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Abstract—Change point detection (CPD) aims at detecting
abrupt changes in sequential data. In the past few years,
distribution-free CPD models have become a popular alternative
for CPD algorithms based on traditional statistical tests. They
usually offer superior detection performance and exhibit better
generalization capabilities across a spectrum of simulated and
real-life datasets. However, many existing CPD approaches either
rely solely on information from time domain or frequency domain
or balance contributions from different domains through intricate
post-processing procedures. Both of these scenarios overlook
important realities: 1) Different types of change points can occur
within one single recording. 2) Different types of change points
often manifest themselves differently in different domains. In
response to these challenges, we introduce a multi-view extension
of the so-called time-invariant representation (TIRE) CPD model.
This multi-view TIRE model possesses the ability to adaptively
select piece-wise stationary information from both the time and
frequency domains, which are supposed to be helpful for CPD
task. When compared to existing baselines, the new model
consistently achieves superior or comparable performance across
a diverse set of benchmark datasets.

Index Terms—Change point detection, distribution-free, multi-
view model

I. INTRODUCTION

Change point detection (CPD) refers to the problem of
identifying abrupt changes in observed statistical variables,
which is a crucial pre-processing technique in various domains
related to time series analysis, including signal processing [1],
finance [2], climate science [3], and biomedical informatics
[4].
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In recent years, a notable shift in CPD research has emerged:
a majority of new approaches are grounded in distribution-free
models. These models address a key limitation of traditional
CPD methods, which heavily depend on predefined parametric
models. Among these novel approaches, autoencoder-based
structures stand out for their ability to tackle the CPD problem
in an inherently unsupervised setting.

For instance, the Autoencoder-Based Breakpoints Detection
(ABD) model [5] maps consecutive time windows into latent
space features and identifies change points (CPs) by moni-
toring dissimilarities among these features. Another notable
approach, the Time-Invariant Representation (TIRE) [6], [7],
divides the autoencoder latent space into time-invariant (TI)
and time-variant (TV) feature spaces. The TI features of neigh-
boring windows are encouraged to be similar in the absence of
a change point, while a strong dissimilarity is observed when
crossing a change point. Different types of CPs are often more
readily detectable in specific domains, either the time domain
(TD) or the frequency domain (FD). Therefore, to ensure the
proposed model works effectively on various datasets, the
TIRE model is usually trained independently in both TD and
FD, after which the contributions from both domains are fused
via a post-processing method [6].

Nevertheless, while the TIRE model achieves state-of-the-
art results on diverse simulated and real-life datasets [6], [7],
two significant limitations persist: 1) These models necessitate
separate training in both TD and FD, which doubles the
amount of training time. 2) The data-driven post-processing
step proposed in [6] acts as a compromise between information
from both domains, often resulting in a decrease in detection
performance compared to only utilizing the most informative
of both domains.

To address these concerns, we introduce a novel multi-view
autoencoder structure capable of accepting both a TD and FD
representation of the same signal segment. Our comparative



results against other baseline models illustrate the advantages
offered by this new multi-view model, particularly when
dealing with datasets containing different types of CPs. We
summarize our primary contributions as follows:

• We propose a multi-view autoencoder capable of adap-
tively preserving CP-relevant information within the TI fea-
tures extracted from both TD and FD.

• We extend the diamond loss function of [7] for TIRE
models to incorporate this new multi-view structure. We will
demonstrate that the extracted TI features exhibit a high degree
of consistency between consecutive CPs. Hence, CPs can be
readily identified by tracking the dissimilarity among the TI
features.

II. BRIEF INTRODUCTION TO TIRE AND DIAMOND LOSS

The TIRE model, as introduced in [6], utilizes an autoen-
coder that takes windows of a signal as an input, where
each window is either represented in the original TD or as
the magnitude of its discrete Fourier transform (DFT). The
model’s latent space is split into two disjoint latent spaces:
the TI feature space and the TV feature space. The core
concept behind the TIRE structure is as follows: TI features
should locate compactly across neighboring windows if no
CP is present, while TV features contain window-dependent
information necessary for reconstructing the details within
the input windows. The detection of CPs relies solely on
dissimilarities between extracted TI features.

To ensure that TI features distribute compactly within the
same segment, the original TIRE model [6] uses a time-
invariant loss, in addition to the reconstruction loss, to super-
vise the training process. However, this new term introduces a
trade-off hyperparameter to balance the two losses. Moreover,
information leakage often occurs between the TI and TV
features obtained from the TIRE model. This leakage can
result in a decline in the final detection performance.

To address these issues, a new loss function was introduced
in [7], referred to as the diamond loss, which replaces the
weighted sum of the two losses in the original TIRE model.
The diamond TIRE model re-couples the TI (f ti) and TV (f tv)
features from consecutive windows (wt−1 and wt) in a single
reconstruction loss:

Ldia =
∑
t

(||wt − ŵt||22 + ||wt−1 − w̃t−1||22), (1)

where w̃t−1 and ŵt denote the reconstructed windows by
re-coupling f ti and f tv at time samples t − 1 and t. The
idea behind the diamond loss is that if no CP exists between
consecutive windows, the TI features extracted from a specific
window can be used for the reconstruction of the next window
due to their time-invariant property. The data flow of the
diamond TIRE model is illustrated in Fig.1.

To handle situations where it is unclear whether CPs mani-
fest themselves mostly in the TD or the FD, both the original
TIRE model and the diamond TIRE model employ identical
post-processing procedures. Models with the same architecture
are trained independently for both domains (TD and FD), after

Fig. 1. The data flow in the TIRE model with diamond loss.

which a heuristic post-processing strategy combines the TI
features from both models ensuring a balanced contribution
from both domains. The concatenated TI feature vector is
defined as:

f ti,both = [α · (f ti,TD)T , β · (f ti,FD)T ]T , (2)

where f ti,TD and f ti,FD denote the TI features of the TD
and FD model, respectively, and where the values of α and β
are determined in a data-driven fashion based on a heuristic
rule [6]. Change points are then detected by searching for
peaks in the dissimilarities between the feature vectors (2) of
subsequent time points (where α and β weigh the influence
of each domain in this detection process). While this merging
strategy often yields superior detection results compared to
other existing CPD methods, it is more akin to a compromise
between information from the TD and the FD rather than
an elegant, adaptive solution for selecting relevant domain
information. Consequently, the detection performance obtained
from the merged TI features is typically suboptimal when
compared to the (diamond) TIRE model trained exclusively
in the appropriate domain. A more significant drawback of
this post-processing arises when dealing with time series con-
taining various types of CPs, where some are more prominent
in the TD and others in the FD. In such complex scenarios,
this data-driven merging strategy loses its effectiveness.

III. PROPOSED METHOD

We employ the same pre-processing as described in [6] and
[7] to acquire time windows in both the TD and the FD. The
choice of window size, denoted as N , is determined based on
the expected minimum time between consecutive CPs [6].

As discussed in the previous section, two sequences of
TI features (one from TD and the other one from FD) will
be extracted by the TIRE model. To address the limitations
arising from the heuristic post-processing step (2), we propose
a novel multi-view autoencoder, termed ‘multi-view TIRE’.
This model is designed to process input windows from both
TD and FD simultaneously, retaining only the piece-wise
stable information from either domain in the TI features.
These TI features represent time-invariant information between
consecutive windows, such that large shifts in this feature



space can be attributed to CPs. The architecture of the multi-
view TIRE is illustrated in Fig.2. In this section, we only con-
ceptually explain the multi-view TIRE model, while concrete
implementation details can be found in Section IV-C.

As shown in Fig.2, the multi-view TIRE model consists
of three distinct phases. Initially, the input time windows
from the time domain (wTD

t ) and the frequency domain
(wFD

t ) are processed independently prior to their integration.
Here t is a time index. Using convolutional neural network
(CNN)-based encoders, features fTD

t and fFD
t are extracted

from wTD
t and wFD

t , respectively. These features are then
concatenated to form a combined feature ft before proceeding
to the subsequent phase. This approach of processing wTD

t

and wFD
t in parallel pipelines, as opposed to merging TD

and FD information from the outset, ensures that the relevant
features for reconstruction of each domain are separately
extracted, after which the TV versus TI information from each
representation can be separated in the second stage. In the
second phase, the TI features can either be extracted from
both domains, or only from a single domain in case the other
domain does not carry TI information. To this end, the model
integrates information from both domains by projecting it onto
a joint time-frequency feature space, which is split into TI
and TV spaces. The split is performed by two parallel fully-
connected layers, which extract the TI features (fTI

t ) and TV
features (fTV

t ) from ft. The separation into TI and TV features
is encouraged by the diamond loss, in which the reconstruction
of the window at time t is defined by the TI features at
time t − 1. To this end, the TI features of the window at
time t are concatenated with the TV features of the window
at time t − 1 (and vice versa), resulting in the concatenated
vectors f̃t−1 and f̂t. This mechanism enables the multi-view
TIRE model to encode piece-wise stationary information into
TI features, facilitating the precise localization of CPs, while
relegating non-critical information to TV features, regardless
of its domain origin. Finally, the model maps the combined
features back into their original domains again using two par-
allel fully-connected layers and employs CNN-based decoders
to reconstruct the input windows in TD (ŵTD

t and w̃TD
t−1) and

FD (ŵFD
T and w̃FD

t−1). The training process of the multi-view
TIRE model is supervised using the diamond loss, defined as
follows:

L =
∑
t

(||wTD
t − ŵTD

t ||22 + ||wFD
t − ŵFD

t ||22+

||wTD
t−1 − w̃TD

t−1||22 + ||wFD
t−1 − w̃FD

t−1||22).
(3)

After collecting the sequence of {fTI
t }t, we applied the

same moving average filter as in [6] and [7] to smooth the
dissimilarity measure of the TI features and to detect the CPs.

IV. EXPERIMENT

A. Benchmark datasets

We assess the performance of the multi-view TIRE
model alongside other baseline models across eight simulated
datasets and three real-life datasets.

1) Simulated datasets: In our implementation, we generate
two groups of simulated datasets. For each dataset, ten in-
dependent recordings are produced to ensure generality. The
first group is created using the auto-regressive model s(t) =
a1s(t−1)+a2s(t−2)+ϵt, as adopted from [6]–[8], where the
error term ϵt follows a Gaussian distribution ϵt ∼ N (µt, σ

2
t ).

The initial conditions are set as s(1) = s(2) = 0, with
parameters a1 = 0.6, a2 = −0.5, µt = 0, and σt = 1.5,
unless specified otherwise. Within this group, each recording is
designed to contain only one specific type of CP, characterized
as follows:
• Jumping Mean (JM): CPs are introduced by altering the

value of µt.
• Scaling Variance (SV): CPs are created by adjusting the

value of σt.
• Changing Coefficients (CC): CPs arise by alternating the

value of a1 between two independent uniform distributions,
while a2 is kept constant at 0.
• Gaussian Mixture (GM): Time samples of s(t) are drawn

alternately from two distinct Gaussian mixtures before and
after each CP.

In order to analyze how well our method is able to cope with
datasets containing different types of change points, we create
a second group of simulated datasets characterized by the
presence of two different types of CPs alternating within each
recording. The naming convention for these datasets combines
the acronyms of the CPs they contain. For example, ‘JM-SV’
denotes recordings that contain CPs in both mean and variance.
According to findings in [6], [7], CPs related to JM and GM
are more readily detected in the TD, whereas SV and CC CPs
are more pronounced in the FD. This deliberate combination
of CP types, which exhibit different characteristics in each
domain, aims to recreate a scenario where the post-processing
procedure described in (2) might lose its effectiveness. Con-
sequently, the second group comprises four datasets: JM-SV,
JM-CC, GM-SV, and GM-CC, each designed to simulate
complex detection environments.

2) Real-life datasets: Beyond the simulated datasets de-
scribed earlier, we also employ three real-life datasets for our
evaluation, which are well-known benchmark datasets for CPD
evaluation, including Honeybee Dance [9], Well log [10], and
HASC-2011 [11].

B. Evaluation metrics and baseline models

Following [12]–[14], we employ the f1-score as the metric
to evaluate the CPD performance. We adopt the same criteria
as described in [6] to ascertain whether a detected alarm
constitutes an actual CP.

We employ the CNN-based diamond TIRE model from [7]
as our baseline, which was shown to outperform the simpler
multi-layer perceptron TIRE model from [6]. This baseline
is designated as ‘TIRE (post)’, reflecting its utilization of
the post-processing procedure in (2) to merge information
from both domains. Furthermore, we introduce an additional
baseline model that employs the same framework but differs
in its approach to domain integration. By directly inputting



Fig. 2. The architecture of multi-view TIRE model. E stands for a CNN-based encoder, D for CNN-based decoder, and FC for a fully-connected layer.

the concatenated results of time windows from the TD and
FD, this model, termed ‘TIRE (concat)’, combines information
from both domains solely through its architecture, eliminating
the need for subsequent post-processing. Unlike the multi-
view TIRE model, which initially extracts features from both
domains separately, the ‘TIRE (concat)’ model combines this
information from the outset.

C. Experiment settings
Following [6], [7], we define the window size N , which

determines the time resolution for detecting change points,
as N = 40 for all simulated datasets, N = 16 for the
Honeybee Dance dataset, N = 100 for the Well Log dataset,
and N = 280 for the HASC-2011 dataset. A change point
(CP) is considered accurately detected if it is identified within
a window length N from the actual ground truth CP.

An open-source implementation of our multi-view architec-
ture can be found in an online repository [15], and we only
provide a high-level overview here. We utilize 1-dimensional
convolutional layers to construct the CNN encoders and de-
coders. Initially, the input windows from distinct domains are
transformed into 4-dimensional features. Subsequently, these
features are mapped into fTI and fTV through two fully-
connected layers, each feature vector having a length of 5.
The concatenated fTI and fTV features are then processed by
another pair of fully-connected layers to regenerate domain-
specific features for reconstructing the input windows (again
of dimension 4). These are then decoded to reconstruct the
original input windows by using a CNN decoder architecture.
The optimization process employs an Adam optimizer with
a learning rate of 0.001. To mitigate randomness due to
initialization and input mini-batch shuffling, we present the
average and standard deviation from 10 distinct runs.

D. Results
As illustrated in Fig. 3, the multi-view TIRE model con-

sistently delivers superior or at least comparable detection
performance compared to the baseline models. A significant
finding is that the multi-view TIRE model not only out-
performs the two baseline models—TIRE (post) and TIRE

(concat), which comprehensively incorporate information from
both domains—but also exceeds the performance of TIRE
models trained exclusively with data from a single domain.
This underscores the multi-view TIRE model’s effective uti-
lization of both time and frequency domain information.
This advantage is particularly evident in the results obtained
from the second group of simulated datasets, which include
CPs that are distinctly observable within different domains.
Models trained on data from only one domain struggle with
these datasets, whereas the multi-view model demonstrates
significantly better performance.

Similar to [7], we perform a representation analysis to
examine the TI features extracted by our model. We cal-
culate the distance matrices for the TI features at different
time points, where the entry at position (i, j) represents the
Euclidean distance between f titi and f titj . Ideally, this distance
should approach zero if no CP exists between ti and tj .
The emergence of a checkerboard pattern, which signifies that
TI features are consistent within segments sharing identical
ground truth statistics despite temporal separation, is due to
the alternating ground truth statistics across CPs. As depicted
in Fig. 4, the distinct tiny dark blocks in the distance matrix
in the JM-SV dataset are only observable via the TI features
extracted by the multi-view TIRE model. In the Honeybee
Dance dataset, while models trained only on frequency domain
windows can delineate clear segment boundaries, the post-
processing merging strategy dilutes these distinctions by incor-
porating time domain data. In contrast, the multi-view TIRE
model maintains obvious segment boundaries by effectively
integrating data from both domains.

V. CONCLUSION

We have introduced a novel multi-view CPD framework
that effectively utilizes information from both the time and
frequency domains. Our model selectively retains piece-wise
stationary information from both domains within the TI fea-
tures, thereby enhancing detection performance. Compared
to other baseline models, our approach not only achieves
superior accuracy but also obviates the necessity for (heuristic)



Fig. 3. Evaluation results of multi-view TIRE model and baseline models on all evaluation datasets.

Fig. 4. Visualization of distance matrices of TI features in the form of
heatmaps. The entry at position (i, j) represents the distance between TI
features f titi and f titj at time steps ti and tj . The locations of real CPs
correspond to the boundaries of the dark blocks along the diagonal in the
ground truth sub-figures.

post-processing. This advantage is particularly pronounced in
complex datasets featuring multiple types of CPs, where our
model demonstrates its robustness and efficiency.
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