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Abstract—Signal-to-peak-interference ratio (SPIR) optimal fil-
ters are template matching filters with peak interference suppres-
sion properties. Such max-SPIR filters are used in multi-pattern
recognition problems, such as neural spike sorting in micro-
electrode array probes, where cellular action potentials need to
be detected and clustered according to their firing neuron cells.
In high-density probes with hundreds of channels, such max-
SPIR filter banks can require unacceptable high computational
resources, in particular for applications with real-time demands
and/or on-probe spike sorting. In this paper, we present a
computationally attractive substitute for max-SPIR filters by
recursively computed Autonomous Linear State Space Model
(ALSSM) filters. In our approach, we approximate the impulse
response of max-SPIR filters by low order ALSSMs and perform
the signal convolution in the new, low-dimensional ALSSM vector
space. We demonstrate our method on real neural recordings
from high-density probes and show only minimal loss in detection
quality while the computational complexity drops by up to a
factor 10.

Index Terms—multi-class pattern recognition, template match-
ing, linear state space models, neural spike sorting

I. INTRODUCTION

In this paper, we use Autonomous Linear State Space Mod-
els (ALSSMs) as multi-channel filters to solve a bottleneck
in template matching tasks in computationally constrained
environments, e.g., for real-time neural decoding in brain
implants. Such applications require efficient filters due to high
sampling rates, high density grids of measurement channels,
and multiple patterns to be recognized. ALSSM filters are an
attractive alternative since they are recursively computed linear
filters working in a low-dimensional feature space.

We apply ALSSMs to the problem of template matching
with peak interference suppression, which is used in, e.g.,
multi-class pattern recognition problems [1]. The goal is to
design filters that extract a specific spatio-temporal signal
template from a multi-channel signal while suppressing peak
interferers that may falsely trigger a detection threshold at
the filter output. This is achieved with a data-driven filter
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Fig. 1. Spatial plot of a single neuron spike from a micro-electrode array
probe on a mouse cortex. The probe spans an area of 70 x 720 µm. Data: [3]

design based on maximizing the signal-to-peak-interference
ratio (max-SPIR) criterion [1], [2]. In the case of multi-
pattern detection, i.e., detecting and discriminating different,
potentially overlapping patterns or templates, multiple such
max-SPIR filters need to run in parallel, which might exceed
computational resources.

A particular application where such a computational bot-
tleneck occurs is in online neural spike sorting [4]. In neural
tissues, each neuron cell generates action potentials, which are
observed as electric spikes on micro-electrode grids placed
on the cortex. Multiple such spikes generated by a single
neuron typically have a signature waveform due to neuron cell
geometry and orientation [4]. The goal of neural spike sorting
is to assign each detected spike to its generating neuron, which
can be achieved by a max-SPIR filter bank [1], [2]. Neural
signals, cf. Fig. 1, often originate from high-density, multi-
channel probes with high data rates. Especially for recent
neural probes with hundreds of channels [5], the computational
effort of max-SPIR filters becomes substantial, as it scales
linearly with the number of filter taps, channels, and patterns
(i.e., observable neurons). Therefore, there is an urgent need
to reduce the complexity of max-SPIR filters.

ALSSM filters share the efficiency of Infinite Impulse
Response (IIR) filters, but have similar design flexibility as
Finite Impulse Response (FIR) filters and are well suited to
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process high-density data. In many applications, ALSSMs lead
to recursive computation rules and enable efficient compu-
tation of least squares problems as proposed in [6]–[8]. In
recent applications, ALSSMs were used to implement gesture
recognition from magnetic fields, to estimate time delay in
acoustical signals, or to perform shape discrimination in ECG
signals [9]–[11]. In this paper, we use ALSSMs to reduce the
computational burden in max-SPIR filter banks by showing a
signal convolution in a low-dimensional ALSSM vector space.

This paper is organized as follows: we start with an intro-
duction to ALSSM filters in Section II and an introduction to
max-SPIR filters in Section III. Then, we explain how these
max-SPIR filters can be modeled by more efficient ALSSM
filters using local approximates in Section IV and conclude
with experimental results on neural spiking data in Section V.

II. INTRODUCTION TO ALSSM FILTERS

A. Autonomous Linear State Space Models (ALSSMs)

Autonomous Linear State Space Models (ALSSMs) are
deterministic state space models without input signals. A
discrete-time ALSSM of order N ∈N is defined recursively as

xi+1 = Axi ∈ RN (1)
si = cxi ∈ R (2)

with state transition matrix A ∈ RN×N , output vector c ∈
R1×N , model output si ∈ R, and state vector xi ∈ RN with
initial state x0 (at i = 0, often simply denoted as x). This
model has the closed form

si(x) = cAix ∈ R . (3)

ALSSMs comprise a wide class of signal shapes including
sinusoidals, exponentials, and polynomials, as well as sums
and products of these [8]. In this paper, we only consider
polynomial models. For example, as shown in [6], the third
order polynomial in i ∈ Z with coefficients λ0, . . . , λ3 ∈ R is

si(x) = λ0 + λ1i+ λ2i
2 + λ3i

3 ∈ R (4)

and corresponds to the output of (3) with parameters

A =


1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

 ,

c =
[

1 0 0 0
]
,

x =
[
λ0 λ1 λ2 λ3

]T
.

B. Localized Least Squares Approximation with ALSSMs

Now, we approximate the observed signal y ∈ RK (where
K ∈ N is the number of observed time samples) by the output
sequence of an ALSSM, masked with a sliding window of
fixed length and centered at time index k. The ALSSM has a
fixed A and c, but an unknown x, which is to be optimized
such that the least squared error between the windowed signal
and the ALSSM output gets minimal. In other words, we
transform the input signal y into K feature vectors x ∈ RN .
In our example, we use the ALSSM model of a 3rd order

polynomial (i.e., N = 4) and the elements of x correspond to
the coefficients of the local polynomial approximation. At time
k, the observed signal y is locally approximated by minimizing
the squared error (over x)

Jba(k, x) =

k+b∑
i=k+a

γi−k
(
yi − cAi−kx

)2 ∈ R (5)

over the interval {k + a, k + b}, a, b ∈ Z, a < b, with an
exponential window decaying by factor γ ∈ R. Choosing γ =
1 leads to a rectangular window, where all samples in the cost
(5) are weighted equally. However, as we will see later, γ 6= 1
will guarantee numerical stability when performing recursive
computations as explained below.

To simplify the computation of (14), the cost is
reparametrized as

Jba(k, x) = κk − 2xTξk + xTWkx (6)

with

κk =
∑k+b
i=k+a γ

i−k y2i ∈ R (7)

ξk =
∑k+b
i=k+a γ

i−k yi
(
Ai−k

)T
cT ∈ RN (8)

Wk =
∑k+b
i=k+a γ

i−k (Ai−k)TcTcAi−k ∈ RN×N (9)

as proposed in [7, Chapt. 4]. It follows that (6) is minimal for

x̂k = argmin
x

Jba(k, x)

= W−1k ξk . (10)

Thanks to the properties of ALSSMs, we now gain recursive
computation rules for Wk and ξk, and thus, also for (10), as
shown in [6]. For the forward recursions k → k + 1 we get

ξk+1 = γ−1A−Tξk − γa−δ−1
(
Aa−1

)T
cTyk+a

+γb−δ
(
Ab
)T
cTyk+b+1 (11)

Wk+1 = γ−1A−TWkA
−1 − γa−δ−1

(
Aa−1

)T
cTcAa−1

+γb−δ
(
Ab
)T
cTcAb , (12)

or alternatively, for the backward recursions k → k − 1

ξk−1 = γATξk + γa−δ
(
Aa
)T
cTyk+a−1

−γb−δ+1
(
Ab+1

)T
cTyk+b (13)

Wk−1 = γATWkA+ γa−δ
(
Aa
)T
cTcAa

−γb−δ+1
(
Ab+1

)T
cTcAb+1 . (14)

Note that W reaches a steady state for 0 � k � K.
Therefore, we set W as constant (and accept some inaccuracies
towards the signal borders). In Section IV, we will exploit the
recursions (11)-(14) to improve the computational efficiency
of max-SPIR filters, which are introduced in the next section.

III. INTRODUCTION TO MAX-SPIR FILTERS

Signal-to-peak-interference ratio (SPIR) optimal filters are
discriminative template matching filters are used in pattern
recognition tasks with overlapping patterns and/or strong peak
interferers. A SPIR filter is a spatio-temporal FIR filter that is



designed to peak at signal components that resemble a known
spatio-temporal template π, while suppressing noise and peak
interferers.

There exist different approaches to learn coefficients of
max-SPIR filters. Without loss of generality, here we use the
full convex SPIR-optimal learning rules from [1] to derive the
coefficients of a M-channel filter h ∈ RML, M,L ∈ N, (in
which the L per-channels filter coefficients of all M channels
are all stacked in a single vector), although the approach
explained in the remaining of this paper applies to any other
max-SPIR designs as well. The filter h is then found as

h = argmin
h

1

Q

∑
k∈τ

r
(

(hTyk)2 − βΩ
)

+ C‖h‖22

subject to hTπ =
√

Ω , (15)

where the inner product hTyk defines the filter output at time
k between the spatio-temporal filter h and a M-channel signal
y (of which the L most recent samples of all M channels
are stacked in yk). Furthermore, π ∈ RML is the (known)
target pattern (a classic matched filtering approach would
set h = π) and τ ∈ NQ is the set of training samples
with length Q ∈ N. C ∈ R>0 is a hyper-parameter that
controls the amount of regularization, Ω ∈ R>0 is an arbitrary
strictly positive number that controls the output response to the
pattern, β ∈ R>0 is chosen such that the degrees of freedom in
the filter design are fully spent on suppressing peak interferers
rather than on minimizing the noise floor, and finally we use
the function r(x) = max{0, x}. With this Rectified Linear
Unit (ReLU), a zero weight is applied to training data points
that do not generate a strong output response, i.e., for which
(hTyk)2 ≤ βΩ. We use a SLSQP optimization algorithm for
the minimization of (15) and refer to [1] for more details.

Once the coefficients h are successfully learned (this learn-
ing process typically happens offline based on relevant training
data), target patterns are detected putting a tunable threshold
T ∈ R>0 on the filter output power ŷ2k > T with

ŷk = hTyk ∈ R . (16)

IV. MAX-SPIR FILTERS WITH ALSSMS FOR NEURAL
SPIKE SORTING

In this section, we approximate h of max-SPIR filters with
ALSSMs to simplify the convolution (16), which is the main
computational burden during online operation of max-SPIR
filters.

We apply max-SPIR filters to the specific problem of
neural spike sorting, which is an instance of a multi-pattern
recognition task. The goal of neural spike sorting is to link
each detected spike to its putative neuron. In [1], it was shown
that this can be achieved based on a bank of max-SPIR filters,
where each filter is sensitive to the spikes of one particular
neuron while suppressing spikes of other neurons (which can
potentially overlap with a target spike).

A. Impulse Response Approximation with ALSSMs
We first approximate the impulse response h of length L

of a single channel and generalize to multiple channels after.
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Fig. 2. Max-SPIR filter impulse response h (black line) approximated with
a superposition of two ALSSMs; ALSSM I (green line) of order 0, i.e., a
constant offset, spans from index a′ to b′, and ALSSM II (blue line) of a 3rd
order polynomial spans from index a to b. ALSSM II is shifted such that its
model energy becomes maximum.

Figure 2 represents one channel of the impulse response of a
max-SPIR filter obtained from (15) applied to neural spiking
data. To optimally approximate this impulse response, we use a
superposition of two ALSSMs as arranged in Fig. 2: ALSSM I
is a polynomial of order 0, modeling a constant offset spanning
the full impulse response of length L from a′ to b′ (i.e., L =
b′−a′). ALSSM II, a 3rd order polynomial, covers the middle
section of h spanning from a to b; the position of this middle
section is chosen such that the energy covered by ALSSM II
is maximum, which coincides with the main waveform in the
impulse response.

The superposition of ALSSMs leads to a joint ALSSM
with joint parameters and a joint state vector. However, such
composed models remain recursively computable and compa-
rable in their computational complexity, cf. [6]. The impulse
response h is then represented in the ALSSM domain via the
feature vector x̂h, which is found by applying (10) to the
impulse response h.

B. Convolution in the ALSSM Feature Space

Using ALSSMs, the convolution (16) becomes substantially
cheaper when performed in the low-dimensional ALSSM
feature space of the state vectors x. We start with single
ALSSMs and extend to ALSSM superpositions afterwards.

Let si(x̂h) be the ALSSM signal model (3) and ĥ =
[sa(x̂h), sa+1(x̂h), . . . , sb(x̂h)]T the approximated impulse re-
sponse of h. Further, we have the reversed single channel
observation signal ←−y with ←−yk = y−k.

Then, (16) modifies to

(
y ∗ ĥ

)
k

=

b∑
i=a

yk−i si(x̂h) =

k+b∑
i=k+a

←−yi cAi−kx̂h

= x̂Th

k+b∑
i=k+a

←−yi(Ai−k)TcT︸ ︷︷ ︸
←−
ξk

= x̂Th
←−
ξk (17)



with
←−
ξk as in (8) ,←−y the input signal in (8), and γ ≈ 1.

←−
ξk

is computed applying the recursion (11) or (13). Note that the
initial state vectors x̂ in (10) representing y are never explicitly
computed.

In summary, the convolution (16) is substituted by the low-
dimensional convolution (17) with
• (17) is an approximation of (16),
• (16) is a vector inner product of size L, (17) is a vector

inner product of size N with N � L,
• N is independent of the window length, and
•
←−
ξk is independent of h and only computed once for mul-
tiple max-SPIR filters (each extracting different patterns).

To generalize to our superimposed ALSSMs from Section
IV-A,

←−
ξk in (17) gets replaced by the composed equivalent.

All the rest, including the computational complexity of the
inner product in (17), remains the same. Figure 3 shows in
the upper plot an example of an observed signal with target
spikes and interfering spikes with higher amplitude. The filter
output power of a max-SPIR filter and of an ALSSM filter
with approximated impulse response ĥ and with convolution
in the ALSSM feature space is shown in the lower plot. It
is observed that in both cases, the interfering spikes are fully
suppressed while the target spikes are enhanced.
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Fig. 3. The upper plot shows the observed signal sampled at 30 kHz with
target spikes (A) at k = 100 and k = 300 and interfering spikes (B). The
lower plot shows the filter output power of a max-SPIR filter (black line)
and its ALSSM approximation filter (blue line). Both filters peak at the target
spikes and show distinct suppression of the interfering spikes.

C. Extension to Multiple Patterns and Multiple Channels
For the extension to J spike templates (for J different

neurons), every template j gets its own max-SPIR filter
coefficients h(j) and a different output of the filter convolution
(16).

For the extension to M -channel recordings, the approxima-
tion from Section IV-A is applied channel-wise, leading to M
impulse responses ĥ(j)1 , . . . , ĥ

(j)
M (which are stacked as in the

vector h found from (15)) and the filter output is the sum of
the per-channel convolutions computed from (17).

Figure 4 shows the ALSSM approximation of a max-SPIR
filter impulse response for multiple channels for a given target
spike template π(j).
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Fig. 4. The plots show the impulse responses h(j) for a max-SPIR filter with
11 channels (black lines) with the corresponding approximations ĥ(j) of the
superimposed ALSSMs (blue lines).

V. EXPERIMENTS

We validate the proposed algorithm on the public Neu-
ropixel dataset with 374 extracellular channels placed on a
mouse cortex spanning an area of 0.27 mm2 [3]. The dataset
was recorded with a sampling rate of 30 kHz and preprocessed
with common average referencing and high-pass filtering with
cut-off frequency at 300 Hz, which is a standard procedure in
spike sorting.

To generate ground truth data from real recordings, the
software package SHYBRID [12] was used, an open source
tool to remove spike trains from a region of the probe and
inject them at another region (details in [12]). In total, we
injected 30 spike trains from 30 different neurons. From these
30 neurons, 15 contain spikes that overlap with at least one
other spike train (due to being injected on the same probe
location). The other 15 neurons have no overlap with other
injected spike trains, but might overlap with spikes from the
neurons at the probe region where the spike train was injected.

For the analysis, the template π(j) for each neuron of
interest is assumed to be known and extracted in a prior spike
clustering phase in the spike sorting pipeline. Furthermore,
when analyzing the data, we reduced the channels to the subset
of channels that are located closer than 100 µm to the channel
where the spike reaches its highest absolute amplitude; in
average, 21 channels were selected. All test signals have a
length of two minutes, whereof one minute is used as the
SPIR filter training set.

A. Spike Sorting Performance
Spikes are detected by setting a threshold on the filter output

(16) (here approximated as (17)). The threshold is chosen to
maximize the F1 score

F1 =
2 · precision · recall

precision + recall
(18)



TABLE I
AVERAGE SPIKE SORTING PERFORMANCE AND COMPUTATIONAL EFFORT PER TIME INDEX k OF THE CONVOLUTION OF SNR OPTIMAL, MAX-SPIR, AND

SPIR ALSSM APPROXIMATION FILTERS.

Filter Precision Recall F1 Score Scalar Additions Scalar Multiplications
SNR optimal matched filter 0.794± 0.185 0.902± 0.086 0.836± 0.131 157 250 (100%) 157 500 (100%)
Full convex max-SPIR filter 0.894± 0.103 0.929± 0.070 0.910± 0.084 157 250 (100%) 157 500 (100%)
SPIR ALSSM approximation filter 0.845± 0.130 0.909± 0.086 0.873± 0.105 31 224 (19.8%) 22 622 (14.3%)

with

precision =
true positives

true positives + false positives
(19)

and

recall =
true positives

true positives + false negatives
. (20)

Table I shows the average spike sorting performance for
an SNR optimal filter [13], the original max-SPIR filter, and
the ALSSM approximated max-SPIR filter. The SNR optimal
filter is added as a benchmark as this is the most commonly
used template matching filter in state-of-the-art spike sorting
pipelines [14]. The ALSSM method shows overall minimal
loss in detection quality compared to the max-SPIR filter and
it still outperforms the SNR optimal matched filter.

B. Computational Effort Comparison

SPIR-ALSSM filtering includes four steps: filter training,
ALSSM approximation of the filter, ALSSM transformation of
the observations, and convolution in the ALSSM feature space.
The computational load of step 1 and 2 are irrelevant in this
context since they are performed offline. Step 3, the ALSSM
signal transformation, involves the computation of ξk (8). One
recursion step of ξk comes down to 3 scalar multiplications
using the sparse Jordan canonical form as proposed in [8,
Chap. 3], and the signal approximation is independent of the
filter h(j) and thus of the number of templates J . Step 4,
the convolution, now reduces from L (template length) scalar
multiplications, which is in our example 30 to 100, to N
(ALSSM system order) scalar multiplications, which is 5 in
our example (1 coefficient for the constant baseline and 4
coefficients for the 3rd order polynomial).

Table I gives a comparison of the overall computational
load per time sample for the SNR optimal and the full convex
max-SPIR filter compared to our ALSSM approximation. For
our results, we used L = 30 filter taps, M = 374 channels,
J = 250 target neurons, and 21 channels per neuron (100 µm
radius). The ALSSM method has about factor 5 less additions
and factor 7 less multiplications. Since the ALSSM is inde-
pendent of the template length, the computational superiority
increases further if longer templates are used.

VI. CONCLUSION

We proposed Autonomous Linear State Space Models
(ALSSMs) to approximate computationally expensive signal-
to-peak-interference ratio (SPIR) optimal filters used in
threshold-based neural spike sorting.

The presented approach has been successfully applied on
real neural data from high-density, multi-channel probes to

extract spiking information in extracellular recordings with
overlapping neurons. It was shown that our approximation
outperforms the detection rate of SNR optimal matched filters
and has a substantially lower computational cost than SNR
optimal or max-SPIR filters.

This paper showed an example in the neuroscience field,
however the method is directly adaptable to other fields.
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