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A Novel Loss for Change Point Detection Models
with Time-invariant Representations
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Abstract—Change point detection (CPD) refers to the prob-
lem of detecting changes in the statistics of pseudo-stationary
signals or time series. A recent trend in CPD research is
to replace the traditional statistical tests with distribution-free
autoencoder-based algorithms, which can automatically learn
complex patterns in time series data. In particular, the so-
called time-invariant representation (TIRE) models have gained
traction, as these separately encode time-variant and time-
invariant subfeatures, as opposed to traditional autoencoders.
However, optimizing the trade-off between two loss terms, i.e.,
the reconstruction loss and the time-invariant loss, is challenging.
To address this issue, we propose a novel loss function that
elegantly combines both losses without the need for manually
tuning a trade-off hyperparameter. We demonstrate that this new
hyperparameter-free loss, in combination with a relatively simple
convolutional neural network (CNN), consistently achieves supe-
rior or comparable performance compared to the manually-tuned
baseline TIRE models across diverse benchmark datasets, both
simulated and real-life. In addition, we present a representation
analysis, demonstrating that the distribution of the time-invariant
features extracted by our model is more concentrated within
the same segment (more so than with previous TIRE models),
which implies that these features can potentially be used for other
applications, such as classification and clustering.

Index Terms—Autoencoder, change point detection, time-
invariant representation (TIRE), unsupervised learning

I. INTRODUCTION

CHANGE point detection (CPD) is a prevalent challenge
in many disciplines that deal with time series data,

e.g., signal processing [1], [2], finance [3], [4], biology [5],
[6], and climate science [7], [8]. The purpose of CPD is to
identify the time points at which the statistical properties of a
signal or time series change abruptly. These changes may be
attributed to modifications in underlying physical processes,
regime transitions, or the emergence of anomalies.

Advances in machine learning and deep learning, particu-
larly autoencoders, have lead to powerful CPD methods that
can handle complicated data distributions. However, existing
autoencoder-based approaches such as Adaptive Change De-
tection (ACD) [9] and Autoencoder-based Breakpoints Detec-
tion (ABD) [10] only focused on the reconstruction ability
of the autoencoder. To address this, the time-invariant repre-
sentation (TIRE) [11] model introduced a time-invariant loss
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in addition to the reconstruction loss. This model learns time-
invariant features by minimizing the distance between encoded
sub-features of consecutive windows. Change points (CPs) are
then extracted by detecting significant changes in these time-
invariant features.

While the TIRE model is superior to other CPD methods
[11], it has the disadvantage that it introduces an additional
hyperparameter to control the trade-off between the recon-
struction loss and the time-invariant loss. Tweaking this hyper-
parameter can be challenging, particularly in an unsupervised
setting where no ground truth is available regarding CPs. A
similar trade-off appears in the choice of the (relative) size
of the time-invariant (TI) versus time-variant (TV) subfeature
vectors.

In this paper, we present a novel loss function for unsu-
pervised CPD using TIRE-based approaches to overcome the
aforementioned concerns, which consistently achieves superior
or comparable results across diverse simulated and real-life
benchmark datasets. Our main contributions can be summa-
rized as follows.
• We introduce a new hyperparameter-free loss function

that considers simultaneously the reconstruction power of the
autoencoder and the informativeness of the encoded represen-
tations.
• We also show that the new loss reduces the leakage

of TV information in the TI subfeatures and vice versa,
making the model less sensitive to the proper selection of
the dimensions of both subfeature vectors. As a result, the
extracted TV representations are more informative for CPD
while maintaining clear boundaries between segments.

II. BRIEF INTRODUCTION OF THE TIRE MODEL

The original TIRE model [11] is composed of a simple
autoencoder with one fully-connected layer in both the encoder
and decoder and takes inputs in the form of 50% overlapping
windows containing N time samples. In the latent space, the
TIRE model disentangles each representation into two distinct
features: a TI feature (f ti), designed to encapsulate information
shared across consecutive time windows (assuming no Change
Point exists between them), and a TV feature (f tv), meant
to reflect information specific to individual windows. CPs are
identified by considering only the dissimilarity between the TI
features. To ensure a compact distribution of TI features within
the same segment, a time-invariant loss term was introduced in
addition to the reconstruction loss, resulting in the following
combined loss

L = Lrec+λLti =
∑
t

(||wt−w′
t||22+λ(||f tit − f tit−1||22), (1)
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where wt and w′
t denote the input time window at time t and

the reconstruction result, respectively. λ represents the trade-
off hyperparameter to balance the two losses.

The time-invariant loss term effectively compresses the
distribution of the TI features f ti within the same segment 1

by minimizing the distance between consecutive TI features.
It also enforces the features to be close to each other between
segments. This can lead to blurred boundaries and negatively
impact the final detection performance. In contrast to the
constraints placed on f ti, there are no explicit constraints on
f tv to ensure that they carry all window-dependent informa-
tion. This presents a challenge in determining the appropriate
dimension of f tv . If the length is too short, there is a risk
of window-dependent information leaking into f ti to improve
the reconstruction loss. In contrast, if the length is too long,
the autoencoder may encode all information into f tv , causing
f ti to lose its intended function. These limitations of the TIRE
model will be visualized and further discussed in Section IV-E.

In summary, the TIRE loss function is difficult to tune, both
in terms of the hyperparameter λ, as well as the dimension of
its two feature vectors f ti and f tv (in particular with respect
to their relative sizes).

III. PROPOSED METHOD

We adopt the same pre- and post-processing strategies as in
[11] to split the input time series into windows and identify
CPs based on the extracted TI features. The window size N
is user-defined and specifies the time-resolution with which
change points can be detected. A rule of thumb is to set
N based on the expected minimal time between consecutive
change points.

A. Diamond loss

Based on the aforementioned limitations of the TIRE model,
we propose a new loss function without trade-off parameter,
while also removing the potential danger of TV information
leaking into the TI features (and vice versa) in case the feature
dimension of f tv and f ti are not properly tuned.

Fig.1 illustrates the concept of TI and TV features. The
core idea behind the new loss function is the following. If f ti

indeed encodes TI information, then it should be possible to
reconstruct the window wt at time t using the TI feature f tit−1

of the previous window at time t− 1, in combination with its
own TV features f tvt . Based on this, feeding the combination of
f tit and f tvt−1 to the decoder should produce a reconstruction of
time window wt−1 as the output, denoted as w′′

t−1. Similarly,
we can obtain w′′

t by combining f tit−1 and f tvt .
In summary, we begin by mapping pairs of consecutive

windows, denoted as (wt−1,wt), to the latent feature space
using the encoder. This latent feature space comprises both
the TI and TV feature spaces. Subsequently, we recombine
the encoded TI and TV features before passing them through
the decoder. The decoder then produces the reconstructed

1A segment is defined as the time samples between two consecutive CPs.

results, denoted as (w′′
t−1,w

′′
t ). Finally, we define the new

loss function as:

Ldia =
∑
t

(||wt −w′′
t ||22 + ||wt−1 −w′′

t−1||22). (2)

We refer to this newly proposed loss as the diamond loss due
to the diamond-shape of the diagram in Fig.1 relating to this
new loss.

While the idea is simple, the impact of this new diamond
loss is significant, as it offers several advantages over the loss
function in the TIRE model [11], which will be illustrated in
Section IV: 1) The diamond loss can handle both optimization
targets, Lrec and Lti, simultaneously, thereby avoiding the
need to balance the weights between the two targets. 2) The
diamond loss provides a less stringent regularization of the TI
features, which can theoretically lead to more explicit segment
boundaries. 3) The diamond loss and the way the TI/TV
features are used in the construction (see Fig.1) implicitly
adds additional constraints to both types of features. The TI-
features are only used across the window boundaries, whereas
the TV features are only used within their respective windows.
This reduces the risk of leakage of TI/TV information into the
TV/TI features, respectively.

B. CNN-based TIRE autoencoder

Another potential disadvantage of the TIRE model [11] is
that it employs a multilayer perceptron (MLP) network with
numerous trainable parameters to build the autoencoder. As the
model is trained in an unsupervised and transductive setting,
and the length of training time series data is often limited,
the TIRE model’s performance can be sensitive to parameter
initialization. To overcome this limitation, we introduce a new
CNN-based autoencoder that is more robust to initialization.
We detail the structure of this CNN-based autoencoder in
Section IV-C.

IV. EXPERIMENT

A. Benchmark datasets

We evaluate the detection performance of our proposed
model and other baseline methods using four simulated
datasets and three real-life datasets.

1) Simulated datasets: The simulated datasets are gener-
ated using the following auto-regressive model [11]: s(t) =
a1s(t−1)+a2s(t−2)+ϵt, where the error term follows a Gaus-
sian distribution ϵt ∼ N (µt, σ

2
t ), and where s(1) = s(2) = 0,

a1 = 0.6, a2 = −0.5, µt = 0, and σt = 1.5, unless otherwise
stated.
• Jumping Mean (JM): The Jumping Mean dataset is

constructed by shifting the µt at each CP.
• Scaling Variance (SV): The Scaling Variance dataset is

generated by altering the σt at each CP.
• Changing Coefficients (CC): While keeping a2 = 0, a1

in this dataset is alternatively sampled from two independent
uniform distributions if a CP is crossed.

• Gaussian Mixture (GM): Unlike the previous three
simulated datasets, the Gaussian Mixture dataset is created by
alternatively sampling from two separate Gaussian mixtures.
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Fig. 1: The pipeline to extract TI and TV features from input window pairs and to compute the proposed diamond loss. In the
left subfigure, the dashed and solid lines represent the data flows in the original TIRE loss and the diamond loss, respectively.
In the right subfigure, we demonstrate the proposed CNN-based TIRE encoder and decoder structures.

2) Real-life datasets:
• HASC-2011 [12]: This dataset comprises human activity

information collected by a three-axis accelerometer. It includes
different segments that correspond to six behaviors: staying,
walking, jogging, skipping, walking downstairs, and climbing
stairs. Following [11], we select the data from subject 671 and
use the magnitude of the acceleration as input.

• Well log [13]: CPs in the Well log dataset reflect
transitions in the properties of the rock layers encountered
during the drilling process.

• Honeybee Dance [14]: The Honeybee Dance dataset com-
prises six sequences, each featuring a bee performing a three-
stage waggle dance. Each sequence is a three-dimensional time
series representing the bee’s position in 2D coordinates, along
with its angle differences.

B. Evaluation metrics and baseline models

We use the criteria presented in [11] in our experiment to
determine if a detected alarm is a real positive CP. Similar to
[15], [16], [17], the f1-score metric is employed to compare
the detection effectiveness of our suggested model to that of
other baseline CPD techniques. The f1-score metric is defined
as: f1-score = 2 · precision · recall/(precision + recall) with
precision = NTP /(NTP +NFP ) and recall = NTP /(NTP +
NFN ), where N(·) denotes the number of samples, and TP,
FP, and FN represent true-positive, false-positive, and false-
negative detections, respectively. The rules to define TPs,
FPs and FNs are the same as in [11], which also requires
the definition of the tolerated maximal distance τ between a
detected alarm and a corresponding ground-truth CP.

To demonstrate the benefits of the diamond loss and the
proposed CNN structure, we compare our suggested model
against the original TIRE model [11], and the combination of
the TIRE network and the diamond loss.

C. Experiment settings

In our implementation, the window size N is kept the
same for all baseline algorithms but selected separately for
each dataset, such that for each dataset the median f1-score
is maximal when taking the median across all (versions of)

algorithms in the comparison. Specifically, we set N = 40 for
all simulated datasets and N = 280, N = 100, and N = 16
for the HASC-2011, Well Log, and Honeybee Dance datasets,
respectively. Furthermore, we set the tolerance value τ used
to judge whether a detected alarm is a true-positive sample
equal to the window size N in each dataset.

For the MLP networks (corresponding to the original TIRE
model in [11]), we set the length of f ti to 2 and the length of
f tv to 1, as suggested in [11]. The CNN-based autoencoder
consists of four layers, where the input time windows are first
mapped to a 16-dimensional intermediate space. Two sub-
layers then map the intermediate features into TI and TV
spaces, respectively, each with an output size of 2 ·N/4. The
TI and TV features from consecutive windows are recombined
as shown in Fig.1 and transformed back to 16 dimensions
in a deconvolutional layer, before the output layer ensures
that the reconstructed results have the same shape as the
input windows. We adopt the Tanh activation function in the
feature-extracting and output layers to limit the value range of
features and reconstructed windows. The Leaky ReLU function
is utilized in other layers. We set the kernel size as 9 and the
stride as 2 for all layers in the CNN structure. All models
are optimized using an Adam optimizer with a fixed learning
rate of 0.001. To reduce the effects of randomness caused by
initialization and shuffling of input mini-batches, we report the
mean and standard deviation across 10 different runs. The full
implementation can be found in [18].

D. Results

Similar to [11], we conduct an evaluation of all models in
three distinct settings. The first setting involves detecting CPs
exclusively in the time domain (TD), while the second setting
involves detecting CPs solely in the frequency domain (FD).
Finally, we evaluate the models by combining information
from both domains to detect CPs (‘Both’). The results are
summarized in TABLE I.

As illustrated in TABLE I, our proposed model
(CNN+diamond loss) demonstrates significant improvements
across the majority of our evaluation datasets in comparison
to the original TIRE baseline model of [11] (MLP+original
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TABLE I: The f1-scores and standard deviations across realizations and repetitions achieved by different combinations of
network structures and loss functions. For each dataset, we highlight the best-performing baseline in bold.

Simulated datasets Real-life datasets
Model Domain JM SV CC GM HASC-2011 Well log Honeybee dance

TD 0.957±0.021 0.751±0.074 0.693±0.079 0.765±0.108 0.489±0.042 0.471±0.042 0.657±0.164
MLP+original loss FD 0.935±0.045 0.864±0.070 0.873±0.071 0.985±0.021 0.488±0.024 0.419±0.042 0.748±0.122

Both 0.952±0.067 0.862±0.067 0.821±0.074 0.977±0.022 0.488±0.019 0.406±0.093 0.740±0.149

TD 0.946±0.023 0.786±0.088 0.797±0.075 0.782±0.104 0.497±0.036 0.467±0.052 0.672±0.121
MLP+diamond loss FD 0.934±0.045 0.932±0.036 0.911±0.073 0.981±0.021 0.540±0.017 0.481±0.053 0.752±0.117

Both 0.945±0.026 0.930±0.036 0.899±0.067 0.977±0.022 0.554±0.018 0.488±0.058 0.751±0.103

TD 0.946±0.017 0.736±0.046 0.646±0.042 0.966±0.020 0.505±0.013 0.504±0.031 0.713±0.064
CNN+diamond loss FD 0.952±0.021 0.942±0.021 0.966±0.022 0.972±0.028 0.558±0.012 0.506±0.030 0.776±0.092

Both 0.946±0.018 0.937±0.022 0.954±0.023 0.975±0.018 0.571±0.011 0.507±0.048 0.768±0.098

loss). The only exceptions are the Jumping mean and
Gaussian Mixture datasets, where detecting CPs is not a
particularly challenging task, and therefore all models under
comparison exhibit similar efficacy.

Furthermore, even when using an MLP network to construct
the autoencoder, the diamond loss still leads to substantially
higher f1-scores on the other two more difficult simulated
datasets and all real-life datasets when compared to the origi-
nal TIRE loss. This observation verifies the superiority of the
diamond loss, which aligns with our original design purpose.

Introducing the CNN-based autoencoder leads to further
improvement in the detection accuracy and smaller deviations,
implying that the CNN model is more robust to the initializa-
tion of parameters. While the transition from the MLP to the
CNN structure may result in a drop in f1-score in the time
domain, the performance remains superior or comparable in
the Both setting, which is the default setting if no domain
knowledge is available on whether CPs are most pronounced
in the time or frequency domain [11].

E. Representation Analysis

To ensure that the diamond loss can achieve our design
purpose, we investigate the extracted TI features further.

In order to provide a visual representation of the perfor-
mance of our proposed framework to extract TI features, we
compute the distance matrices between the TI features across
different time points. The entry at position (i, j) is equal to
the distance between f titi and f titj . If there is no CP between
ti and tj , this distance should ideally be 0. The heatmaps in
Fig.2 illustrate the ground truth, the TI features extracted by
our CNN+diamond loss model, and the TI features extracted
by the MLP+original loss model, from left to right in each
row for two of the datasets. Note that the checkerboard pattern
appears due to the fact that the ground truth statistics alternate
between CPs, hence it is expected that the TI features are
similar between segments containing the same ground truth
statistics, even if they are far away in time.

The heatmaps clearly visualize the differences between the
TI features extracted by our proposed framework and the
MLP+original loss model. Specifically, the heatmaps obtained
by the MLP+original loss model show that the contrast be-
tween dark and (neighboring) light blocks is much lower
than for CNN+diamond loss model. This observation suggests
that window-dependent information has leaked into the TI

Fig. 2: Visualization of distance matrices of TI features in the
form of heatmaps. The entry at position (i, j) represents the
distance between TI features f titi and f titj at time steps ti and tj .
The locations of real CPs correspond to the boundaries of the
dark blocks along the diagonal in the ground truth sub-figures.

features. In contrast, the distance matrices of the TI features
extracted by the CNN+diamond loss model show a higher
contrast between neighboring blocks that are separated by a
CP boundary. In addition, the clear dark blocks verify the
high degree of similarity of the TI features within the same
segments after discarding the instantaneous information. This
result aligns with the design of the diamond loss, which ex-
plicitly encourages TV features to capture window-dependent
information while minimizing the leakage of TV information
into the TI features.

V. CONCLUSION

We have proposed the diamond loss to achieve better CPD
accuracy by incorporating the TI and TV constraints within the
reconstruction loss itself, rather than adding it as a separate
penalty loss. Compared to existing approaches, the new loss
function reduces the manual effort to tune hyperparameters and
achieves superior detection performance on both simulated and
real-life datasets.
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