
TRO problem is proved.

Remark 1. As the solution of the TRO problem is unique up
to a unitary transformation (i.e., X∗R is a solution if X∗ is
a solution and R is a unitary matrix), we define the equality
up to a unitary transform of the columns as ∗=.

III. DISTRIBUTED TRO ALGORITHM IN
FULLY-CONNECTED WSNS

Suppose now that we have a WSN with K nodes in
K = {1, . . . ,K}, where each node k measures two Mk-
channel signals yk and vk. We define the network-wide
signal y ∈ RM , with M =

∑
k∈KMk, to be the stacked

signals of the nodes, i.e., y =
[
yT
1 , . . . ,y

T
K

]T
and similarly

v =
[
vT
1 , . . . ,v

T
K

]T
. In the distributed case, every node k has

access to observations of its own signals yk and vk, but not
to yl and vl, l ∈ K\{k}. Therefore, we cannot use Algorithm
1 directly because the eigenvalue decomposition (EVD) step
requires the network-wide signals to estimate the network-
wide spatial covariance matrices Ryy and Rvv, which cannot
be estimated by any single node, unless all the raw sensor
signal observations would be transmitted to a fusion center,
which creates a bandwidth bottleneck. Instead, we will solve
the TRO problem in an adaptive and distributed fashion by
letting each node only transmit compressed observations of
its local signals.

In this paper, we focus on fully-connected WSNs, which
implies that signal observations broadcast by any node are



received by all other nodes in the network. This allows for a
more intelligible description of the distributed algorithm, but
is not a limitation per se, since the analysis can be extended
to other topologies using similar strategies as in [19], which
is out of the scope of this paper.

Note that Algorithm 1 consists of two alternating steps,
which involves solving an eigenvalue problem (step 1) fol-
lowed by evaluating the trace ratio ρ in the current point (step
2). A naive approach for solving (2) in a distributed setting
would consist of computing the eigenvalue decomposition in
step 1 using a distributed (G)EVD algorithm, e.g., the so-
called DACGEE2 [18] or DACMEE [24] algorithm. However,
these algorithms are iterative themselves, so we would need
to wait for them to converge and only then will we be able to
update ρ in step 2, and the alternation between steps 1 and 2
are then iterated as well. These hierarchically nested iterations
would make convergence extremely slow. Instead, we aim for
an adaptive distributed algorithm without such hierarchically
nested iterations, which runs at a single time scale.

The algorithm we propose is referred to as the Distributed
Trace Ratio Optimization algorithm (DTRO). We start by
partitioning X as:

X =
[
XT

1 , . . . , X
T
K

]T
∈ RM×Q, (7)

such that Xk ∈ RMk×Q ∀k ∈ K and the objective in (2) can
be rewritten as:

%(X) =
tr
(∑

k,lX
T
k Rykyl

Xl

)
tr
(∑

k,lX
T
k Rvkvl

Xl

) =
E
[
||
∑

kX
T
k yk||2

]
E
[
||
∑

kX
T
k vk||2

] , (8)

where k, l ∈ K, Rykyl
= E[yky

T
l ], Rvkvl

= E[vkv
T
l ].

The DTRO algorithm will update Xk’s across the nodes in
a sequential round-robin fashion, where node k is responsible
for updating Xk.

We assume that, at iteration i of the DTRO algorithm,
all nodes k linearly compress their sensor observations by
a compression matrix F i

k ∈ RMk×P , with P < Mk, before
broadcasting them to the other nodes of the network. This
compression is done through the following linear combination:

ŷi
k = F iT

k yk, v̂
i
k = F iT

k vk, (9)
such that ŷi

k, v̂
i
k ∈ RP . Suppose node q is the updating node at

iteration i, where node q receives compressed observations of
ŷi
k, v̂

i
k from nodes k ∈ K\{q}. The main question that arises

is whether the updating node q can get enough information
out of those signals received, such that it can contribute to
getting a closer estimation of X∗. In the DTRO algorithm, we
will set F i

k = Xi
k (with P = Q). In this case, the projection

of the network-wide signal y onto the subspace spanned by
the columns of Xi can then be computed as:

ŷi , XiTy =
∑
k∈K

XiT
k yk =

∑
k∈K

ŷi
k (10)

and similarly for v. Hence, node q is able to compute the
global objective %(Xi) from its own observations and the
compressed signals it receives from the other nodes. It is noted
that in this case, Xi acts both as a compression matrix and
the variable we want to optimize. Let us assume node q is the
updating node at iteration i. Node q’s own sensor signals yq
are stacked with the compressed sensor signals of the other
nodes, which results in the vector:

ỹi
q = [yT

q , ŷ
iT
1 , . . . , ŷiT

q−1, ŷ
iT
q+1, . . . , ŷ

iT
K ]T (11)

2DACM(G)EE: distributed adaptive covariance-matrix (generalized) eigen-
vector estimation.

of length M̃q = Mq + Q(K − 1). At the beginning of each
iteration of the DTRO algorithm, the updating node q collects
a contiguous stream of N time samples of ỹi

q to be able to
estimate the covariance matrix Ri

ỹqỹq
= E[ỹi

qỹ
iT
q ] ∈ RM̃q×M̃q

of the information available. We note that, in each iteration in
which node q updates, these covariance matrices are estimated
on a new stream of observations, exploiting the stationarity
property. Therefore, despite the iterative nature of the algo-
rithm, the same block of samples is never communicated twice,
making the algorithm “adaptive” rather than “iterative”. This
then also allows to track slow changes in the signal statistics,
under the condition that these are slower than the convergence
rate of the algorithm.

We define a matrix Ci
q that allows us to relate (11) to the

network-wide signal y such that:

ỹi
q = CiT

q y. (12)
By correspondence of the elements in both variables, it can

be deduced that Ci
q =

 0 Bi
<q 0

IMq
0 0

0 0 Bi
>q

 ∈ RM×M̃q ,

where Bi
<q and Bi

>q are block diagonal matrices contain-
ing Xi

1, . . . , X
i
q−1 and Xi

q+1, . . . , X
i
K respectively on their

(block-)diagonals.
Then, the local covariance matrix at node q can be expressed

as Ri
ỹqỹq

= CiT
q RyyC

i
q , and using the parameterization:

X = Ci
qX̃q, (13)

we have a new local variable X̃q ∈ RM̃q×Q at node q. Sub-
stituting (13) in (2) allows to define the following compressed
and parameterized version of the TRO problem (2), which can
be solved locally at node q:

maximize
X̃q

%̃iq(X̃q) ,
tr(X̃T

q R
i
ỹqỹq

X̃q)

tr(X̃T
q R

i
ṽqṽq

X̃q)

subject to X̃q ∈ S̃iq,

(14)

where S̃iq = {X̃q ∈ RM̃q×Q : X̃T
q C

iT
q Ci

qX̃q = IQ}. It is
noted that %(X) = %̃iq(X̃q). Due to the parameterization (13),
the compressed optimization problem (14) can be viewed as
the optimization of the network-wide problem (2) over X , but
with extra constraints which constrain the variable Xk with
k 6= q to have the same column space as Xi

k (this can be
seen from the definition of Ci

q , where the submatrices Bi
<q

and Bi
>q contain the Xi

k’s, k 6= q, on their diagonal blocks).
We can derive from (3), (5) the local auxiliary problem:

max
X̃q∈S̃i

q

tr
(
X̃T

q (Ri
ỹqỹq

− ρiRi
ṽqṽq

)X̃q

)
, (15)

where ρi can be computed using node q’s own observations
and the ones received from other nodes, following the rela-
tionships given in (8) and (10):

ρi =
E
[
||XiT

q yq +
∑

k∈K\{q} ŷ
i
k||2
]

E
[
||XiT

q vq +
∑

k∈K\{q} v̂
i
k||2
] . (16)

Based on Algorithm 1, we should now compute the EVCs of
the matrix (Ri

ỹqỹq
−ρiRi

ṽqṽq
). However, the constraint set S̃i

q

imposes orthogonality with respect to the matrix:
Ki

q = Blkdiag(IMq , L
i
1, . . . , L

i
q−1, L

i
q+1, . . . , L

i
K)

= CiT
q Ci

q, with Li
k = XiT

k Xi
k,

(17)



i.e., X̃T
q K

i
qX̃q = IQ. Therefore, we replaced the EVD

problem (5) with the following GEVD problem, which can
be solved locally at node q:

(Ri
ỹqỹq

− ρiRi
ṽqṽq

)X̃q = Ki
qX̃qΛ̃q, with X̃T

q K
i
qX̃q = IQ,

(18)
with Λ̃q ∈ RQ×Q diagonal. This is the relationship analogous
to (6) in a distributed context based on the compressed
observations available to the updating node q.

Remark 2. We further assume that both matrices in the pair
(Ri

ỹqỹq
− ρiRi

ṽqṽq
,Ki

q) are full rank and their largest Q+ 1
GEVLs are all distinct, so that the solution to (18) is well-
defined. If this assumption does not hold, some technical modi-
fications to the algorithm are necessary to ensure convergence
(details omitted).

As mentioned earlier, X = Ci
qX̃q implies that node q has

only the full freedom of updating its own local compression
matrix Xq ∈ RMq×Q from (7), while the matrices Xk
corresponding to the other nodes k 6= q are constrained to
preserve their original column space. This can be seen from
the following partitioning of the variable X̃q:

X̃q =
[
XT

q , G
T
1 , . . . , G

T
q−1, G

T
q+1, . . . , G

T
K

]T
, (19)

where Xq corresponds to the first Mq rows of X̃q and each
Gk ∈ RQ×Q, such that X = Ci

qX̃q implies that:

Xi+1
k =

{
Xq if k = q
Xi

kGk if k 6= q
. (20)

Therefore, following the partition of (19), when node q com-
putes X̃q by solving (18), node q communicates to all other
nodes k ∈ K\{q} the matrices Gk so that the latter can
update their local variable Xk according to (20). All these
steps are summarized in Algorithm 2, which describes the
DTRO algorithm. It is noted that, as the GEVCs, as computed
in step 4, are only defined up to the signs of their columns,
we may observe oscillations between the signs of the columns
across iterations. Step 5 of Algorithm 2 resolves this problem
by choosing the signs based on those of the previous iteration.

If one would remove step 3 of the DTRO algorithm, i.e.,
fix ρi across iterations to any arbitrary value ρ, we obtain
an instance of the DACGEE algorithm from [18] on the
matrix pair (Ryy − ρRvv, IM ). This shows that the DTRO
algorithm actually interleaves the iterations of Algorithm 1
with the iterations of a distributed GEVD algorithm. However,
note that convergence of the DTRO algorithm is not implied
by the convergence of Algorithm 1, since the former does
not solve the network-wide EVC in each iteration (but only
partially in one of the nodes). Similarly, the convergence of
DACGEE in [18] does not imply convergence of the DTRO
algorithm as ρ changes in each iteration, which changes
the eigenvalue problem. Nevertheless, it can be shown that
the DTRO algorithm also converges, as formalized in the
following theorem.

Theorem 1. For any initialization X0 ∈ RM×Q, the updates
of Algorithm 2 satisfy limi→+∞Xi ∗= X∗ where X∗ is a
solution of (2), i.e., DTRO converges to the optimal solution. In
particular, it converges to the same TRO solution as Algorithm
1 up to a sign ambiguity in the columns of X∗.

The proof is omitted due to space limitations and will be
provided in a future extended version of the manuscript.

Algorithm 2: Distributed Trace Ratio Optimization
output: X∗, ρ∗

X0 initialized randomly, ρ0 ← %(X0), i← 0
repeat

q ← (i mod K) + 1
1) Node q receives Li

k = XiT
k Xi

k and ŷi
k(t), v̂i

k(t)
for t = iN + 1, . . . , iN +N from all other nodes
k 6= q

2) Node q estimates Ri
ỹqỹq

, Ri
ṽqṽq

based on the
stacking defined in (11)

3) Compute ρi from (16)
4) X̃q ← GEVCQ(Ri

ỹqỹq
− ρiRi

ṽqṽq
,Ki

q), where
GEVCQ(A,B) extracts the B−orthogonal Q
generalized eigenvectors corresp. to the Q largest
generalized eigenvalues of (A,B), and Ki

q is given
in (17)

5) X̃q ← X̃qU
i+1, where U i+1 ∈ D, the set of

signature matrices, i.e. diagonal matrices containing
either 1 or −1 in their diagonals, and
U i+1 = argminU∈D||Xi+1

q U −Xi
q||F

6) Partition X̃q as in (19), broadcast Gk,∀k 6= q
7) Every node updates Xi+1

k according to (20)
i← i+ 1

until Convergence

IV. EXPERIMENTAL RESULTS

To demonstrate our results, we consider in this section a
setting similar to the one in [18]. We fix the number of nodes to
K = 50 and the number of sensors on each node to Mk = 15,
∀k ∈ K, hence M = K ·Mk. Then, the network-wide signal
y is modeled as:

y(t) = Γ · d(t) + v(t), (21)
where the noise in v is modeled as a combination of spatially
correlated noise and spatially white noise, i.e.,

v(t) = T · s(t) + n(t). (22)
T is an M ×L and Γ is an M ×Q matrix and their elements
are drawn independently from the uniform distribution in
[−0.5, 0.5]. The elements of d ∈ RQ, s ∈ RL are drawn
independently and follow a normal distribution with zero-mean
and variance of 0.5, i.e., N (0, 0.5). The model is therefore a
mixture of L + Q point sources, of which L are interfering
sources, represented by s, that are continuously active and Q
of them are the ones of interest, represented by d and have an
on-off behaviour. Note that during the inactivity of the desired
source in d, it holds that only v is observed at the sensors,
which allows to collect observations of both y and v. The
elements of additive noise given by n follows an independent
normal distribution N (0, 0.1). We set L = 5, Q = 5 and
the number of samples the updating node q gets per iteration
to N = 10000 for both y and v. The latter is therefore
the amount of samples over which the covariance matrices
are estimated at each iteration, which is an arbitrary choice.
In practice, the proper value of N depends on the specific
application, in particular on the sensor sampling rate, and the
required adaptivity-vs-accuracy trade-off. Figure 1 shows the
convergence results of our experiments. The results have been
obtained using 200 independent Monte Carlo runs, using the
same settings as precised above. In these comparisons, we
estimated the network-wide (centralized) solutions X∗ and ρ∗
using Algorithm 1 in each independent run, where the stopping
criterion was a threshold of 10−12 in the difference of two

abertran
Sticky Note
Note: the paper as published in IEEEXplore contained a typo here (argmax instead of argmin). This typo is corrected in this pdf.



Fig. 1: Convergence of DTRO. Top: MSE of the entries of Xi

compared to X∗. Center: Estimation of the convergence rate.
Bottom: Convergence in objective.

consecutive objectives. For the DTRO algorithm (Algorithm
2), we fixed the number of iterations to 300 i.e., six full
update rounds. In Fig. 1 (Top), the ε function corresponds
to the Mean Squared Error (MSE) between the solutions of
both algorithms:

ε(Xi) =
1

MQ
||Xi −X∗||2F . (23)

We estimate the convergence rate of the DTRO algorithm by
analysing the function r plotted in Fig. 1 (Center):

r(Xi) =
||Xi −X∗||F
||Xi−1 −X∗||F

. (24)

If a sequence {Xi}i satisfies limi→+∞ r(Xi) = 1, the
sequence is said to converge sublinearly to X∗. In the case of
the DTRO algorithm, r approaches 1 as the number of iteration
grows, therefore it is estimated that the DTRO algorithm has a
convergence rate close to sublinear in this simulation scenario,
as shown in Fig. 1 (Bottom).

These results allow us to visualize the claimed convergence
of the sequence {Xi}i to the optimum X∗. In particular, we
can observe abrupt changes in certain plots of the DTRO
algorithm at the end of the first full round update i.e., i = 50.
Due to the constraints on a given updating node q at iteration
i on the freedom of choosing a new Xi+1

k = Xi
kGk for other

nodes k 6= q, we cannot expect to have a reliable estimate
before the first round if we set X0 randomly.

V. CONCLUSIONS AND FUTURE WORKS

We have proposed a distributed algorithm to solve the
TRO problem given in (2). By partially solving a network-
wide EVD by the means of a local GEVD problem at each
iteration, where only compressed versions of signals measured
throughout the network are communicated, we achieved con-
vergence at a rate around sublinear according to our simula-
tions. Adapting this algorithm to partially connected topologies
can be considered as an interesting future direction of study,
along with analysing the effect of asynchronous updates in the
network.
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