
 

 

 
 
Introduction: Quantitative Ultrasound (QUS) refers to (signal processing) methodologies that 
enable the quantification of the acoustic properties of the propagation medium, such as its 
attenuation coefficient. In particular, the attenuation coefficient of tissues is relevant due to its 
wide range of clinical applications and because it allows performance of adaptive time gain 
compensation to enhance imaging. Earlier attempts were made to estimate the attenuation 
coefficient from uniform homogeneous media, which includes methods such as spectral shift, 
spectral difference [1]-[3] and methods based on reference phantom measurements [4],[5]. In 
[7], we proposed and validated a linear least squares method, which includes both depth and 
frequency information in a single least-squares problem (as opposed to [5],[6]), thereby improving 
accuracy. Furthermore, the attenuation estimate is obtained through a closed-form equation, 
making it very cheap to compute and suitable for real-time attenuation estimation.  In this paper, 
we extend this framework in [7] towards a multi-layer setting, in order to enable the estimation of 
spatial variations in the attenuation coefficient. We propose a linear model that incorporates all 
layers and their cumulative attenuation across the depth dimension in the medium. The resulting 
least-squares problem can again be solved in closed form, providing an estimate of the 
attenuation coefficient in each layer. The method is validated on simulated backscatter data.  
 
Basic signal model:  
For a plane wave, the magnitude of the backscattered signal spectrum (S) as a function of depth 
(𝑧) and frequency (𝑓) can be expressed as [7] 

 

|𝑆(𝑓, 𝑧)| = 𝐺 |𝑃(𝑓)|𝑒−2𝛼𝑓𝑧, 
 

where 𝛼 denotes the attenuation coefficient, 𝐺 denotes a gain calibration factor which accounts 
for how much energy is actually transmitted into the medium, and 𝑃(𝑓) represents the spectrum 
of the electrical signal used to excite the transducer along with the combined effect of electro-
mechanical and mechano-electric coupling during the transfer from the electrical signal to an 
acoustic wave and vice-versa. Longitudinal plane-wave propagation is assumed, hence the 
effects due to diffraction (i.e. beam forming) and the frequency dependency of the backscatter 
are neglected.  
 
 
Spatially varying signal model:  
The above model can be extended for a medium with an arbitrary number of layers with different 
attenuation characteristics. We assume that the acoustic impedance between two adjacent 
layers is not very different so that the reflections and transmission losses at the interfaces can 
be neglected. Thus, for a medium with 𝐿 distinct layers, the backscattered spectrum from a 
scatterer at depth 𝑧 within the 𝑖th layer is given by  

 

𝑆(𝑓, 𝑧)  =  𝐺 𝑃(𝑓)𝑒−2𝛼1𝑓𝐷1𝑒−2𝛼2𝑓𝐷2…𝑒−2𝛼𝑖−1𝑓𝐷𝑖−1𝑒
−2𝛼𝑖𝑓(𝑧−∑ 𝐷𝑗

𝑖−1
𝑗=1 )

, (1) 
 
where 𝛼1, 𝛼2… 𝛼𝑖   are the attenuation coefficients of the layers from 1 to 𝑖, and 𝐷𝑗 is the thickness 

of the 𝑗𝑡ℎ layer which is assumed to be known. We are interested in estimating each of these 
attenuation coefficients. Equation (1) shows a nonlinear relationship of 𝛼𝑖𝑠 with respect to the 
backscattered spectrum. By using a logarithmic transformation and a suitable rearrangement of 
the terms, equation (1) can be expressed as a system of linear equations, as explained below. 
 
Defining 𝑄(𝑓,𝑧) =  ln|𝑆(𝑓, 𝑧)| −  ln|𝑃(𝑓)|, the backscattered data from each layer can be 
expressed as  



 

 

𝑄(𝑓, 𝑧) =  {

ln|𝐺| − 2a1𝑓𝑧                                                                            ∶  𝐷0 < 𝑧 ≤ 𝐷1
ln|𝐺| − 2a1𝑓𝐷1  − 2a2𝑓(𝑧−𝐷1)                                       ∶  𝐷1 < 𝑧 ≤ 𝐷2

⋮
ln|𝐺|− 2a1𝑓𝐷1  − 2a2𝑓𝐷2 −⋯−2a𝐿𝑓(𝑧 − ∑ 𝐷𝑖)

𝐿−1
𝑖=1        ∶  𝐷𝐿−1 < 𝑧 ≤ 𝐷𝐿

 (2) 

where ln denotes the natural logarithm. 
 
Using a sliding window that slides over the 𝑧-axis at discrete positions, and setting 𝒒(𝑓) =
[𝑄(𝑓, 𝑧1,1),…𝑄(𝑓, 𝑧1,𝑁1),… ,𝑄(𝑓, 𝑧𝐿,1),… ,𝑄(𝑓, 𝑧𝐿,𝑁𝐿 )]

𝑇, where 𝑧𝑖,𝑗 represents the 𝑗th window 

position in the 𝑖th layer, q = [ln|𝐺|,𝛼1, 𝛼2… 𝛼𝐿 ]
𝑇 , and  

𝑨(𝑓) = 

(

 
 
 
 
 
 

1 −2𝑓𝑧1,1 0 0 … 0

1 −2𝑓𝑧1,2 0 0 … 0

⋮ ⋮ ⋮ ⋮ … 0
1 −2𝑓𝑧1,𝑁 0 0 … 0

1 −2𝑓𝐷1 −2𝑓(𝑧2,1 − 𝐷1) 0 … 0

1 −2𝑓𝐷1 −2𝑓(𝑧2,2 − 𝐷1) 0 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 −2𝑓𝐷1 −2𝑓𝐷2 −2𝑓𝐷3 … −2𝑓(𝑧𝐿,𝑁 −∑ 𝐷𝑖

𝐿−1
𝑖=1 ))

 
 
 
 
 
 

, 

 

 
the spatially varying signal model can be expressed as  

𝒒(𝑓) = 𝑨(𝑓)  𝜽. (3) 
 

Note that one such set of equations can be generated for each frequency 𝑓. By vertically 
stacking these equations for all (discretized) frequencies within the relevant bandwidth, we 
obtain the complete system of linear equations 

 
𝒒 = 𝑨 𝜽. (4) 

 
Method of Estimation: 

When the measured spectrum 𝑆̃(𝑓, 𝑧) is used in the calculation of 𝑄(𝑓, 𝑧), the term 𝒒 in equation 
(4) is replaced with 𝒒̃. The estimation of 𝜽 can now be posed as a linear least squares problem: 

𝜽̂ =  arg.min
𝜃

 ‖𝒒̃− 𝑨 𝜽‖2
2  (5) 

This results in a closed form expression for the estimate of 𝜽, given by 
 

              𝜽̂   =   (𝑨𝑇𝑨)−1𝑨𝑇𝒒̃.   (6) 

 
Note that the matrix  (𝑨𝑇𝑨)−1𝑨𝑇 can be precomputed as it is independent of the measured 
spectrum. Thus, the estimates can be obtained by a simple matrix-vector multiplication as shown 
in equation (6). 
 
Experiments and Results: The validation of the proposed method was conducted with 
simulated data. The transmitted pulse had a center frequency of 2.25 MHz; a speed of sound of 
1500 m/s; and a Gaussian shaped spectrum. The simulated medium had a thickness of 40 mm, 
in which the first 20 mm has an attenuation coefficient of 𝛼 =0.8 dB/cm/MHz and the next 20 mm 

region 𝛼 =0.4dB/cm/MHz. Approximately 530 scatterers per mm were used in the medium. 1500 
RF lines were generated, each with independently and randomly drawn positions of the 
scatterers. The estimation was performed by randomly selecting 𝑁 RF lines from this set without 
repetition, where 𝑁 is varied from 1 to 50. During the estimation, the window-length chosen was 
8mm, window overlap was 2mm and the usable bandwidth was 10 dB below the peak of the 
spectrum. The windows were chosen in such a way that the same window does not occupy two 
adjacent layers.  



 

 

The plots in Fig. 1(a) and 1(b) show the relative error of estimation as a function of the number 
of RF lines for an insonification at either side of the medium. As the number of RF lines increases, 
the relative error decreases and stays almost constant. In both cases of insonification, the relative 
error is smaller for the layer with 𝛼 = 0.8 dB/cm/MHz. This is because the higher the value of the 
attenuation coefficient, the more pronounced the effect on the spectrum.  
 
Conclusion:  
A linear least squares method for estimating the spatial variation of the attenuation coefficient is 
proposed with preliminary validation for a two-layered case using simulated data. The method is 
computationally fast as the estimates can be obtained by a simple matrix-vector multiplication. 
Hence, it can be used for time gain compensation in real-time imaging applications. Furthermore, 
we have demonstrated on simulated data that the method provides accurate estimates.   
 
Future scope: 
In this paper, the estimation of the attenuation coefficient was performed by assuming a simplified 
model as given in equation (1). In this model, the assumption is made that there is no impedance 
mismatch between adjacent layers. If there are impedance mismatches, a component of the 
transmitted ultrasound from one layer to another will be reflected back, which is not yet accounted 
for in the current model. The model also assumes longitudinal plane wave propagation. However 
in actual setups diffraction occurs. Future work will focus on including such effects in the model, 
and relaxing other assumptions such as the assumed prior knowledge of the thickness of each 
layer.   
 
 

(a)       (b) 
 
Figure 1: The relative error of  the estimation of  the attenuation coef f icient as a function of  the number of  

RF lines for a 2-layered medium with layer 1 with 𝛼 = 0.4 dB/cm/MHz and layer 2 with 𝛼 = 0.8 dB/cm/MHz, 
using simulated data. Subf igure (a) shows the relative estimation error for each layer, when the 

insonif ication is done on the side of  layer 1, and subf igure (b) shows the case when the insonif ication is 
reversed.  

 
 
Acknowledgement: 
 
The authors acknowledge the financial support of the European Union’s Horizon 2020 research 
and innovation programme under grant agreement No. 766456 (project AMPHORA). 
 
 
 



 

 

 
 
References: 
 

[1] R. Kuc and M. Schwartz, ``Estimating the acoustic attenuation coefficient slope for liver 

from reflected ultrasound signals,” IEEE Trans. Sonics Ultrason., vol. 26, no. 5, pp. 353–361, 
Sep. 1979. 

 
[2] M. Insana, J. Zagzebski, and E. Madsen, ̀ `Improvements in the spectral difference method 
for measuring ultrasonic attenuation,” Ultrason. Imag., vol. 5, no. 4, 331–345, 1983. 

 
[3] R. Kuc, ``Estimating acoustic attenuation from reflected ultrasound signals: Comparison of 

spectral-shift and spectral-difference approaches,” IEEE Trans. Acoust., Speech, Signal 
Process., vol. 32, no. 1, pp. 1–6, Feb. 1984. 
 

[4] L. X. Yao, J. A. Zagzebski, and E. L. Madsen, ``Backscatter coefficient measurements using 
a reference phantom to extract depth-dependent instrumentation factors,” Ultrason. Imag., vol. 

12, no. 1, pp. 58–70, 1990 
 

[5] K. Nam, J. A. Zagzebski, and T. J. Hall, Simultaneous backscatter and attenuation estimation 
using a least squares method with constraints, Ultrasound Med. Biol., vol. 37, pp. 2096–2104, 

2011. 
  
 

 
 

[6] N. Ilyina, J. Hermans, E. Verboven, K. Van Den Abeele, E. D'Agostino and J. D'hooge, 
Attenuation estimation by repeatedly solving the forward scattering problem, Ultrasonics, vol. 
84, pp. 201-209, 2018. 

 
[7] A. Muraleedharan, A. Bertrand and J. D'hooge, A Linear Least-Squares Method for Accurate 

Real-Time Ultrasound Attenuation Estimation, Internal report KU Leuven (preprint available 
soon). 
 


