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Abstract—Channel selection or electrode placement for neural
decoding is a commonly encountered problem in electroen-
cephalography (EEG). Since evaluating all possible channel
combinations is usually infeasible, one usually has to settle for
heuristic methods or convex approximations without optimality
guarantees. To date, it remains unclear how large the gap is
between the selection made by these approximate methods and
the truly optimal selection. The goal of this paper is to quantify
this optimality gap for several state-of-the-art channel selection
methods in the context of least-squares based neural decoding.
To this end, we reformulate the channel selection problem as a
mixed-integer quadratic program (MIQP), which allows the use
of efficient MIQP solvers to find the optimal channel combination
in a feasible computation time for up to 100 candidate channels.
As this reveals the exact solution to the combinatorial problem,
it allows to quantify the performance losses when using state-
of-the-art sub-optimal (yet faster) channel selection methods.
In a context of auditory attention decoding, we find that a
greedy channel selection based on the utility metric does not
show a significant optimality gap compared to optimal chan-
nel selection, whereas other state-of-the-art greedy or l1-norm
penalized methods do show a significant loss in performance.
Furthermore, we demonstrate that the MIQP formulation also
provides a natural way to incorporate topology constraints in the
selection, e.g., for electrode placement in neuro-sensor networks
with galvanic separation constraints. Furthermore, a combination
of this utility-based greedy selection with an MIQP solver allows
to perform a topology constrained electrode placement, even in
large scale problems with more than 100 candidate positions.

Index Terms—channel selection, EEG processing, EEG sensor
networks, auditory attention detection, brain-computer interface

I. INTRODUCTION

Electroencephalography (EEG) is a popular non-invasive
technology to record macro-scale electrophysiological activity
in the brain. Most high-end EEG systems record from 20 up
to 256 scalp electrodes [1], [2]. While using a large number of
electrodes allows to record at a high spatial resolution, such
high-density recordings also come with several disadvantages;
they require more expensive equipment, they lead to longer
set-up times, they require more data storage/processing, and
the higher dimensionality may cause overfitting in data-driven

This work was carried out at the ESAT laboratory of KU Leuven and
has received funding from KU Leuven Special Research Fund C14/16/057,
FWO project no. G0A4918N. This project has received funding from the
European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement Nrs. 802895,
766456). This research received funding from the Flemish Government
under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen”
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algorithms. Furthermore, when making the transition towards
wearable EEG applications with devices that measure EEG
during daily-life activities [3]–[8] [9], [10], a low channel
count is important for miniaturization and to minimize power
and bandwidth requirements [10], [11]. Therefore, there is a
need for efficient and robust data-driven channel selection or
electrode placement methods to reduce the number of EEG
channels while having minimal impact on the application
performance. In this paper, we focus on the channel selection
problem for least-squares (LS) based neural decoding. For
illustrative purposes, we tackle and analyze the channel selec-
tion problem in the context of speech decoding, in particular
in an auditory attention decoding (AAD) task [1]. However,
we keep the methodology sufficiently generic, thereby making
it applicable to any LS-based neural decoding task.

EEG channel selection is a combinatorial problem of which
the complexity increases exponentially with the number of
channels, thereby making an exhaustive search over all pos-
sible channel combinations infeasible. For example, finding
the best combination of 8 channels from a pool of 64 EEG
channels requires evaluating more than 4 × 109 possible
combinations. If one can evaluate1 a single combination in
0.01 second, it would take 1.4 years to go over all combi-
nations. That is why channel selection is typically tackled
by suboptimal heuristic methods that can be computed in a
realistic time frame.

EEG channel selection methods are broadly classified into
two categories, namely, filtering methods and wrapper methods
[12]. Filtering methods rely on the use of distance, information
or correlation measures independent of the problem’s objec-
tive function to select the best subset of EEG channels[12],
[13]. Wrapper methods, on the other hand, tries to explicitly
optimize the problem’s objective function while performing
channel selection, which is why they typically perform better
than filtering methods.

Therefore, in this paper, we focus on widely used wrapper
methods for channel selection in LS-based neural decoding.
Typical wrapper methods for LS decoding solve the channel
selection problem with approximate convex relaxation tech-
niques such as the least absolute shrinkage and selection
operator (LASSO) [14], or heuristic techniques such as an
iterative greedy elimination based on, e.g., decoder weights
[15]–[17] or LS-based channel utility [9], [18]. In [9], the
greedy channel selection using the LS-utility metric was found
to perform the best in terms of AAD performance compared to
other suboptimal strategies but the performance gap compared

1An evaluation involves training an optimal decoder for the given selection,
and testing the performance of the resulting decoder.
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to the truly optimal channel selection, from hereon referred to
as the optimality gap, remains unknown.

In this paper we propose a globally optimal channel selec-
tion method by reformulating the channel selection problem to
a mixed-integer quadratic program (MIQP), thereby allowing it
to be solved by state-of-the-art MIQP solvers to find the exact
solution of the combinatorial problem. While the computation
time for solving the MIQP is still very high (too high for
practical use), it is at least practically feasible as opposed to
a brute-force exhaustive search. The resulting optimal channel
selection allows to quantify the optimality gap of the afore-
mentioned sub-optimal techniques in a specific application.
In the context of an AAD task, we demonstrate that, unlike
(group)-LASSO or decoder weight-based greedy selection,
the greedy method based on the LS-utility metric does not
perform significantly worse than the optimal MIQP-based
channel selection, while improving 3-4 orders of magnitude
in computation time.

While channel selection can be done post-hoc to reduce
the dimensionality of the data, it can also be used for elec-
trode placement in a context of wearable EEG. Considerable
research is ongoing to make wearable miniature-EEG (mini-
EEG) devices which allow to record EEG 24/7 in daily-life
activities [3]–[8]. Although these mini-EEG devices only cover
small skin areas due to their far-driven miniaturization, the
concept of neuro-sensor networks enables the simultaneous
use of multiple such mini-EEG devices connected wirelessly
thereby increasing the spatial resolution [10], [19]. Such a
collection of wirelessly interconnected mini-EEG devices is
also known as wireless EEG sensor networks (WESNs). In
this case, it is essential to find the best scalp locations to
place these mini-EEG devices (or ‘nodes’), where each node
consists of at least two closely spaced electrodes to locally
record EEG. In [9], [14], WESN nodes were emulated by first
generating a highly redundant set of candidate nodes by re-
referencing high-density cap-EEG electrodes with neighboring
electrodes followed by node selection. However, no topolog-
ical constraints were imposed during node selection, which
may result in practically infeasible WESN topologies [9]. For
example, since the nodes correspond to physically separated
mini-EEG devices, which are galvanically separated from each
other (not connected by a wire), the selected WESN nodes
are not allowed to share electrode locations. Hence, there is a
need to include such constraints in channel and node selection
methodologies and explore their impact on neural decoding
performance. To this end, we show how such topological
constraints can be incorporated in the aforementioned MIQP
formulation. This also allows to analyze the impact of such
a galvanic separation by solving the MIQP with and without
such constraints.

Although the proposed MIQP-based optimal selection
method allows to solve the full combinatorial problem in a
feasible time, it again becomes practically infeasible when
the number of channels/nodes to be selected is large (> 10)
or if the total number of candidate channels/nodes is large
(> 100). Therefore, we also propose a hybrid method to
perform node selection by combining the greedy utility-based
channel selection with an MIQP solver, where the former
initially reduces the candidate set of channels/nodes to a
smaller set that can then be processed by an MIQP solver in a
reasonable amount of time. The resulting combination yields
a practical method for channel/node selection with topology

constraints. For the case of AAD, we show that the inclusion
of this greedy ‘preprocessing’ does not create a significant
optimality gap compared to a globally optimal selection.

The outline of the paper is as follows. In Section II, we
review the the channel selection problem for LS-based neural
decoding, and reformulate it as a (constrained) MIQP. In
Section III we describe the experimental setup used in this
work, and the performance evaluation strategy used to compare
different channel selection methods. In Section IV, we report
the results of the comparative analysis in terms of AAD
performance and computation time. We discuss the results in
Section V and we draw conclusions in Section VI.

Note on terminology: The following terminology will be
used consistently in the remainder of this paper. A channel
is an EEG signal that originates from a single electrode pair
over which the scalp potential is measured. A node represents
a group of (at least two) closely spaced EEG electrodes such as
those included in a wireless mini-EEG sensor device, emulated
here as a group of nearby cap-EEG electrodes. In all our
experiments reported in this paper, we only consider single-
channel nodes consisting of a single electrode pair although
all results can be extended to multi-channel nodes with more
than 2 electrodes [9].

II. CHANNEL OR NODE SELECTION FOR NEURAL
DECODING

A. Least-squares based Neural Decoding
Several studies have established that the neural responses

of a subject measured as multi-channel EEG can be decoded
to reconstruct certain features of the stimulus. For speech
decoding in particular, it has been found that least-squares
based linear regression models allow to reconstruct different
representations of the auditory speech stimulus such as the
speech envelope [1], [2], [15], the spectrogram, phonetic
features [20], etc. Moreover, neural decoding of EEG to speech
envelopes has been used in auditory attention decoding (AAD)
algorithms which allow to determine to which speaker a
subject is attending when listening to a mixture of speakers in
a so-called cocktail party scenario [1], [2], [15].

The neural decoding problem consists of finding a spatio-
temporal decoder ŵ which linearly combines the EEG data to
reconstruct the stimulus d in least squares (LS) sense:

ŵ = argmin
w

1

2
||Aw − d||22 (1)

where A is a T × QC matrix containing T time samples of
the C EEG channels and Q−1 non-causal time-lagged copies
of each channel in its columns. Each channel and its Q −
1 time-lagged copies are assumed to be grouped in adjacent
columns in the matrix A. The time-lagged copies are added
to cope with time delays and convolutive responses [1], [2],
[15]. The problems where time-lagged copies are not used can
be considered as a special case of (1) where Q = 1.

In addition, in (1), d is a T -dimensional vector containing
T time samples of a relevant representation of the stimulus
which in the case of speech can be represented by the speech
envelope, the spectrogram or even low level representations
like phonemes [20]. In the present work, we address the
problem of decoding the speech envelope.

The solution of (1) is given by

ŵ = R−1r (2)
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where R = ATA and r = ATd. If required, a diagonal
loading term can be added to R as a regularization mechanism
[1], although it was shown in [2] that this is not necessary (and
to be avoided) in case sufficient training data is available to
populate R.

The problem of selecting the best N(< C) channels which
minimizes (1) is a combinatorial problem. Different approx-
imate approaches have been proposed to solve this problem,
for example, convex relaxations like (group-)LASSO[14] or
greedy methods with iterative elimination of channels [9],
[15]–[17].

B. Greedy channel selection
Assuming the Q time-lagged copies of each EEG channel

are in adjacent columns in the matrix A, we can define the
following partitioning for the spatio-temporal decoder ŵ:

ŵ =


ŵ1

ŵ2

...
ŵC

 (3)

with the subvectors ŵk ∈ RQ ∀ k ∈ {1, . . . , C}, the decoder
coefficients corresponding to k-th channel and its Q copies.
In [15]–[17], the EEG channels are iteratively removed one
by one in a greedy fashion by every time deleting the channel
k for which the l2-norm ||ŵk|| is the smallest. After each
iteration, the optimal decoder is recomputed based on the
remaining channels until the desired number of N channels
is reached. In the remaining of this paper, we will refer to
this method as the decoder magnitude-based (DMB) greedy
method or DMB-G.

However, in [21] it was argued that the magnitude of
the entries in the decoder ŵ do not necessarily reflect the
importance of the corresponding channel as it is scaling
dependent and it does not properly take interactions across
channels into account. Instead, it was argued to quantify the
importance or ‘utility’ of a channel k by the increase in the
least squared error (LSE) if channel k were to be removed and
the decoder would be fully re-optimized. In [21] an efficient
computation for this utility metric was proposed, and it was
shown in [9] that it outperforms the DMB metric in a greedy
channel selection procedure. We will refer to this method as
the utility-based (UB) greedy channel selection method2 or
UB-G, which we will briefly review below as it will be part
of the hybrid method proposed in Section II-D3.

Since the matrix A in (1) contains Q time-lagged copies of
C-channel EEG in its columns, the removal of an EEG single
channel corresponds to the removal of a group of Q columns
from A. The utility of a group of columns of A, referred to
as the group-utility, is defined as:s

min
w−k

||A−kw−k − d||2 −min
w
||Aw − d||2 (4)

where A−k is the matrix A with the Q columns corresponding
to channel k removed. It has been shown that this group-utility,
can be computed efficiently based on ŵ without having to
compute the new optimal decoder ŵ−k for each channel k
[21]. In UB-G, this group-utility metric is used to iteratively
eliminate channels with the least group-utility to select the

2An open-source MATLAB and Python based implementation of this
method is available on https://github.com/mabhijithn/channelselect.
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Fig. 1. Utility-based greedy (UB-G) channel selection algorithm.

‘best’ N channels. To this end, assume without loss of
generality (w.l.o.g.) that the channel k and its time-lagged
copies for which we compute the group-utility corresponds
to the last Q columns of A.

Defining the block partitioning of R−1 in (2) as:

R−1 =

[
X Y
YT Z

]
(5)

where Z is a Q×Q matrix corresponding to the Q time lags
associated with channel k (here assumed to be in the Q last
columns of A w.l.o.g.). The group-utility of channel k can be
efficiently computed as [9], [21]:

Uk = ŵT
k Z
−1ŵk (6)

where ŵk contains the last Q entries of ŵ. It can be shown
that (6) leads to the exact same quantity as defined in (4) [21]
without the need to recompute (2), which would involve a
large matrix inversion for each candidate channel removal.

To select N (out of C) channels of EEG data used in
the neural decoding problem (1), UB-G uses the algorithm
illustrated in Fig. 1. First, the group-utility of each of the C
channels is computed using (6) followed by the removal of
the channel with the least group-utility. After this removal, ŵ
is recomputed using (2) but now with the (C − 1) channel
EEG data. The new group-utilities of each channel in the new
(C− 1) channel set are re-computed from (6), again followed
by removal of the channel with the least group-utility. The
procedure is repeated until only N channels remain.

C. Optimal channel selection
While UB-G outperforms other state-of-the-art channel se-

lection methods [9], it still leads to sub-optimal solutions to
the channel selection problem due to its greedy approach (as

https://github.com/mabhijithn/channelselect
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not all possible combinations of N channels are considered).
As such, other combinations of N channels may lead to even
lower squared errors. The optimality gap between UB-G chan-
nel selection and the optimal selection that truly minimizes
the LS cost remains unknown since it requires investigating
all possible channel combinations, which is computationally
infeasible. In this section, we propose a feasible method to
find this global optimum of the channel selection problem.

We introduce a boolean vector z of length C defined as
z = [z1 . . . , zC ]

T with zk ∈ {0, 1} ∀ k ∈ {1, . . . , C}, which
contains selection variables for each channel. Now, modifying
the optimization problem in (1) with the newly introduced
variable z, the channel selection problem can be equivalently
formulated as:

min
w,z

1

2
||Aw − d||22 (7a)

subject to
C∑

k=1

zk ≤ N (7b)

||wk||∞ ≤Mzk k = 1, . . . , C (7c)

z ∈ {0, 1}C . (7d)

where wk is the subvector defined in (3), M is a sufficiently
large 3 positive integer and || · ||∞ is the l∞ norm.4

The constraint in (7b) ensures that at most N entries of z
assumes the value of 1, thereby selecting N channels. The
constraint (7c) imposes that the entries of z act like selection
variables for the columns of A. A value of 0 at zk forces all
entries of wk to be 0, thereby removing the Q columns of A
corresponding to channel k from the problem. On the other
hand, a value of 1 at zk gives the freedom for all entries of
wk to assume non-zero values, thereby selecting Q columns
of A corresponding to channel k.

The optimization problem of the kind in (7a)-(7d) is an in-
stance of a so-called mixed-integer quadratic program (MIQP).
With the help of solvers like CPLEX[22], Gurobi [23], etc.
the MIQP (7a)-(7d) can be solved to optimality for moderate
values of C (< 100) and for small values of N(< 10), in
feasible time. In the experiments in this paper, we used the
Gurobi solver [23] to solve (7a)-(7d). From this solution, we
considered the channels which correspond to non-zero entries
of z as the optimal channels. We will refer to this optimal
channel selection method as OCS in the sequel.

D. Node placement with galvanic separation constraints

In neuro-sensor networks such as WESNs, the selection
of EEG channels usually has to satisfy certain topological
constraints. For example, the N nodes of a WESN correspond
to stand-alone mini-EEG sensors which are not connected by a
wire, i.e., they are galvanically separated. This means that the
N selected nodes are not allowed to share the same electrodes.
In this subsection, we describe how such constraints can be
included in the OCS method.

3M should be chosen larger than the entry with the maximal absolute value
in the final solution ŵ, which is unknown before solving (7a)-(7d). In practice,
if the magnitude of one of the entries in the final solution ŵ is equal or close
to M , this means M has been set to a too small value, in which case the
procedure has to be restarted with a larger M .

4||w||∞ = max |wk|mk=1 where w = [w1 . . . , wm]T

1) WESN Emulation: We use the procedure of [9] to em-
ulate candidate WESN nodes from a 64-channel standard cap
EEG recording. Without loss of generality, we only address the
case of a WESN made up of single-channel nodes, i.e., each
node consists of two electrodes separated by a short distance.
These nodes are selected from a set of candidate nodes created
by pairing each electrode of the C-electrode cap with each of
its nearby electrodes that are at a distance of at most r cm,
where r is the desired maximum span between the electrodes
within a single WESN node. Using this criteria, a set of P
candidate single-channel node locations and orientations were
generated from the original C electrodes. Since each node
then corresponds to a single electrode-pair, it contributes a
single channel of EEG. Hence, the node selection or node
placement problem while constructing a WESN can be viewed
as a channel selection problem as described in Section II-A,
where C is replaced by P (note that in practice P >> C,
which means the set of candidate nodes is highly redundant).

2) OCS method for galvanically separated node
selection(OCS-GS): The OCS method described in
Section II-C can be used to find optimal node locations
for WESNs by selecting N nodes from P candidate nodes.
The problem formulation (7a)-(7d) can perform optimal node
selection by replacing A with AP where now AP contains
Q time-delayed copies of EEG signals from each of the P
nodes in its columns. Assume E ⊂ {1, . . . , P} × {1, . . . , P}
is the set that contains all ordered pairs of nodes sharing an
electrode, i.e., all node pairs that are galvanically connected.
To select galvanically separated nodes, the problem given in
(7a)-(7d) is modified as below:

min
w,z

1

2
||APw − d||22 (8a)

subject to
P∑

k=1

zk ≤ N (8b)

||wk||∞ ≤Mzk k = 1, . . . , P (8c)
zi + zj ≤ 1 ∀(i, j) ∈ E (8d)

z ∈ {0, 1}P . (8e)

Here, the constraint (8d) ensures that if node i and j share an
electrode, only one of them will be selected. The optimization
problem (8a)-(8e) is again an MIQP, which can be solved with
the Gurobi solver [23]. We will refer to this modified optimal
node selection method with galvanic separation constraint as
OCS-GS.

3) Hybrid method for galvanically separated node selec-
tion: In the previous section, we described an optimal node
selection method for optimal node placement with galvanic
separation constraints. However, the computational time re-
quired to obtain these optimal node selections is generally
too high for practical purposes due to large values of P
(compared to C). In this section, we propose a hybrid node
selection strategy involving greedy components to perform
node selection with galvanic separation constraints with more
reasonable computation times.

Note that the set of P candidate nodes is a redundant set,
which will make the matrix R in (2) rank deficient, thereby
hampering the computation of (2)-(6) in the DMB-G and UB-
G method. For the case of DMB-G, a pseudo-inverse can be
used in (2). For the UB-G method, an extension of the utility
metric for such rank-deficient problems is proposed in [21]
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based on a minimum-norm criterion, which was also used in
[9] for the node selection problem. We will use a similar fix
when we apply UB-G, and we refer to [9] or [21] for further
details. The gLASSO and the MIQP solvers do not explicitly
compute R or its inverse, and therefore do not require a fix
when the latter is singular.

We first apply UB-G to prune the P candidate nodes to
K nodes with N << K < P , where N is the number of
nodes to be selected and where K is a value which is small
enough such that OCS or OCS-GS can be computed in a
reasonable amount of time. The pruning stage is followed
by node selection from the K remaining candidate nodes
with galvanic separation constraints using the OCS-GS method
in (8a)-(8e). The pruning stage is applied to reduce the
number of candidates on which OCS or OCS-GS is computed.
Meanwhile, the use of OCS-GS for node selection ensures
that the solution is near-optimal while the galvanic separation
constraints are satisfied. We refer to this method as ‘hybrid’
in the remaining of the paper.

III. EXPERIMENTAL SET-UP

A. Description of EEG dataset
The data set used for the experiments reported in this paper,

originally described in [2], The data used for the analyses
in this paper consist of 64-channel EEG recorded using a
BioSemi ActiveTwo system from 16 subjects who sat through
three experiments within a single recording session. During
each experiment, the subjects listened to two simultaneous
children stories narrated by two different male speakers com-
ing from two distinct spatial locations (left and right of the
subject), and were asked to attend to only one of them while
ignoring the other. The first two experiments each included
four presentations of different six-minute story parts (the
unattended speaker from the first experiment becomes the
attended speaker in the second experiment and vice versa).
This results in 2×4×6 = 48 minutes of EEG data. The third
experiment consisted of four shorter presentations of the first
two-minutes of the same four story parts. These presentations
were repeated three times, to build a set of recordings of
repetitions, thereby adding 24 extra minutes of EEG data to
obtain 72 minutes of EEG data in total per subject. A version
of this dataset is available online along with a more detailed
description [24]. During preprocessing we re-referenced the
EEG data to the Cz electrode.

In Section II-D1, we briefly described the procedure for
WESN emulation, originally used in [9]. We created the
candidate two-electrode single-channel nodes for WESNs with
a maximum distance of r = 5cm between the electrodes. This
corresponds to the configuration used in [9] ensuring that a
large number of candidate node locations and orientations are
generated but at the same time the electrodes of each pair
have a reasonably short distance between them to emulate
a miniaturized EEG-sensor node. This resulted in P = 209
candidate nodes with an average inter-electrode distance of
3.7 cm.

B. AAD performance evaluation
For validation of the different channel selection algorithms

described in this paper, we used the AAD procedure from [2].
First, we estimated a subject-dependent linear spatio-temporal
decoder ŵ based on (1) where d contains the envelope of the

attended speaker. We filtered both the EEG data and the speech
envelope using a bandpass filter between 1 − 9Hz and we
followed it by downsampling both to 20Hz. In the comparison
between UB-G and OCS on the standard cap-EEG channel
selection, we used the value of Q = 6, which corresponds to
time delays up to 250ms for both channel selection as well
as performance evaluation. It has been shown that the time
delays up to 250ms are the most effective for reconstructing
envelopes using EEG for the sake of attention decoding [1],
[2]. Within these delays, the delays between 140ms and
200ms have been shown to be the most discriminative to
decode auditory attention to speech [1], [25]. We selected the
lower value of Q in this case to solve the MIQP-based optimal
node selection in feasible time, as reducing Q leads to a lower
number of total variables in the node selection problem. For
the hybrid method, a larger value of Q is possible, but we also
set it to Q = 2 in order to compare and quantify the potential
optimality gap with OCS and OCS-GS.

We use a leave-one-trial-out cross-validation scheme, in
which the data is split in L trials of 60s. We used each trial
once as a test trial. When testing on trial l, we compute (1)
on the entire EEG recording after cutting out trial l from A
and d, to find the decoder ŵl for test trial l. The decoder ŵl

is used to reconstruct the attended speech envelope for trial l
using:

d̂l = Alŵl (9)

Once the attended speech envelope has been estimated, we
found the Pearson correlation coefficients between d̂l and the
attended and unattended speech envelopes in trial l as ra
and ru respectively. We considered a trial to be successfully
decoded if ra > ru. We used the percentage of successfully
decoded trials as the AAD performance measure (analyzed per
subject). Similar to [18], we also report the mean attended
correlation coefficients ra (averaged across trials within a
subject). The mean attended correlation is larger when the
reconstruction in (1) is better.

IV. RESULTS

A. AAD Performance Analysis
1) Channel selection in standard cap EEG: We compared

the optimal channel selection (OCS) method to three different
approximate EEG channel selection strategies for least-squares
based neural decoding, namely group-LASSO (gLASSO)5

[14], and a greedy selection based on either decoder magnitude
(DMB-G) [15], [16] or group-utility (UB-G) [9], [21], to select
N = 1, 2, . . . , 8 standard cap-EEG channels in an AAD task.
The decoding accuracy and mean attended correlation across
subjects are plotted in Fig. 2a and Fig. 2b respectively. Note
that running OCS for values of N ≥ 10 takes an unacceptably
long time, which is why we exclude these cases from the
analysis. However, it is noted that the performance of the OCS-
based selected channels for N = 8 is close to the performance
with all 63 channels, so the OCS is expected to reach the
full-channel performance for N ≥ 10. We compared each of
the approximate methods to OCS using linear mixed-effects
(LME) models with the number of channels (N ) and the two
methods (OCS and an approximate method) as fixed effects,
and subjects as random effect. We used the software R (version

5In the experiments in this paper, we used the implementation of gLASSO
from [26].
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Fig. 2. OCS compared to all the approximate methods, namely gLASSO, DMB-G and UB-G, with respect to (a) the decoding accuracy (b) the mean attended
correlation. The black dots represent outliers, values beyond 1.5× IQR (inter quartile range) from the quartiles.

3.6.2), and the R package ‘nlme version 3.1-144’ [27] for
fitting the linear mixed effect models. All the linear mixed
effect models in this work were fitted by maximizing the
restricted log-likelihood, and the residuals were checked for
normality to ensure a good fit. When we compared DMB-G
and gLASSO to OCS, we found these approximate methods to
be significantly different from OCS with p− values < 0.001
for both decoding accuracy and attended correlation compar-
isons. However, when we compared UB-G to OCS there was
no significant difference in decoding accuracies (p = 0.63)
and mean attended correlation (p = 0.16) between the two
methods. In Fig. 3, the distribution of the best Cz-ref channels
selected by the OCS and UB-G method across 16 subjects are
shown in the form of a heatmap topoplot.

2) Node selection in WESNs with galvanic separation con-
straints: Next, we used OCS and its modified version of OCS-
GS in (8a)-(8e) to investigate the impact of galvanic separation
of nodes of a WESN on AAD performance. Fig. 4 demon-
strates this comparison. Please note that here the comparison
is not between two methods (in both cases we performed
an optimal selection based on an MIQP) but between the
two scenarios, namely node selection with galvanic separa-
tion (GS) constraints and without galvanic separation (NGS)
constraints. Due to the size of the MIQP with P = 209
candidate channels, we could only find solutions in a feasible
computation time for N ≤ 6 selected channels and for Q = 2
(see also Section III-B). For N = 5, we had to exclude four
subjects and for N = 6, we had to exclude five subjects, as
the solver could not find an optimal solution for these subjects
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Fig. 3. Heatmap topoplots illustrating the scalp locations of the best Cz-ref channels selected by the OCS and UB-G methods across all subjects. The color
bar indicates the percentage of 16 subjects selecting an electrode.

due to numerical issues. For all the other cases of N , all 16
subjects have been included in the comparisons.

Fig. 4 demonstrates that the galvanic isolation between
nodes of a WESN has no negative impact on AAD perfor-
mance, which we also confirmed using statistical tests. We
used Wilcoxon signed rank tests6 with and without Holm-
Bonferroni correction to compare the decoding accuracies and
attended correlation for each value of N . We observed no
significant differences between the two scenarios with respect
to decoding accuracies and attended correlation. The Wilcoxon
signed rank test p−values and Holm-Bonferroni corrected p-
values are provided in Table I.

We used the hybrid method proposed in Section II-D3 to
perform node selection with galvanic separation constraints.
The pruning stage of the hybrid method pruned P = 209
candidate nodes to K = 64 candidate nodes. We applied the
OCS-GS method to select N nodes from this set of K can-
didate nodes with galvanic separation constraints. In order to
evaluate a possible optimality gap between the hybrid and the
OCS-GS methods, we compared the AAD performance and
the mean attended correlation across subjects between both
methods for WESN node selection with galvanic separation
constraints. The results are shown in Fig. 5, which suggest
that the hybrid method performs very similar to the optimal
methods, both in terms of decoding accuracies (Fig. 5a) and
mean attended correlation (Fig. 5b). A Wilcoxon signed rank
test, with and without Holm-Bonferroni corrections, failed to

6LME model based statistical analysis is not used in all of the comparisons
in the remaining of this paper since the check for normality of the residuals
failed in all comparisons, implying a bad fit of the model.

Comparison N
Dec. Acc. Att. Corr.
no HB HB no HB HB

GS 2 0.06 0.35 0.43 1
3 0.35 1 0.37 1

vs 4 0.23 1 0.54 1

NGS 5 0.81 1 0.21 1
6 0.21 1 0.03 0.2

OCS-GS 2 0.70 1 0.89 1
3 0.98 1 0.15 1

vs 4 0.33 1 0.52 1

Hybrid 5 0.57 1 0.45 1
6 0.61 1 0.96 1

Hybrid
2 0.4 1 0.03 0.2
3 0.82 1 0.30 1
4 0.99 1 0.46 1

vs 5 0.91 1 0.87 1

UB-G
6 1.00 1 0.60 1
7 0.83 1 0.60 1
8 0.59 1 0.06 0.37

TABLE I
p−VALUES OF PAIRWISE COMPARISONS OF AAD

PERFORMANCES,DECODING ACCURACY (DEC.ACC) AND ATTENDED
CORRELATION (ATT. CORR.), USING A WILCOXON SIGNED RANK TEST

WITH AND WITHOUT HOLM-BONFERRONI (HB) CORRECTION.

reject the null hypothesis when comparing both node selection
methods with galvanic separation constraints. The p−values
can be found in Table I.

Since we now established that the hybrid method performs
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Fig. 5. Galvanically separated node selection: Optimal node selection with galvanic separation constraints (OCS-GS) compared to hybrid node selection
with galvanic separation constraints. Q = 2 with sample delays 150ms and 200ms. The black dots represent outliers, values beyond 1.5× IQR, from the
quartiles.

equally well as the OCS-GS method, we can use the hybrid
method to re-investigate the impact of galvanic separation of
nodes. The hybrid method now allows to select more channels
(up to N = 8) and to include all sample delays in the decoder
up to 250ms (Q = 6). The results are shown in Fig. 6.
The figures seem to indicate little to no effect of galvanic
separation on AAD performance, which confirms the earlier
analysis in Fig. 5 for Q = 2 and N ≤ 6. A Wilcoxon
signed rank test without Holm-Bonferroni corrections, failed
to reject the null hypothesis in all but one case of N = 2
for attended correlation (p = 0.03). However, with Holm-

Bonferroni correction, the Wilcoxon signed rank test did not
show a significant difference for this case. All the p−values
can be found in Table I.

B. Computation Time Analysis
In Fig. 7, we show a comparison of the computation times to

select N = 1, 2 . . . , 6 WESN nodes(out of P = 209) without
galvanic separation using OCS, Hybrid (where the OCS-GS
step is replaced with an OCS step for fairness) and UB-G.
The computations were carried out using MATLAB R2018b
on an Intel® Xeon® CPU clocked at 2.50GHz. The expected
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Fig. 6. Galvanically separated node selection: Hybrid node selection with galvanic separation constraints compared to UB-G node selection without galvanic
separation constraints. Q = 6 with sample delays 0ms to 250ms. The black dots represent outliers, values beyond 1.5× IQR, from the quartiles.

computation time when performing an exhaustive search over
all possible channel combinations for optimal selection is also
plotted. A computation time of 0.01 seconds was assumed for
evaluating one combination, which is the actual time taken on
an Intel® Xeon® CPU clocked at 2.50GHz using MATLAB
R2018b. Compared to the exhaustive search, the OCS method
clearly finds optimal solutions in computationally feasible time
for small values of N . Nevertheless, the computation time of
OCS, and the hybrid method increases exponentially with N
(linearly on a logarithmic scale as in Fig. 7). However, for
N > 3, the hybrid method’s computation time is smaller than
OCS by at least an order of magnitude. The hybrid method
prunes the P = 209 candidate nodes P by to a set of only K =
64 before applying OCS. In addition, we can clearly observe
the advantage of UB-G over the other two methods. UB-G is
much faster and its computation time does not increase with
N due to the greedy implementation.

V. DISCUSSION

The first goal of this paper was to find exact solutions to
the EEG channel selection problem for least-squares based
neural decoding in a feasible time (as opposed to an exhaustive
search over all possible combinations) thereby allowing us
to quantify the potential optimality gap of three state-of-the-
art approximate channel selection methods. To this end, we
proposed an OCS method based on an MIQP formulation
of the channel selection problem of which the solution is
guaranteed to be the truly optimal selection of channels in
least squares sense. Fig. 2a and Fig. 2b suggest that, among
the approximate methods, UB-G is the only one which does
not have a clear optimality gap with the OCS. Moreover,
statistical tests seem to indicate no significant difference
between the UB-G and OCS methods as detailed in Section IV
whereas both the other approximate methods, namely DMB-G
[15]–[17] and gLASSO [14], perform significantly worse than
OCS. We note that this result of statistical testing only implies

lack of sufficient evidence to reject the null-hypothesis, i.e., it
does not guarantee the null-hypothesis to be true. Nevertheless,
the large p values suggest that -in case there would be a
optimality gap- it is at least very small compared to the natural
spread across different subjects. In addition, the distribution
of the electrodes selected by the OCS and UB-G methods, as
shown in Fig. 3, also indicate that both methods tend to select
electrodes from similar scalp locations in the majority of the
subjects.

The results shown in Fig. 2a and Fig. 2b confirm the results
in [9], where the advantage of UB-G over other approximate
methods was already observed, yet a comparison with the
optimal channel combination was not possible due to the
infeasible computation time to test all possible channel combi-
nations. Due to the MIQP formulation proposed in Section II,
we were able to circumvent that problem, at least for values
up to N = 8. As a reference, assuming 0.01 seconds for
evaluating one combination, an exhaustive search over all
channel combinations to find the best 8 channels from 64
would require 1.4 years. The lack of a significant optimality
gap adds further support for using greedy selection using the
LS-utility metric as a proxy for optimal selection. Furthermore,
due to the algebraic trick provided in [21] resulting in the
expression (6), the computation of the LS-utility metric is
sufficiently cheap to be used in practice, as illustrated in Fig. 7.

While our initial analysis focused on channel selection in
standard cap EEG, we also investigated the node selection
problem in WESNs. WESNs are envisaged to use a multitude
of mini-EEG devices thereby increasing spatial resolution and
scalp coverage with full flexibility due to the absence of
wires between the EEG sensor devices. Due to this absence
of wires, the individual EEG sensor devices are supposed
to be galvanically separated. To find the ideal locations for
such individual mini-EEG devices in a WESN context and
to study the impact of galvanic separation, the second goal
of the paper was to perform node selection with the inclusion
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of topological constraints. In [14], the inclusion of topological
constraints was explored but in an approximate group-LASSO
framework using a heuristic. In Section II-D we modified
the OCS method to include topological constraints in the LS
optimization problem itself, again in the form of an MIQP. We
used this approach, referred to as OCS-GS, to select an optimal
set of N galvanically separated nodes to form a WESN.
Furthermore, the impact of galvanic separation in WESNs was
analyzed and in Fig. 4 and Fig. 6 it is shown that WESNs using
galvanically separated nodes and WESNs constructed using
nodes without galvanic separation constraint perform similarly.
The statistical analysis reported in Table I also demonstrates
this. These results are promising and reassuring to further
investigate the use of WESNs for AAD, as they show that the
absence of wires across the EEG sensors, thereby effectively
decoupling their EEG content, does not affect the decoding
performance when fusing the EEG activity across the different
sensors.

However, a major problem of the topology-constrained
MIQP in (8a)-(8e) is that it requires long computation times.
As observed in Section IV-B, the optimal selection requires
hours to complete for N > 3, with the time requirements
increasing exponentially with the number of channels to be
selected. On the other hand, the faster UB-G method does not
allow to take topological constraints into account. Thus, we
proposed a hybrid approach in Section II-D3 which utilizes
the best features of both greedy (UB-G) and optimal (OCS)
channel selection methods to result in a compromise in terms
of computation time and optimality while also allowing to
include topological constraints as in the OCS-GS method.
We used the hybrid technique to perform node selection
with galvanic separation constraints and this was compared
with OCS-GS. The results shown in Fig. 5 demonstrate that
despite the initial greedy pruning of candidate nodes the
hybrid method obtains performances similar to direct optimal
node selection based on OCS-GS. Since finding optimal node
locations is a one-time exercise, the hybrid method offers a
feasible alternative to find good node locations for constructing
WESNs.

VI. CONCLUSION

In this paper, we proposed an MIQP-based channel selection
method which performs optimal channel selection for EEG
in a least-squares based neural decoder design. We used this
optimal channel selection method to investigate the optimality
gap of state-of-the-art approximate channel selection methods
compared to an optimal selection. We found the greedy method
based on the LS-utility metric to perform similar to the optimal
channel selection in an AAD task for standard cap EEG
channels but requiring considerably less computation time,
thereby providing a practical solution for the channel selection
problem. We also used a topology-constrained modification
of the MIQP to solve a WESN node selection problem with
galvanic separation constraints. We showed that the galvanic
separation constraints do not appear to have a significant
impact on the AAD performance. Finally, to reduce the
computation time but still include topological constraints and
obtain near-optimal channel selection results, we proposed a
hybrid approach of MIQP-based channel selection with greedy
utility-based pruning, which showed no significant optimality
gap with the optimization of the full MIQP.
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