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Neuronal tuning and population
representations of shape and category
in human visual cortex

Vasiliki Bougou 1,2, Michaël Vanhoyland 1,2,3, Alexander Bertrand 4,
Wim Van Paesschen 5,6, Hans Op De Beeck 7, Peter Janssen 2 &
Tom Theys 1,3

Object recognition and categorization are essential cognitive processes which
engage considerable neural resources in the human ventral visual stream.
However, the tuning properties of human ventral stream neurons for object
shape and category are virtually unknown. We performed large-scale record-
ings of spiking activity in human Lateral Occipital Complex in response to
stimuli in which the shape dimension was dissociated from the category
dimension. Consistent with studies in nonhuman primates, the neuronal
representations were primarily shape-based, although we also observed
category-like encoding for images of animals. Surprisingly, linear decoders
could reliably classify stimulus category even in data sets that were entirely
shape-based. In addition,many recording sites showed an interaction between
shape and category tuning. These results represent a detailed study on shape
and category coding at the neuronal level in the human ventral visual stream,
furnishing essential evidence that reconciles human imaging and macaque
single-cell studies.

Object recognition and categorization are fundamental cognitive
processes, essential for understanding and interpreting the visual
world. The lateral and ventral occipitotemporal cortices (OTC) are key
regions involved in these processes1,2 Nevertheless, the precise func-
tional organization, neuronal tuning properties and hierarchical
structure of this large cortical region remain unclear.

Functional magnetic resonance (fMRI) studies in humans have
shown that the Lateral Occipital Complex (LOC) is particularly sensi-
tive to shape features3,4, and bears remarkable similarities with the
macaque inferior temporal cortex (ITC)5–7. Along the hierarchical
organization of the human ventral visual stream, functional activations
emerge suggesting the existence of more categorical object

representations for diverse stimuli, including faces8, bodies9, scenes10,
hands11, letter strings12, and food items13,14.

However, the current body of evidence is insufficient to draw
definitive conclusions regarding category selectivity at the neuronal
level in the human OTC. First, prior research has tested a relatively
small number of categories. Additionally, the limited spatiotemporal
resolution of fMRI does not allow tomake strong inferences about the
underlying neuronal selectivitieswithout a number of assumptions15–17.
Thus, to gain a deeper understanding of the neural mechanisms
underlying object processing, single-cell recordings in macaques have
been crucial, amodel that hasbeen validatedby evidenceof a common
organization of object space in humans and monkeys18.
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In macaques, neurons in prefrontal and posterior parietal cortex
exhibit distinct categorical representations for learned categories,
indicating their crucial involvement in higher-level visual processing.
Conversely, the ITC shows only weak or absent category effects19–21

(except in face or body patches22,23). However, in humans, an fMRI
study24 manipulated shape type and category independently, and
reported both shape and category sensitivity in lateral and ventral
occipitotemporal cortex, with a gradual progression frommore shape-
based representations posteriorly to more category-based repre-
sentations in more anterior brain regions. Yet again, in the absence of
data on the actual neuronal tuning properties of human visual neurons
it is difficult to relate these fMRI findings on human lateral occipito-
temporal cortex to the existing electrophysiological evidence in the
macaque ventral visual stream.

To bridge this looming gap between human fMRI and macaque
electrophysiology, we recorded multi-unit activity (MUA) and high-
gamma (HG) responses in the human LOC using intracortical micro-
electrode arrays during the presentation of shapes belonging to dif-
ferent categories, in which the shape dimension was dissociated from
the category dimension as in ref. 24. Note that in this study, we use the
terms ‘shape’ and ‘category’ to describe the stimulus set in line with
many previous imaging and computational studies25,26. We employed a
diverse set of analysis techniques to investigate shape and category
representations both at the individual channel level and at the popu-
lation level.We foundmainly shape-based representations with a large
number of shape-category interactions in individual recording chan-
nels. At the population level, the neuronal dissimilarities did not cor-
relate with behavioral category judgments, but linear decoders could
correctly classify category information in every array tested. These
results represent a detailed study of shape—and category coding at the
level of multiunit spiking activity in human visual cortex.

Results
Three neurosurgical patients with refractory epilepsy, one of whom
received two arrays, underwent implantation of in total four micro-
electrode arrays (96-channel Utah arrays) during a semi-chronic set-
ting. These arrays were positioned near subdural grids for intracranial
clinical seizure monitoring. After 14 days, the arrays and grids were

removed without any additional incisions. Figure 1A shows the
reconstructed anatomical locations of the arrays (Montreal Neurolo-
gical Institute (MNI) coordinates in Table 1). To relate our findings to
previous fMRI studies4,6, we also show the average normalized net
responses of all visually-responsive channels to the intact versus
scrambled stimuli (classic LOC stimuli and naturalistic LOC images).
Although the degree of selectivity for image scrambling and the
response latency differed between the arrays, the significantly stron-
ger responses to intact images of objects compared to scrambled ones
demonstrate that all arrays were located in shape-sensitive lateral
occipital cortex, in agreement with ref. 27. Moreover, the MNI coor-
dinates of every array were overlapping with the object versus
scrambled parcels described in ref. 28 (see Table S1, Fig. S1). Figure 1B
illustrates the main stimulus set presented to patients, as described in
ref. 24. The patients were awake and performed either a passive fixa-
tion task (patient 1) or a variant of the same passive fixation with a
distractor (patient 2, patient 3), in which the patients pressed a button
with their right hand whenever a distractor (red or green cross)
appeared at the fixation point, randomly in ~2% of the trials). The sti-
mulus set, consisting of 54grayscale images (exemplars), distinguishes
between the shape and category dimensions. These images belong to
one of six category groups and one of nine shape types, ensuring
orthogonality between the two dimensions. Specifically, each shape
type includes one exemplar from all categories, and each category
encompasses one exemplar from all shape types.

Single-channel responses reveal tuning complexity
We recorded from 237 visually responsive MUA sites (array 1: 51, array
2: 94, array 3: 27, array 4: 65) and 332 visually responsive HG sites
(60–120Hz; array 1: 85, array 2: 96, array 3: 86, array 4: 65) (we iden-
tified visually responsive sites for all conditions, not just the two most
preferred ones, and found that all 96 channels in all four arrays were
visually responsive at the HG level. However, after repeating the entire
analysis, we obtained qualitatively the same results at both the single-
channel andpopulation levels.). First, wedetermined the selectivity for
shape, for category and any shape-category interactions using 2-way
ANOVA on the net MUA and HG responses (see Methods). Figure 2
shows the MUA (Fig. 2A, B, C) and HG (Fig. 2D, E, F) responses for six

Fig. 1 | Methods. A Microarray recording locations plotted on a common brain,
with a different number for each array. Lineplots of average normalized multi-unit
activity of all visually responsive channels per array for intact (purple) and scram-
bled (orange) objects for the LOC-Naturalistic images (left plots) and the LOC-
classic images (right plots). The stars indicate the significant (p <0.05), corrected
for multiple comparisons using a Tukey’s test with 95% confidence interval, dif-
ference between the intact and scrambled object responses following a one-way

ANOVA conducted using a sliding window approach with a window size of 100ms
and 50% overlap. Data are presented as mean values ± SEM across trials.
B Experimental stimuli for the shape-category experiment24. The stimulus set
consists of 6 object categories (rows) and 9 shape types (columns); 54 unique
images in total. The pixelwise overlap is shown in the last row and last column and
corresponds to the sum of all images from each shape type and each category type
respectively.
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(three MUA sites and three HG sites, which are not the same) example
channels. The first example channel (recorded in array 2, Fig. 2A)
responded strongly to several shape types (e.g., shape type 5, 6, and8),
but much less to other shape types (e.g., shape type 7 and 9, main
effect of shape pshape = 0.0001). The different categories within each
shape type evoked similar responses in this MUA site (pcategory = 0.52,
pinteraction = 0.65, Supplementary Table 1 for details on statistics). The
robust shape selectivity and lack of category selectivity were also
evident in the average responses of the HG example site (recorded in
array 2) (Fig. 2D). In contrast, the example site in Fig. 2B (recorded in
array 3) responded strongly to certain exemplars of the category
‘animals’ (those from shape types 5 and 6), which represents a sig-
nificant shape × category interaction (p = 0.0007) with a weak main
effect of category (p =0.026) and no significant main effect of shape
(p = 0.06, Supplementary Table 1). The shape x category interaction
effect was even more pronounced in the HG example site than in the
MUA example site (eta2MUA = 0.07, eta2HG = 0.19, Fig. 2E, and Supple-
mentary Table 1). Finally, the example site shown in Fig. 2C (from array
2) displayed stronger neural responses to certain members of a

particular shape type (e.g., ‘Fruits’ for shape type 6), which constituted
another type of interaction between shape and category (p =0.000),
combinedwith amain effect of shape (p = 0.00002), but no significant
effect of category (p = 0.46, Supplementary Table 1). These interac-
tions could bedue to selectivity for the specific exemplar (e.g., the fruit
for shape type 6 is a bunch of grapes), to subtle differences between
the members of the same shape or category in their shape and cate-
gory properties, or due to variations in other dimensions such as
variations in contour or texture. Raster plots and wave forms of single
units are shown in Fig. S2. Overall, these results suggest that while
shape selectivity is a dominant feature of the visual responses in the
sites of human occipitotemporal cortex that we sampled, interactions
between shape and category were also observed in a subset of neural
sites. (For plots on shape selectivity across all 54 stimuli, latencies and
receptive field sizes, see Supplementary Figs. S3, S4).

To illustrate the shape and category responses of all visually-
responsive channels, Fig. 3A, B show an overview of the z-scored
responses (see Methods) per array at the MUA and HG level, respec-
tively. We ordered the channels from top to bottom based on their
selectivity as determined in the 2-way ANOVA with factors shape type
and category: channels indicated by the blue bracket showed a main
effect of shape type only, channels indicated by the yellow bracket
showed a main effect of category only, and channels with the green
bracket showed a significant shape type x category interaction
(sometimes in combination with a main effect of shape type and/or
category). The channels below the green bracket were visually
responsive but did not show any significant effect in the two-way
ANOVA. The order of the columns (from left to right) was determined

Fig. 2 | Example sites.Example sites forMUA(A,B,C) and LFPhigh-gamma (D,E,F)
responses. For each channel the height of the bar indicates the average net MUA
across time (channel in (A): 75–275ms after stimulus onset, channel in (B):
125–325ms after stimulus onset, channel in (C): 75–275ms after stimulus onset) for
each of the 54 stimuli, or the average normalized high-gamma activity (channel in
(A): 25–225ms after stimulus onset, channel in (B): 125–325ms after stimulus onset,

channel in (C): 75–275ms after stimulus onset). The different colors correspond to
the six different semantic categories and the different columns to the nine indivi-
dual shape types. The error bars indicate the standard error across trials. The line
plots below the bar plots show the responses over time, averaged across each
shape type (left) and each category (right). The width of the line indicates the
standard error across trials.

Table 1 | MNI coordinates of Utah arrays

ARRAYS X Y Z

1 42 −76 −1

2 −35 −89 −8

3 −38 −84 −5

4 −41 −83 9
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based on the average response of all visually-responsive channels
across each array separately. The plots ordered according to shape
type (left panels in Fig. 3A, B) clearly illustrate that our stimulus set
evoked strongMUA andHG responses on a large number of recording
channels. To assess the selectivity for the 54 individual stimuli, we
computed the Selectivity Index (Swidth) which quantifies the extent to
which a channel exhibits preference for a specific stimulus, providing a
numerical measure of its tuning specificity (see Methods). This mea-
sure ranges from 0 for sites that respond equally to all stimuli to 1 for
sites that only respond to one of the stimuli. It can provide a better
understanding of each channel’s selectivity characteristics in response
to diverse stimuli. The selectivity was relatively broad for all arrays
(Fig. S3), as illustrated by the Swidth index quantifying the number of
stimuli evoking a response (see methods. Median Swidth MUA:
sarray1 = 0.69, sarray2 = 0.62, sarray3 = 0.86, sarray4 = 0.7, median Swidth HG:
sarray1 = 0.5, sarray2 = 0.52, sarray3 = 0.69, sarray4 = 0.52). In addition, we
calculated the D-prime (d’) (1), (Fig. S3) assessing each channel’s
effectiveness in distinguishing the target stimulus from non-preferred
stimuli (see Methods). Our findings revealed robust selectivity for
individual stimuli, as evident from consistently high d’ values, fre-
quently surpassing 2, across all four arrays. (Median d’ MUA:
d’array1 = 1.76, d’array2= 2.06, d’array3= 1.98, d’array4= 2.73, median Swidth
HG: d’array1 = 1.79, d’array2= 1.6, d’array3= 1.99, d’array4= 1.35).

Visual inspection does not suggest a clear preference for specific
shape types in any of the arrays. When plotting the responses
according to category (right panels in Fig. 3A, B), the results were
qualitatively similar, except for the category “animals” in array 3, which
clearly evoked strong responses to a subset of shape types belonging
to this category, as illustrated in the example channels in Fig. 2B,D (see
also Supplementary Fig. S5 for responses to animals with faces com-
pared to animals without faces, and responses to animals from

different taxonomic classes). To investigate the overall shape type or
category preference for each array more quantitatively, we averaged
the MUA and HG responses across all visually-responsive channels
(Fig. 4A). Arrays 1, 2, and 4 responded significantly less to shape types
7, 8, and 9 (which were characterized by a lower surface area and high
aspect ratio), whereas for array 3, the MUA response to the category
‘animals’ was significantly higher compared to the other categories
(Fig. 4A). The HG responses ranked according to shape type (Fig. 3B
left panel) appeared very similar to the MUA responses, which was
supported by the significant correlations between MUA and HG
responses for all arrays (Fig. 4B). When plotted according to category,
the high gamma responses of array 3 contained an even more pro-
nounced preference for the category ‘animals’ than the MUA respon-
ses (Fig. 3B and eta2 values in Fig. S6B).

Further analysis of all individual visually-responsive electrodes
(using two-way ANOVA with factors shape type and category) con-
firmed the high diversity of neural tuning for shape type and cate-
gory. At the MUA level, the highest number of channels showed a
significant interaction between shape type and category for all arrays
(Fig. 3C). More specifically, out of the 237 visually responsive MUA
sites, 39 sites (16%) were significantly selective for the shape type
dimension alone, merely 8 sites (3%) showed a significant main effect
of category alone, compared to 114 sites (48%) with interactions
between shape type and category (chi2 = 143, p < 0.0001). At the HG
level, we also observed mainly shape type selectivity and shape-
category interactions, although Array 1 and Array 2 showed more
channels with a significant main effect of shape type (chi2 = 6.8,
p < 0.0001). In two arrays, the proportion of significant shape
type × category interactions was significantly higher in the MUA (27
and 63% for arrays 1 and 2, respectively) compared to the HG
responses (12 and 22% for arrays 1 and 2, respectively; array 3 had a

Fig. 3 | Overview of responses for all visually responsive sites. A Net z-scored
MUA responses averaged over time (after stimulus onset) and ordered per array for
all visually responsive sites. The numbers indicate the shape group and the letters
the semantic category. The channels were ordered according to their selectivity
which is indicated by the outline of each block (blue: significant shape main effect,
orange: significant category main effect, green: significant interaction between

shape and category). B Same plots as in (A), but for the normalized high-gamma
power. C Summary of the results of the 2-way ANOVA (upper plots MUA, lower
plots HG; blue: array 1, green: array 2; yellow: array 3; purple: array 4) The first
column shows the percentage of visually responsive channels. The second, third,
and fourth columns show the percentage of the visually responsive channels that
have a significant effect of shape type, of category, and interactions respectively.
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similar proportion of interactions inMUA andHG, and for array 4 the
HG signal was of low quality).

To test the effect sizes for shape type and category, we compared
the eta2 of all sites with significant effects (Fig. S6). Overall, the eta2

values for shape typewere higher than for category in arrays 1, 2, and 4,
and this difference in eta2 was more pronounced for sites displaying a
main effect of shape. Interestingly, in arrays 1, 2, and 4, even for
channels with only a significant interaction or with both significant
shape and category main effects, eta2 was significantly stronger for
shape type compared to category. However, this was not the case for
the shape type × category interaction channels of array 3, where both
shape and category effect sizes were similarly strong.

We also analyzed thebroadband LFP responses (EvokedResponse
Potential, ERP) and compared shape type and category selectivity to
with the MUA and HG responses. Overall, we observed fewer channels
with significant selectivity in the ERP, which was primarily for shape
type and only appeared in arrays 1 and 2 (Fig. S7). Moreover, a ranking
analysis demonstrated that the stimulus preference was highly pre-
served between MUA and HG activity, but not between MUA and ERP
(Fig. S8, Table S2). Therefore, all remaining analyses were performed
onMUA and HG responses. Single-unit waveforms and raster plots are
illustrated in Fig. S2.

Dissimilarity analysis suggests that shape type is the dominant
representation in all arrays
The average response across individual channels can exhibit weak
category selectivity, but the categorical structure of the stimulus set
may also appear in the pattern of activity distributed across the entire
neuron population20. Therefore, we investigated how information
about shape type and category was represented in the multichannel
activity patterns. For each stimulus, we extracted averaged net activity
(MUA level) and normalized high gammapower (LFP level) across time
after stimulus onset for visually responsive channels. The dataset was
randomly split into non-overlapping subsets (A and B) through 100
iterations for addressing variability. Themultichannel activity patterns

of stimuli in set A were correlated with those in set B, and the resulting
coefficients were averaged across iterations, yielding a N ×N (N = 54,
the number of individual stimuli) correlation matrix for each micro-
array. These matrices were then converted into dissimilarity matrices
(1-correlation). The resulting dissimilarity matrices (1-correlation,
Fig. 5A) were correlated with behavioral dissimilarity matrices for the
shape type and category dimensions as well as with the physical dis-
similarity matrix based on the silhouettes (Fig. 5B) by means of
Representational Similarity Analysis (RSA)29. For all microarrays, the
multi-channel analysis revealed significant shape-based and silhouette
representations in the MUA responses, but no significant correlation
with the category matrix (Fig. 5C and Table 2, scatterplots of all
behavioral and neuronal dissimilarities for each stimulus pair in
Fig. S9). At the HG level, we observed similar results for arrays 3 and 4
(Fig. S11), but array 1 only correlated significantly with the silhouette
dissimilaritymatrix and array 2 onlywith the shape dissimilaritymatrix
(Table S3 and Fig. S11). Thus, themultichannel responsepattern of all 4
arrays in LOC was predominantly shape-type. Moreover, the neural
(MUA) dissimilarity matrices correlated significantly with both the
perceptual and the physical dissimilarities. Interestingly, these
population-level analyses suggest no contribution of category simi-
larity, while the aforementioned single-channel analyses revealed
many sites with an interaction between shape and category tuning.
This dissimilarity analysis included all visually-responsivechannels, but
selecting only contacts with a significant main effect of shape type,
category and/or a significant shape type x category interaction yielded
highly similar results.

We quantified the shape type differences following ref. 30, who
included perimeter and area asmeasures for “Aspect Ratio” to obtain a
single dimension of shape. We then constructed the Aspect Ratio
dissimilarity matrix by calculating the pairwise absolute differences in
Aspect Ratio between all pairs of stimuli. The Aspect Ratio dissimilarity
matrix correlated significantly with both the behavioral shape and the
silhouette matrices (Supplementary Fig. S10). Moreover, the neural
dissimilarity matrices of array 1 and 2 correlated strongly with the

Fig. 4 | Overview of average responses. A Average MUA (upper panel) and high-
gamma (lower panel) both across visually responsive channels and within the
category (orange bars) and shape (blue bars) dimensions. The height of each bar
represents the mean response, while the error bar indicates the standard error

across channels. Brackets indicate significant differences between shape members
or semantic categories (n = 54 for all arrays). B Spearman correlation between the
MUAand the high-gamma average (across visually responsive channels) responses.
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Aspect Ratio matrix, while this correlation was weaker but still sig-
nificant for array 3 (Fig. 5). In contrast, array 4 did not show any cor-
relation between the neural and the Aspect Ratio dissimilarity ratio,
suggesting that the neural responses recorded on array 4 may have
beenmore strongly influenced by other shape features or even by non-
shape stimulus properties (such as texture). This analysis therefore
reveals more subtle differences in the shape representation between
the four arrays which could not be captured with the single-channel
analysis,

Next, we visualized the representation of the stimuli in the neural
spaces of each array using MDS on the dissimilarity values. The 2D
solutions of the MDS are shown in Fig. 6 (additional quantification of
the MDS results is provided in Fig. S12). To evaluate the presence of
clustering in each dimension, the stimuli were color-coded according
to shape type (top rowof Fig. 6) and semantic category (bottomrowof
Fig. 6). As an additional step to verify the existence of shape and/or
category clusters within each array, we applied agglomerative hier-
archical cluster analysis (Fig. S13). Shape clustering was evident with
both methods in arrays 1, 2, and 4, with aspect ratio as an important
factor mainly in arrays 1 and 2, while the MDS solution color-coded
based on category did not exhibit a clear clustering. Array 3, on the
other hand, did not exhibit strong clustering for the shape dimension,
but when color-coded according to category, three exemplars of the
category “animals” (rabbit, owl, and fish) were clearly separated from

the other stimuli (see Fig. S14 for the HG results, where a similar
observation is made). The hierarchical cluster analysis corroborated
this observation, sincea subset of animal exemplars clustered together
in the neural space of Array 3. Overall, these findings are consistent
with the shape-based representations we found in the multivariate
correlation analysis, but they also suggest the presence of some
additional category information in array 3.

Linear decoders detect reliably both category and shape
information
The MDS analysis offers a representation of the stimuli in a limited
number of dimensions in the neural space of the recorded population,
but a decoder can utilize all the multidimensional information in a
population. Moreover, decoding can be performed over time, which
can also give insight into the temporal dynamics of the neural
responses. Therefore, we trained linear Support Vector Machines on
the neural responses per array in 100ms bins (sliding window of
50ms), and tested on each time bin of individual trials whether we
could correctly classify either the shape type or the category. Figure 7A
illustrates the temporal evolutionof the decoding accuracy at theMUA
level (as described in the Methods section) for the two decoders
(shape type and category). In all 4 arrays, we could reliably decode
shape type starting as early as 75ms after stimulus onset for array 1,
compared to 125ms for array 2, 200ms for array 3, and 175ms after

Fig. 5 |Dissimilarity analysis forMUA.ANeural dissimilaritymatrices for all arrays
based on the MUA responses. B Dissimilarity matrices for the shape and category
dimensions as rated behaviorally, for the silhouette as calculated from the pixel-

wise overlap between stimuli, and for the aspect-ratio. C Results of RSA for
category-similarity (orange), shape-similarity (blue), silhouette-similarity (gray),
and aspect-ratio (red). The asterisks indicate the significance of the correlation.

Table 2 | Results of Representational Similarity Analysis (RSA) conducted on the MUA neural dissimilarity matrices

ARRAYS Category Shape Silhouette

1 Rho = 0.02, p = 0.27 Rho =0.1, p = 0.00 Rho = 0.15, p = 0.00

2 Rho = 0.02, p = 0.27 Rho =0.11, p = 0.00 Rho = 0.10, p = 0.00

3 Rho = 0.002, p = 0.45 Rho =0.2, p = 0.00 Rho = 0.18, p = 0.00

4 Rho = 0.03, p = 0.16 Rho =0.18, p = 0.00 Rho = 0.17, p = 0.00

The following keymeasures are reported:Rho (PearsonCorrelation): Rho represents the Pearsoncorrelationcoefficient, followingapermutation test (n = 1000), quantifying the similarity between the
neural dissimilarity matrices and the behavioral dissimilarity matrices; p: The p value associated with the correlation coefficient, indicating the level of statistical significance.
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Fig. 6 | Multidimensional scaling for the MUA neural dissimilarity matrices.
MDSperformed onMUAneural dissimilaritymatrices shows pairwise distances in a
2Dspace for each array. The 2Darrangements are color-codedfirst according to the

9 different shape types (upper panel), and then according to the 6 different
semantic categories (lower panel).

Fig. 7 | Linear decoding of theMUA responses. A Temporal evolution of the SVM
decoding accuracy for the shape (blue) and the category (orange) dimension at the
MUA level. The line represents the average across cross-validations, while the
shaded region around the line indicates the standard error across the cross-
validations. The asterisks indicate the significance of the accuracy. The horizontal
orange and blue lines indicate the chance level for the category and shape
dimensions, respectively, as computed from the permutation test of arbitrary
groupings of the stimuli. B Confusion matrices are illustrating the performance of

the decoding per class for the shape (upper panel) and the category (lower panel)
dimension for a specific time-window (arrays 1,2: 75–275ms, array 3: 175–275ms,
array 4: 125–225ms) at the MUA level. The classification performance of array 3 for
the category dimension is predominantly restricted to the “animals” category.
C Generalization of the decoders over time for the shape (upper panel) and the
category (lower panel) dimension. The y-axis corresponds to the TRAIN time win-
dow, the x-axis to the TEST time-window, and the colors to the accuracy level of the
decoding.
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stimulus onset for array 4 (Fig. 7A) (defined as the center binwithin the
first three consecutive bins achieving significant decoding accuracy).
Furthermore, and in line with the previous analyses, array 3 also
showed significant classification of category information, which was
predominantly restricted to the “animals” category (see confusion
matrix in Fig. 7B). Interestingly, however, despite the presence of pri-
marily shape type representations on the other arrays, we also
obtained significant classification of category on arrays 1, 2 and 4,
which emerged almost simultaneously with the shape type classifica-
tion. Thus, although neither individual channels nor the multichannel
response pattern appeared to furnish any category information, a
population of shape-selective neurons in human visual cortex con-
tained reliable information about object category (Fig. S15 for HG
decoding).

As a strong control to ascertain that shape information was not
contaminated by category information and vice versa, we decoded
shape type using different categories for training and testing, and we
decoded category using different shape types for training and testing.
Overall, the decoding of both shape type and category remained sig-
nificant although category decoding was reduced in arrays 1 and 4
(Fig. S16). Therefore, the category decoding we observed was not
exclusively driven by shape differences, even more, it was able to
generalize across differences in shape. An additional control for the
decoding result consisted of arbitrary groupings of the stimuli into 6
(as a control for the decoding of the 6 categories) and 9 groups (as a
control for shape type decoding), on which we trained a decoder to
classify between these groups. A permutation test with 100 repetitions
showed chanceperformance in both cases (Fig. 7A), indicating that our
decoding results were not the result of arbitrary shape differences.

To further investigate the predominant association of category
information with the “animals” category, we conducted additional
analyses by removing the “animals” category and performing the
decoding again (Fig. S17). The decoding accuracy for arrays 1 and 2 at
both the MUA and HG levels remained unaffected. However, a
noticeable decline in both accuracy and significance was observed for
array 3 at both the MUA and HG level. These findings were consistent
with the observations from the confusion matrices (Figs. 7B, S15B),
emphasizing that the category information was predominantly
restricted to the “animals” category for array 3.

We assessed the generalization of the decoders over time
(Fig. 7C). The shape and category decoders were trained using 100ms
time windows, and then tested on every 100ms window that followed
or preceded the training bin. Each window was then shifted by 50ms.
The decoding accuracy of array 2 generalized over the entire stimulus
duration for both shape type and category, suggesting a very sta-
tionary population representation emerging early after stimulus onset,
while arrays 1, 3, and 4 exhibited amore transient generalization of the
classifier. At the HG frequency range (as depicted in Fig. S15), we
observed, on average, highly similar decoding performance, albeit
with lower levels of accuracy.

To relate our findings to previous studies using deep neural
networks25,31–33 to model responses of macaque ventral stream neu-
rons, we conducted a forward pass through VGG-19 and ResNet-50 for
eachof the 54 stimuli, capturing the activationof weights in each layer.
This process generated a matrix for each layer with dimensions equal
to the nodes of the corresponding layer times the stimulus set (54).
Subsequently, we computed the correlation between the activation
patterns of the different stimuli, resulting in an Representational Dis-
similarityMatrix (RDM)with dimensionsN ×N, whereN represents the
number of stimulus conditions. Using RSA, we quantitatively com-
pared CNN representations per layer with both behavioral ratings and
neural data. Figure 8 illustrates the correlation between CNN and
behavioral RDMs (Fig. 8A), between CNNs and MUA RDMs (Fig. 8B),
and between CNNs and HG RDMs (Fig. 8C) for the two architectures.
The highest correlation between the CNNs and the neural data was

found in the intermediate layers (12–15 for VGG-19 and 25–48 for
ResNet-50). (See also Tables S4, S5).

Discussion
We recorded selectiveMUA and LFP responses to images of objects on
four microelectrode arrays in the human Lateral Occipital Complex.
Both single-channel and multi-channel analyses revealed robust
encoding of shape type and a very weak representation of category,
consistent with previous electrophysiology studies in nonhuman pri-
mates. However, from each neuronal population, we could reliably
classify category using linear decoders. Furthermore, single-channel
analyses revealed that many channels showed interactions between
the shape and category dimension, demonstrating the added value of
single-channel information to reveal the tuning complexity underlying
object processing in the human ventral visual stream.

While a large number of studies have been published on shape-
sensitive cortex in humans using fMRI, electrophysiological data on
the shape selectivity of human visual neurons remain scarce. Decramer
et al.27 showed for the first time single-unit and HG selectivity for
images of objects and line drawings of objects (the LOC classic loca-
lizer) in lateral occipitotemporal cortex, including receptive field
estimates (on average 22° diameter centered on the fovea) and selec-
tivity for disparity-defined curved surfaces. A subsequent study34

reported robust face-selective responses at short latencies, which also
occurred for feature-scrambled and face-like stimuli. In the same
study, a few channels also showed body selectivity in close proximity
to the face-selective channels. Compared to these two previous stu-
dies, we recorded from considerably larger populations of neurons
across a more extensive part of the LOC, with a stimulus set in which
the dimensions of shape type and category were orthogonalized. Our
data confirm and clarify the abundant visual selectivity in this region,
since on average 62% of the channels were visually responsive, while
67% of those were significantly stimulus-selective. Note that the aver-
age 2D-shape selectivity index we found (0.72) was comparable to
reported shape selectivity in macaque area TE (0.65)35, and that size
and position invariance of shape preference was furthermore present
in other experiments using the same arrays (a finding which will be
addressed in a separate publication). The high incidence of stimulus
selectivity is striking given that the use of multielectrode arrays pre-
cluded optimizing the stimulus to each recording site (e.g., position,
size) and that each arrayonly sampled froma4by4mmarea of cortex.
On the other hand, chronic multielectrode recordings of MUA (i.e.,
large and small action potentials) may furnish a more unbiased sam-
pling of neuronal activity in the recording area, which is crucial for
relating our findings with invasive recordings to fMRI results.

Weused the same stimulus set and analyses as in the event-related
fMRI study of ref. 24, who reported a transition from shape to
category-based representations along the posterior to anterior direc-
tion in the ventral visual stream. While the early visual areas provide a
purely shape-based representation correlating with the physical simi-
larities between the stimuli, and the higher-level areas (in prefrontal
and parietal cortex) provide a more category-based representation,
several intermediate regions in or near the LOC represented both
shape- and category information. Here, we not only could confirm the
fMRI results, but also clarify the underlying neuronal selectivity of
these combined shape/category representations. We mainly observed
significant interactions between shape type and category on individual
channels of every array. These interactions occurred in two types. The
first type of shape-category interactions were responses to a small
number of exemplars of a single category, as in array 3. However, on
the other arrayswe found channels in which the shape type preference
differed between the categories tested, most likely due to a selectivity
for small shape or texture differences between themembers of a given
shape type. For example, the owl and the grapes of shape type 6 differ
in shape and texture, and evoke marked response differences in the
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example illustrated in Fig. 2C. These interactions remain unnoticed in
population-level analyses such as fMRI. Furthermore, the interactions
were less prevalent with HG responses than with MUAs, suggesting
that measurements of smaller populations of neurons are more likely
to detect such interactions.

It is noteworthy that we measured robust stimulus selectivity in
MUA and in HG responses, but not in the event-related potential (the
ERP). Overall, the intracortically measured HG responses were highly
similar to the MUA responses (consistent with ref. 27), which is an
important observation for future invasive studies in humans. In our
decoding results, MUA and HG behaved similarly when decoding
shape type, but arrays 2 and 4 showed stronger decoding of category
in HG compared to MUA. Future studies should investigate the sig-
nificance of these HG-MUA dissociations in population-level analyses.

Array 3 demonstrated a clear preference for animal images com-
pared to other objects. Considering this observation and its more
dorsal positioning, it is highly likely that Array 3 was located within the
region commonly referred to as LOTC-body in fMRI studies. The pre-
ference for animals on array 3 was the only category-like (i.e.,
responding to certain exemplars of one category) representation that
was visible at the level of individual channels, whereas individual
channels of all other arrays at most showed interactions of the cate-
gory dimension with shape type. Intriguingly, even multi-channel
analyses (dissimilarity analysis or hierarchical clustering) suggested
that shape type was the dominant factor in every array. The lack of an
explicit category representation (in arrays 1, 2, and 4) is entirely in line

with a previous single-cell study in the macaque inferotemporal
cortex19,36. The latter observation is by no means trivial since the
homology between shape-sensitive lateral occipital cortex in humans
and (different parts of) themacaque inferotemporal cortex is currently
unknown. Moreover, testing object category representation in maca-
ques requires extensive training, whereas object categories in humans
are known since childhood. Therefore, the theoretical possibility exists
that the ref. 24 fMRI results showing shape-category interactions
reflected the presence of more categorical object representations in
human extrastriate visual cortex in comparison to macaques. Our
intracortical recordings refute this hypothesis. In contrast, a linear
SVM analysis could reliably extract category information from the
population responses of every array. Conceptually, our decoding
analysis was equivalent to Multivoxel Pattern Analysis37,38, with a lim-
ited number of responsive channels (spaced 400 micron apart) being
equivalent to the visually-active voxels in the fMRI. Thus, in the high-
dimensional space of our LOC arrays (with up to 94 responsive chan-
nels), we could extract category information even when no individual
channel appeared to code these categories. These results are again in
line with previous findings in macaque monkeys, showing that cate-
gory information can be reliably (and to a similar level as in prefrontal
cortex) decoded from the activity of a population of ITC, prefrontal
cortex, and hippocampus neurons, and simulated neural networks
despite the lack of explicit category coding in individual neurons39 40.

The SVMapproach revealed category-level informationwhichwas
not apparent using RSA, MDS, or hierarchical clustering for all arrays.

Fig. 8 | CNNs. A Correlation between CNN RDMs per layer (VGG-19 on the left,
ResNet50 on the right) and behavioral RDMs for shape (blue), category (orange),
silhouette (gray), and aspect ratio (red). The horizontal axis indicates network
depth, and the vertical axis indicates correlation (Spearman’s ρ). The green shading
indicates the fully connected layers. B Correlation between CNN RDMs per layer
and neural MUA RDMs for all arrays (Array 1: blue, Array 2: red, Array 3: orange,

Array 4: purple). The green shading indicates the fully connected layers.
C Correlation between CNN RDMs per layer and neural High-Gamma RDMs for all
arrays (Array 1: blue, Array 2: red, Array 3: orange, Array 4: purple). The green
shading indicates the fully connected layers. D Color plots of the RDMs for the
intermediate layers of both VGG-19 and ResNet50 architectures, which correspond
to the layers with the maximum correlation with the neural RDMs.
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Specifically, the RSA analysis demonstrated that the neural repre-
sentations in the Lateral Occipital cortex were primarily driven by
shape and low-level pixel-wise similarities, indicating that the neural
responses were more sensitive to the shape of the stimuli. This dis-
crepancy between methods may be due to the fact that the SVM is
more sensitive to subtle differences in patterns of neural activity than
these other techniques, allowing it to decode information that is not
detectable through measures of representational similarity. These
observations match well with the findings from the single-channel
analyses, sincemost channels showed interactions between the factors
shape type and category. One such channel would not suffice to
decode category, but multiple channels with different interactions
would, in the same way as viewpoint-invariant recognition can be
obtained by sampling multiple view-tuned neurons41. Likewise, the
SVM might use a combination of channels that show interactions
between shape and category to make a reliable distinction between
categories. In contrast, RSA can reveal the structure of the neural
representations of stimuli, which can provide insight into how the
brain processes and categorizes different types of information. Note
however that a single 4 by 4mm array samples neural activity from a
small cortical region (equivalent to 4 fMRIvoxels inmost fMRI studies),
whichmayatbest represent a single category (such as ‘animals’ in array
3). In contrast, RSA is typically performed on a very large number of
voxels or on behavioral ratings, which encompass all categories in the
stimulus set. The limited spatial sampling area of an array may explain
why we did not observe a significant correlation with the category
dissimilarity matrix in array 3.

Together, these findings highlight the complexity of neural
mechanisms underlying object processing and the importance of
usingmultiple techniques to uncover these representations. While the
individual recording sites showed strong shape tuning and only very
limited category selectivity, we found a large neuronal diversity and
distinct interactions between shape and category at the single-channel
level in human LOC, whereas the populations of neurons showed sig-
nificant decodable category information. The broader relevanceof this
diversity in tuning was demonstrated by the ability of classifiers to
decode not only shape but also category.

Methods
Study protocol s53126 was approved by the local ethical committee
(EthischeCommissieOnderzoekUZ/KU Leuven) andwas conducted in
compliance with the principles of the Declaration of Helsinki, the
principles of good clinical practice, and in accordance with all applic-
able regulatory requirements. All human data were encrypted and
stored at the University Hospitals Leuven.

Data were collected from three adult patients (aged 24–58 years
old, including two females and one male) with intracranial depth
electrodes as part of their presurgical evaluation for drug-resistant
focal epilepsy. Patient 2 was diagnosed with Neurofibromatosis type 1,
without any intracranial tumors. At the age of 34, she suffered from a
left occipital intracranial hemorrhage due to venous sinus thrombosis.
Ethical approval was obtained for microelectrode recordings with the
Utah array in patients with epilepsy (study number s53126). Written
informed consent in all patients was obtained before the start of
the study.

Patients
Three patients were implantedwithmicroelectrode arrays (Utah array)
for research purposes to study the microscale dynamics of the epi-
leptic network in the presurgical evaluation (“Microscale Dynamics of
Epileptic Networks: Insights from Multiunit Activity analysis in neuro-
surgical patients with refractory epilepsy”, Bougou et al., EANS 2023,
Barcelona). Utah arrayswere located in the occipital cortex adjacent to
the clinical macroelectrodes, analogous to previous studies using
micro-electrode arrays27,34,42–44. (MNI coordinates of the arrays are

provided in Table 1). Patients 1 and 2 were implanted with one array,
while in patient 3, two arrays were placed. Target locations of intra-
cranial electrodes were determined by the epileptologist and based on
electroclinical findings and non-invasive multimodal imaging.

The arrayswereonly implanted if a craniotomywas performed for
the placement of subdural grids, therefore, the implantation of the
arrays did not lead to additional incisions. The arrays were placed in
close proximity to the subdural grids to study themicroscaledynamics
of the epileptic network. This was clearly discussed with all patients
during the preoperative consultation (~1–2 months before surgery)
and the day before surgery. Arrays were inserted in or near the pre-
sumed epileptogenic zone (based on preoperative multimodal ima-
ging). Therefore, the brain tissue at the implantation site was a
potential resection site prior to the recordings. After analysis of the
intracranial EEG, it was deemed that the array was not inserted in the
actual epilepticogenic zone (in patients 1 and 2 a remote focal onset
zonewasdetected, andpatient 3hadmultifocal epilepsy). Importantly,
none of the patients has experienced complications related to the
micro-electrode array. After 14 days the arrays were removed together
with the other clinical intracranial electrodes in a second surgery.

The first two subjects (patients 1 and 2) underwent an MRI after
removal of the electrodes to investigate potential complications rela-
ted to electrode implantation. The postoperative CT scan (with elec-
trodes) was fused with the postoperative MRI (after removal of the
electrodes) using the Brainlab© Elements software, to examine any
structural alterations due to electrode insertion (Fig. S18). Based on a
review of the different types of MR images, no structural alterations
(gliosis, ischemia, hemosiderin) were seen at the implantation site.
Furthermore, clinical neurologic examination withheld no functional
deficits after electrode removal. In a previous study, we showed the
safety of Utah array implantations and could even measure intact
functional MRI activations after array removal, which demonstrates
that the brain tissue was functional at the implantation site27. Based on
these previous observations and on the reassuring anatomical MR
imaging in the first two patients, we did not further systematically
organize postoperative MRI imaging.

Microelectrode recordings
We used 96-channel microelectrode arrays (4 × 4mm; electrode spa-
cing of 400 microns; Blackrock Microsystems, UT) in all patients. The
arrays were inserted with a pneumatic inserter wand (Blackrock Neu-
rotech). Dura was closed above the array and the bone flap was placed
on top to keep the array in place. Reference wires were placed sub-
dural, ground wires epidural. The signal was digitally amplified by a
Cereplex M head stage (Blackrock Neurotech), and recorded with a
128-channel neural signal processor (NeuroPort system, Blackrock
Neurotech, Salt Lake City, UT, USA). In each recording session, MUA
from all 96 channels was sampled at 30 kHz, and high-pass filtered
above 750Hz. The detection trigger of the MUA was set at the edge of
the noise band. The LFP signals were recorded continuously with a
sampling frequency of 1000Hz. All patients stayed at the hospital for
14 days after implantation, but the data reported herewas acquired in 1
recording session per array (day 12 for array 1, day 2 for array 2, day 2
for array 3, and day 14 for array 4).

Stimulus presentation
Experiments were performed in a dimmed hospital room. We pre-
sented stimuli on a 60Hz DELL-P2418HZMLEDmonitor using custom-
built software. The patients fixated a small red square (0.2 × 0.2°)
appearing in the center of the display at a viewing distance of 60 cm
(pixel size 0.026 deg). The left or right pupil positionwas continuously
monitored using a dedicated eye tracker (Eyelink 1000 Plus, 1000Hz)
in head free mode. Breaking fixation from an electronically defined 3°
by 3° fixation window resulted in trial abortion. The experiment was
controlled using Presentation software (Neurobehavioral Systems,
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Berkeley, CA, USA). For data synchronization, we attached a photo-
diode to the left upper corner of the screen, detecting a white square
that appeared simultaneously with the first frame of the stimulus; this
“photocell” was invisible to the patients. Patients performed either a
passive fixation task (patient 1) or a variant of the samepassive fixation
with a distractor (patient 2, patient 3) (inwhich the patientswere asked
to press a button with their right hand whenever a distractor (red or
green cross) appeared at the fixation point, randomly in ~2% of the
trials). After a fixation period of 300ms, individual stimuli were pre-
sented for 800ms (array 1) or 500ms (arrays 2, 3, 4), followed by an
interstimulus interval of 100ms.

Stimuli
We first screened for visual responsiveness in theMUA using images of
objects and line drawings of objects (LOC classic stimulus set) pre-
sented at the center of the screen and at several positions in both
hemifields. For each channel, we quantified the strength of the
response at the different stimulus positions. This allowed us to deter-
mine the optimal position in the visualfield per channel. To account for
the variability in the receptive fields of individual channels, we pre-
sented the stimuli at the fixation point. Since we only analyzed visually-
responsive recording sites, the receptive field of each responsive site
included the fovea. Therefore, stimulus position was not optimized for
each individual channel. This approach allowed us to capture a broader
representation of the neural activity across the array.

LOC localizer—Classic. This stimulus set consisted of intact and
scrambled grayscale images of objects and line drawings of objects4,27

(Fig. 1). After a fixation period of 300ms, each stimulus was presented
for 800ms, 500ms, and 250ms for arrays 1, 2, and 3 and 4, respec-
tively, followedby an interstimulus interval of 100ms for arrays 1 and 2
and 150ms for arrays 3 and 4.

LOC localizer—Naturalistic. This stimulus set consisted of intact and
scrambled colored and grayscale naturalistic images (Fig. 1), which
were presented for 500ms followed by an interstimulus interval
of 100ms.

Shape-category stimuli. A stimulus set of 54 images (approximate
diameter of 8 visual degrees) in which shape and category were
dissociated24. This stimulus set contained 6 object categories (miner-
als, animals, fruit/vegetables, musical instruments, sports articles, and
tools) where each category included 9 grayscale images with unique
shape properties (shape type). Therefore, the category and shape
dimensions were orthogonal since every category contained one sti-
mulus from each of the nine shapes and every shape contained one
stimulus from each of the six categories. We quantified the shape
similarity of all stimuli using the formula described in ref. 30 (see also
Yargholi and Op De Beeck, 202345). We applied this formula to calcu-
late the “Aspect Ratio,” which represents a single dimension of shape,
particularly the distinction between “stubby” and “spike” shapes. We
hypothesized that this Aspect Ratio would correlate with our beha-
vioral shape ratings. Using this quantification, we constructed the
“Aspect Ratio” dissimilaritymatrix by calculating the pairwise absolute
differences in Aspect Ratio between all pairs of stimuli, and calculated
the correlation between the behavioral dissimilarity matrices and the
Aspect Ratio dissimilarity matrix.

Data preprocessing
We analyzed all data using custom-written MATLAB R2020b (Math-
Works, Natick, MA, USA) scripts and the EEGLAB toolbox46.

MUA. We calculated net average MUA responses (in 50ms bins) by
subtracting the baseline activity (−300 to 0ms before stimulus onset)
from the epoch (50–350ms after stimulus onset) in each trial ðriÞ.

LFP. To remove line noise, data were filtered with a combined spectral
and spatial filter47 which can eliminate artifacts while minimizing the
deleterious effects on non-artifact components. A zero-phase Finite
Impulse Response (FIR) bandpass filter between 2Hz and 300Hz was
then applied to the data. Trials of which the broadband activity
deviated more than twice the standard deviation were discarded. The
LFP power was analyzed in the HG band (60–120Hz). For every trial,
the time-frequency power spectrum was calculated using Morlet’s
wavelet analysis48,49 with a resolution of 7 cycles. The first and last
100ms of each trial were discarded to remove any filter artifacts.
Powerwas normalized per trial by dividing the power per frequency by
thepower for this frequency averagedover time in the300msbaseline
interval before stimulus onset.

Latency
We calculated the response latency for each visually responsive site
using a method where we examined the net spiking activity in 25ms
bins and compared them to the baseline activity. The first of the three
consecutive bins with a significant difference from the baseline was
considered the response latency. Because the arrays were not
implanted in the same anatomical location, and because other factors
such as anti – seizuremedications may have influenced the responses,
we chose an analysis window based on the mean response latency
across channels of each array. Specifically, we computed the mean
latency across channels for each array (array 1: 65ms, array 2: 123ms,
array 3: 186ms, array 4: 113ms). Subsequently, we identified the
nearest 50ms bin to this value and selected a window encompassing
50ms before and 150ms after for the remainder of our analysis. The
final analysis windowswere determined as follows: array 1 (25–225ms),
array 2 (75–275ms), array 3 (125–325ms), and array 4 (75–275ms).

Visually responsive sites
We acquired at least 10 correct trials per stimulus (ranging from 10 to
19 trials). To detect visually responsive MUA channels in the shape-
category test, we compared the average activity across time during the
baseline period (–300 to 0ms before stimulus onset) with the average
activity in a 200ms interval after stimulus onset using a 1-way ANOVA.
Channels with a significant increase in activity (p value lower than 0.05
divided by the number of channels to correct for multiple compar-
isons) were considered visually responsive. For the HG responses, due
to lower Signal to Noise Ratio, we performed the 1-way Anova between
the baseline and the post-stimulus interval only for the two most
preferred conditions per channel. We determined the preferred con-
dition for each channel, by averaging the post-stimulus per condition,
sorting them in a descending order, and selecting the first two con-
ditions with the strongest responses.

MUA normalization for LOC localizer
For comparison with ref. 27, the MUA responses to the LOC localizer
stimuli were normalized according to their peak values. More specifi-
cally we first averaged the net responses across “intact” stimulus trials
and found the peakvalueper channel. Then, the responses per channel
for both “intact” and “scrambled” stimuli were divided by the corre-
sponding peak value.

Z-score normalization for shape-category stimuli
To visualize the MUA and HG responses, we employed z-score nor-
malization by averaging the MUA activity across the post-stimulus
interval and across trials, i.e., for each channel and for each stimulus
separately. Subsequently, we performed a per-channel normalization
of these averaged responses such that the mean and standard devia-
tion across the 54 different stimuli was 0 and 1, respectively. The MUA
and HG normalized responses were plotted (color-coded according to
the z-score) following first the order of the mean responses for the
shapes and then for the categories (orange square).
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Statistics
To assess theMUA andHG selectivity for intact vs scrambled images in
the LOC localizer stimuli for each array, we calculated one-way ANO-
VAs on the normalized MUA responses across all visually-responsive
channels of each array. For the shape-category test, a 2-way ANOVA
with factors category and shape was performed per channel. For all
factors that reached significance, we used Tukey’s test with 95% con-
fidence interval to correct for multiple comparisons. To evaluate the
size of the effects we calculated the eta2.

Selectivity-index
We calculated the selectivity index (Swidth) to evaluate how strongly
each channel responds to a preferred stimulus compared to non-
preferred stimuli. Thismeasure provides a quantitativemeasure of the
degree to which a channel is tuned to a specific stimulus. It is defined
as: ðn�P

ri= maxÞ=ðn� 1Þ, wheren is the number of individual stimuli
(54), ri is the mean net response of one channel to stimulus i, andmax
is the largest mean net response35,50.

D-prime
Discriminability Index (d-prime) was calculated to quantify the effec-
tiveness of each channel in distinguishing the target stimulus from
non-preferred stimuli. It was calculated as follows27:

d0 =
μpref � μNonpref

� �

σ
ð1Þ

Where μpref and μNonpref
denote the mean response to preferred and

nonpreferred condition, respectively, and:

σ = pðσ2pref � σ2Nonpref
Þ=2 ð2Þ

is the pooled variance of the two distributions. Thismeasure explicitly
takes into account the trial-by-trial variability of the response.

Behavioral, physical similarity, and aspect ratio dissimilarity
matrices
Shape and category. We used the similarity judgments for the shape
and category dimensions rated by a group of participants in ref. 24 to
construct shape and semantic categorymodels bymeans of behavioral
shape and category dissimilarity matrices. The notably low correlation
between these two matrices (−0.1, as reported in ref. 24) further
demonstrates the orthogonality between the shape and category
dimensions.

Silhouette. Similar to ref. 24, and ref. 51 pixel-wise similarities among
images were computed in order to construct the physical dissimilarity
matrix and evaluate the image low-level shape properties/image sil-
houette. Specifically, for all pairs of stimuli we calculated the squared
differences for each pixel, summed these squared differences across
all pixels, then obtained the square root of this sum. The resulting
value was normalized by dividing it by the square root of the total
number of pixels. Lastly, we inverted the obtainedmeasure to derive a
pixel-based similarity index.

Aspect ratio. To objectively quantify differences in shape types, we
utilized the formula developed by ref. 30, which captures the most
important shape dimension structuring object space. This formula,
based on the parameters of perimeter and area (as also outlined in
Yargholi & Op De Beeck, 202345), was employed to calculate the
“Aspect Ratio.” The Aspect Ratio serves as a single dimension of shape,
emphasizing the distinction between “stubby” and “spike” shapes.

Correlation multivariate analysis
A correlation multivariate analysis was used to analyze whether the
multichannel activity pattern per array was category-based or shape-
based24,52. For each visually responsive channel and each stimulus, the
averaged net activity (ri, at the MUA level) and the normalized high
gamma power (at the LFP level) across time after stimulus onset were
extracted. The full datasetwas then randomly divided into two random
and non-overlapping subsets of trials; A and B, which was repeated in
100 iterations to get a measure of variability. For each iteration, the
multichannel activity pattern associated with each stimulus in set A
was correlated with all the multichannel activity patterns of each sti-
mulus in the set B. Then, the resulting correlation coefficients for each
stimulus-pair were averaged across iterations, in order to extract a
54 × 54 correlation matrix for each microarray. Finally, the resulting
neural matrices were converted into dissimilarity matrices (1-correla-
tion) andwere correlatedwith the behavioral dissimilaritymatrices for
the shape and category dimensions (Pearson r). As described in Op de
ref. 51, permutation statistics were used to determine the significance
of the entry-wise correlations between vectorized dissimilarity matri-
ces across the corresponding entries of both vectors. Thus, we used a
permutation test (n = 1000) to calculate the Spearman’s correlation
coefficient between the neural dissimilarity matrices and the beha-
vioral dissimilarity matrices for shape and semantic category (RSA)29.
For comparison, we also correlated the neural dissimilarity matrices
with the physical dissimilarity matrices.

Multidimensional scaling (MDS)
MDS was used to visualize the neural similarity structure per array
by reducing the multi-channel activity patterns corresponding to
each stimulus into a lower-dimensional space, while preserving
similarities or distances between them. We used the Matlab
function “mdscale” which performs nonmetric multidimensional
scaling by transformingmonotonically all the dissimilarities in the
matrix and approximating corresponding Euclidean distances
between the output points. We evaluated the goodness of fit for 1
until 10 dimensions by measuring the difference between the
observed dissimilarity matrix and the estimated one (stress
value). We used the 2-dimensional solution (even with poor
goodness-of-fit) to visualize the level of similarity of individual
stimuli. To quantify the relative distances within clusters in the
2-dimensional plots, we calculated the Euclidean distances
between stimuli belonging to the same shape type and between
stimuli belonging to the same category group within this 2D
space. We also computed and compared the Euclidean distances
within (intra-cluster) and between (inter-cluster) conditions for
each array, separately for the shape and the category dimension.
To assess whether these distances differed significantly between
intra and inter-clusters, we conducted t-tests on the distances
with factors “inter” vs “intra”.

Agglomerative hierarchical cluster analysis
We used agglomerative cluster analysis on the neural dissimilarity
matrices, to identify whether the neural responses to different shapes
and/or categories in each array cluster together in meaningful ways.
This involved treating each observation as a separate cluster and
iterativelymerging clusters based on their similarity until the stopping
criterion was met (maximum 10 clusters were allowed). The analysis
was performed using the MATLAB function “linkage”, with the nearest
distance default method.

Linear decoding
To further investigate the multichannel responses we applied a linear
Support Vector Machine (SVM) to classify sample vectors of which the
entries consist of the per-channel net activity (at the MUA level) or the
gamma power (at the LFP level) averaged over a time window of
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100ms. We focused on visually responsive channels (net multiunit
activity (MUA) and normalized high gamma). To explore the dynamics
of decoding accuracy, we applied a sliding window approach with a
100ms duration, shifting it in 50ms steps across the trial duration.
Before training and testing the decoder, we performed z-score nor-
malization on the data. The multiclass decoder was trained separately
for each time-window, to find the hyperplane that separates the data
from either the 9 individual shapes, or the 6 individual semantic
categories. To prevent data leakage across trials, a cross-validation
schemewasemployed, dividing thedataset into 10 folds53. The training
and testing phases were strictly independent, ensuring that the mod-
el’s performance was evaluated on unseen data. Class labels of testing
trials were excluded during training to ensure unbiased prediction. To
assess the significance of the decoding accuracy, a paired t-test was
performed, comparing the observed accuracy against the null
hypothesis of random chance. We considered a decoding accuracy as
significant if it exceeded the threshold of p < 0.05. To evaluatewhether
the SVMdecoder generalized over time, wefirst allocate entire trials to
the train and test set, we trained a decoder for each window shift and
then tested on the activity across all other time windows for the
duration of the whole trial. We implemented additional controls to
prevent any leakage of category and shape information during training
and testing. Specifically, for shape decoding, we used different cate-
gories for training and testing, and likewise, for category decoding, we
used different shapes for training and testing to minimize the risk of
contamination. This approach prevented the potential influence of
shape-related information on category decoding and vice versa. As a
last control measure, we implemented arbitrary grouping of stimuli
and conducted a permutation test. This involved randomly organizing
our stimuli into 6groups to emulate a control for the6 categories, each
containing 9 exemplars. Subsequently, we trained a decoder to classify
between these groups. This process was iterated 100 times. Addi-
tionally, we repeated the permutation test with stimuli arbitrarily
grouped into 9 sets, each comprising 6 exemplars, as a control for the
9 distinct shape types.

Convolutional neural networks (CNNs)
We utilized pre-trained CNNs, specifically VGG-19 and ResNet50,
trained on the ImageNet dataset. Each CNN architecture comprises
multiple convolutional layers, followed by pooling operations and
fully-connected layers. We performed a forward pass for all stimuli
through both networks, extracting activation weights for each layer.
This resulted in a matrix with dimensions nodes per layer × number
of stimuli. Subsequently, we used these weights to calculate repre-
sentational dissimilarity matrices (1-correlation) for all layers. To
generate these dissimilarity matrices, we correlated the activations
associated with each stimulus across all pairs of stimuli. This process
yielded an N ×N correlation matrix, where N represents the number
of stimuli (54). We then converted this correlation matrix into a
dissimilarity matrix (1-correlation). This approach allowed us to
determine the correlation (Pearson) between the CNN dissimilarity
matrices for all layers and the neural dissimilarity matrices. We
identified the layers where this correlation reached its maximum
value. Additionally, we conducted similar analyses by comparing the
CNN dissimilarity matrices per layer with the behavioral dissimilarity
matrices for shape and category, as well as the silhouette and aspect
ratio matrices.

VGG-19. VGG-1954 achieved the highest ranking for single-object
localization in ILSVRC 2014 and secured the second position in
image classification55. This CNN architecture is composed of 19
weighted layers, including an extra softmax read-out layer for
classification. Specifically, it consists of 16 convolutional layers
separated by five max-pooling layers, with the final three layers
being fully connected.

ResNet50
ResNets are a group of deep architectures that won the ILSVRC clas-
sification task in 20153756. ResNet50 uses a two-branch structure and
consists of 50 stacked “residual units.” These units employ a split-
transform-merge strategy, performing identity mappings alongside
3 × 3 convolutions and rectification. A key featureof ResNet50 is its use
of identity mappings, forcing the preservation of features instead of
learning new representations at each layer. In the final steps, three
layers handle average pooling, transition to 1000 dimensions with fill
connections, and conclude with softmax classification.

Data availability
The datasets generated during and/or analyzed during the current
study are available from the corresponding author on request. Source
data are provided with this paper.
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