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Abstract. The goal of change point detection (CPD) is to find abrupt
changes in the underlying state of a time series. Currently, CPD is
typically tackled using fully supervised or completely unsupervised ap-
proaches. Supervised methods exploit labels to find change points that
are as accurate as possible with respect to these labels, but have the
drawback that annotating the data is a time-consuming task. In con-
trast, unsupervised methods avoid the need for labels by making assump-
tions about how changes in the underlying statistics of the data correlate
with changes in a time series’ state. However, these assumptions may be
incorrect and hence lead to identifying different change points than a
user would annotate. In this paper, we propose an approach in between
these two extremes and present AL-CPD, an algorithm that combines
active and semi-supervised learning to tackle CPD. AL-CPD asks di-
rected queries to obtain labels from the user and uses them to eliminate
incorrectly detected change points and to search for new change points.
Using an empirical evaluation on both synthetic and real-world datasets,
we show that our algorithm finds more accurate change points compared
to existing change point detection methods.

Keywords: Change point detection · Active learning · Semi-supervised
learning.

1 Introduction

Time series are time-ordered sequences that report the observed values of a vari-
able of interest at each time step. The observed values depend on the underlying
state of the system, which usually does not remain constant but changes over
time. For example, when monitoring a person’s physical activity using on-body
accelerometers, the state of the system is the activity that is currently being
⋆ Equal contribution
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performed, which affects the observed values in the acceleration signals. The
problem of change point detection (CPD) is to locate abrupt changes in the un-
derlying state of a time series [1]. In the example of physical activity monitoring,
change points occur when the person transitions from one activity to another.

Existing CPD algorithms can be categorised into two groups: supervised
and unsupervised approaches. Supervised CPD methods exploit labels to learn
where the change points of a time series are located. These methods treat the
CPD problem as a multi-class [20] or binary [10, 11] classification task. Multi-
class methods classify each window of the time series as its corresponding state.
Change points are detected when the predicted state changes between two con-
secutive windows. Binary classification methods learn whether a given location
in the time series is a change point or not. The features used as input to super-
vised methods depend on the application and the type of data that is used. For
example, supervised segmentation for transportation mode detection [20] uses
application-specific features such as the magnitude of the acceleration measured
by an accelerometer, or the speed derived from GPS data. Therefore, these meth-
ods are hard to generalise to other datasets. Moreover, they require a sufficient
amount of labelled data in order to achieve good detection accuracy, and the
resources and time needed for annotating the data may not always be available.

Unsupervised CPD methods can be subdivided into classical model-based
approaches and data-driven model-free approaches. Classical approaches such as
the cumulative sum (CUSUM) [3] and the generalised likelihood ratio (GLR) [2]
use a sliding window approach to estimate the underlying statistical models of
adjacent subsequences of the time series. The parameters in the estimated mod-
els are assumed to be constant if there is no change point in between. Hence, a
change point is detected when the models significantly differ. Some other stud-
ies [14, 15] further improved the performance of these approaches by estimating
the density ratio. The assumption of these methods is that the density ratio of
consecutive window pairs remains constant when there is no change point. Ap-
proaches such as FLOSS [12] and ESPRESSO [9] rely on changes in temporal
shape patterns, whereas AutoPlait [16] detects changes in the parameters of a
hidden Markov model learned from the time series. However, all model-based
algorithms face the same problem: their final performance heavily depends on
whether the actual data follows the assumed parametric model. It is often hard
to guarantee this condition in complex real-world datasets. Recently, a variety
of unsupervised data-driven learning algorithms have been proposed, which are
typically based on (deep) neural networks such as convolutional neural networks
(CNN) [17] and graph neural networks (GNN) [22]. However, these methods also
make assumptions about the changes in the underlying statistics of the time se-
ries. For example, the time-invariant representation (TIRE) framework [8] uses
an autoencoder under the assumption that some latent features should remain
constant in the absence of a change point.

Despite the wide range of existing algorithms, finding the correct change
points of a time series remains a challenging task because the time series may
have multiple possible definitions of change points. On the one hand, supervi-
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sion enables tailoring the method to the problem at hand, but requiring fully
annotated data imposes a huge time burden on a user. On the other hand, unsu-
pervised approaches rely on assumptions which may not correspond to the user’s
intuitions or may not be appropriate for a specific problem. Hence a mismatch
can arise between the change points found by the algorithm and the correct ones.

In order to fill this gap, we propose an active, semi-supervised approach to
change point detection. By employing active learning, we can focus the labelling
effort to specific locations in the time series that will be particularly informative
in order to minimize the manual effort. In summary, our contributions are as
follows:

1. We propose an active learning approach to CPD (AL-CPD) which asks a
small number of directed queries to the user in order to obtain labels. AL-
CPD exploits these labels to (1) eliminate incorrectly detected change points
and (2) detect new change points in a semi-supervised setting.

2. We perform an empirical evaluation on both synthetic and real-world time
series and show that AL-CPD outperforms existing CPD methods.

2 AL-CPD

In change point detection, the goal is to find abrupt transitions in the underlying
state of a time series. More specifically, we define the problem as follows:

Given: A set of n time series x1, . . . , xn

Find: Locations t1i , . . . , t
si
i of the change points of each series xi

The input consists of n sequences x1, . . . , xn where each xi is a numerical time
series that can be univariate or multivariate. Instead of representing the data
as a single long time series, our input format can represent time series collected
over multiple batches. For example, an activity recognition dataset is typically
collected from multiple subjects. Our data format can represent each subject’s
data as a separate sequence. Each sequence xi consists of multiple segments
that each correspond to an underlying state of the time series. The goal is to
find the locations t1i , . . . , t

si
i of the change points, i.e., the transitions between

the segments, for each sequence. Note that CPD can be tackled in an offline or
online setting. Here, we only consider the offline case where all data is collected
before running the algorithm.

Our algorithm approaches the offline CPD task by employing an active learn-
ing strategy that queries a human annotator in order to intelligently acquire la-
bels that the algorithm can exploit to better identify the relevant change points.
Because each query entails a manual effort from the user, the goal is to find
good change points using a small number of queries. Designing such an algo-
rithm poses two key challenges. First, given a set of potential change points,
which ones should be queried to the user? Because this focuses on a fixed set
of change points, this step of the algorithm is concerned with increasing the
precision, that is, eliminating false positive change points. Second, how can the
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acquired labels be used to improve the algorithm used to detect candidate change
points? This requires moving from an unsupervised change point detection set-
ting to a semi-supervised setting. The effect of this step is to identify new change
points in order to increase the recall, i.e., the fraction of ground truth change
points that are found by the algorithm.

2.1 Algorithm outline

Algorithm 1 shows the main steps of AL-CPD, our proposed change point de-
tection algorithm. Initially, the algorithm has no labels and hence operates in
an unsupervised setting. As shown on lines 1–3, we run TIRE [8] on each se-
quence to find the initial set of candidate change points C. By automatically
learning features using an autoencoder (AE), TIRE makes no distributional as-
sumptions about the change points. The AE takes a window of size s as input
and learns two types of features: time-invariant features (f ti) which are used for
detecting change points, and time-variant features (f tv) which are only used to
reconstruct the time series. When no change point is present, the time-invariant
features should remain constant. Therefore, the model minimises the dissimilar-
ity between the time-invariant features extracted from adjacent windows using
a time-invariant loss function:

Lti =
∑
t

||f tit+1 − f tit ||2.

where f tit and f tit+1 are the time-invariant features at time t and t+1, respectively.
After training, TIRE detects candidate change points by finding peaks in the
dissimilarity between the time-invariant features of consecutive windows.

On lines 4–16, the active learning phase of our algorithm improves the can-
didate change points using two steps: (1) selecting candidates (lines 8–11), and
(2) finding new candidates (lines 12–15). These steps represent our key algo-
rithmic contributions. The active learning phase asks queries one by one until
the number of queries reaches a user-defined query budget b. When this phase
terminates, the algorithm returns all selected candidate change points. In the
following two subsections, we describe each step in detail.

2.2 Selecting candidate change points

The first step employs an active learning strategy to identify and remove in-
correctly detected candidate change points. For this, we train a random forest
classifier [4] m that classifies each candidate in C as a correct or incorrect change
point and only keep the candidates predicted as correct change points. We use a
model instead of TIRE’s change point score in order to avoid querying the label
for multiple similar candidate change points. While other classification meth-
ods could be relevant, we selected random forests due to their computational
efficiency and their ability to select relevant features.

In order to train a model, we construct a training set as follows. First, we
extract a feature representation from each candidate change point t in C using
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Algorithm 1: AL-CPD

Input: Time series X = {x1, . . . , xn}, window size s, query budget b
Output: Locations of the change points of each time series xi

1 Initialisation
2 C = TIRE(X, s)
3 r = ⌊|C| ∗ 0.1⌋
4 Active learning
5 Q = ∅
6 m = TrainClassifier(C,Q, s)
7 while |Q| < b do
8 q = LeastCertainCandidate(C,m)
9 a = Query(q)

10 Q = Q ∪ {(q, a)}
11 m = TrainClassifier(C,Q, s)
12 if |Q| mod r = 0 then
13 T = {t ∈ C | pm(t) > 0.9}
14 C = C ∪ Filter(STIRE(X,T, s), C, s)

15 end
16 end
17 return {t ∈ C | pm(t) > 0.5}

TSFuse [6]. While there exist feature extraction systems that compute a similar
set of features, we employ TSFuse because this feature extraction system has
an efficient implementation. In an active learning system, this is important to
minimise the time that the user has to wait. Using the fast set of transformers
listed in [7], we build a feature vector F1 from the interval [t− s, t] and F2 from
[t, t + s] for each candidate t. We then compute the difference ∆F = F2 − F1

to measure the change in the feature values. Second, because the number of
labelled examples is initially small, we use the local and global consistency label
spreading algorithm [23] to increase the amount of labelled data.5 Third, every
candidate that has a label or for which the propagated label has a certainty
larger than 90% is added to the training set.

We employ an uncertainty sampling active learning strategy to acquire la-
bels. In each iteration of Algorithm 1, the LeastCertainCandidate(C,m) function
computes the certainty of each candidate t in C as |pm(t) − 0.5| where pm(t)
is the probability predicted by the model m. It returns the candidate with the
lowest certainty as the query q. The Query(q) function obtains the answer a

5 Because the label propagation algorithm performs poorly when given high-
dimensional data, we first reduce the dimensionality of the feature space using a
principal component analysis (PCA) transformation (setting the number of com-
ponents such that the explained variance is at least 0.9) and standardise the PCA
components.
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from the user, which is true if there is a change point close to queried candidate
change point and false otherwise. We add each query-answer tuple (q, a) to Q.

2.3 Finding new candidate change points

Whereas the first step focuses on improving the precision by selecting change
points, the second step aims to identify new change points in order to improve
the recall. Using the unsupervised TIRE approach to find the initial candidate
change points may result in some of the true change points being missed. There-
fore, we propose a semi-supervised version of TIRE (“STIRE”).

A key challenge to adapting TIRE is its time-invariant loss [8], which pushes
the feature representations of neighbouring windows to be close to each other,
even when labelled data indicates that this should not be the case due to the
presence of a ground-truth change point. Therefore, we modify the time-invariant
loss function such that it only forces the time-invariant features for consecutive
windows to be close to each other in the latent space when the algorithm is
confident that no change point occurs. To this end, we assign labels to all input
time windows corresponding to their underlying state. The labels vary only at
the temporal indices of confident accurate detections, i.e., the candidate change
points for which the random forest model of step 1 predicts a probability larger
than 0.9. We replace the time-invariant loss with the triplet loss [21] which is
defined as follows:

Ltri =
∑
t

max{dp(f tit )− dn(f
ti
t ) + γ, 0},

with

dp(f
ti
t ) =

{
||f tit+1 − f tit ||22 if pm(t) > 0.9 or a is true

||f tit − f tit−1||22 otherwise

and
dn(f

ti
t ) = ||f tit − f tiN ||22,

where γ represents the pre-defined margin, and pm(t) is the probability that there
is a change point at time t (more specifically a change between time t − 1 and
t) as predicted by the random forest model m. f tit represents the time-invariant
features at time t and f tiN denotes the time-invariant features of a negative time
window sample, i.e., the time-invariant features extracted from a time window
with a different label than the current window at time t. We always select this
negative time window randomly from all the segments that come before the
previous or after the next true positive change point that was selected by the
random forest model of step 1 (pm(t) > 0.9). Similar to the original TIRE model,
we also include the reconstruction loss:

Lrec =
∑
t

||ŵt − wt||22,
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which encourages the encoded features to contain all information needed for
reconstructing the current input window wt at time t, where ŵt denotes the re-
constructed window. Finally, the reconstruction loss is combined with the triplet
loss via a weighted sum:

L = Lrec + λLtri,

where λ controls the balance between the two losses.
After training STIRE, we filter the change points by removing all duplicates,

i.e., all candidates that were previously identified. We only keep the candidates
for which the time distance to any candidate change point in C is larger than
the window size s. Since training STIRE can be time-consuming, we only run
this step after every r queries, where we set r to 10% of the number of initial
change point candidates: r = ⌊|C| ∗ 0.1⌋.

3 Experiments

We evaluate our active change point detection algorithm on both synthetic and
real-world time series datasets to answer the following research questions:

Q1: Can AL-CPD detect change points more accurately than existing methods?
Q2: How many labels does AL-CPD need to find accurate change points?
Q3: How much do each of AL-CPD’s two components, (1) using a random forest

to select candidates, and (2) using a semi-supervised TIRE variant to find
new candidates, contribute to its overall performance?

Q4: What is the sensitivity of AL-CPD to its hyperparameter values?

Because we run our experiments on multiple different applications, we are unable
to evaluate application-specific supervised methods. Therefore, we only compare
our approach to unsupervised baselines:

GLR [2] The Generalised Likelihood Ratio method fits an auto-regressive model
on each adjacent window pair of the time series and detects change points
by measuring the dissimilarity of the parameters in the AR model.

RuLSIF [15] The Relative unconstrained Least-Squares Importance Fitting
method detects change points by estimating the density ratio of each pair of
consecutive windows.

KL-CPD [5] The Kernel Learning CPD method optimises a lower bound of
test power using an auxiliary generative model. It learns features using a
Seq2Seq model and measures the dissimilarity between neighbouring win-
dows using the maximum mean discrepancy.

TIRE [8] The Time-Invariant REpresentation model maps overlapping win-
dows of the time series onto a feature space using an autoencoder. Change
points are detected based on the dissimilarity between windows in the learned
feature space.

FLOSS [12] The Fast Low-cost Online Semantic Segmentation algorithm uses
the Matrix Profile to find changes in the temporal shape patterns of the time
series. It requires the number of ground truth segments as input.
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3.1 Datasets

We run the experiments on seven datasets, of which four are artificially con-
structed and three are based on real-life measurements. Table 1 shows the prop-
erties of each dataset. The synthetic datasets are similar to those introduced
in [8] and [15]. Three of these synthetic datasets are generated based on a 1-
dimensional auto-regressive model:

s(t) = a1s(t− 1) + a2s(t− 2) + ϵt (1)

in which the error term ϵt follows a Gaussian distribution ϵt ∼ N (µt, σ
2
t ). In our

experiments, we set the initial state in (1) as: s(1) = s(2) = 0 and the default
values of the parameters are set to the same values as in [8]: a1 = 0.6, a2 = −0.5,
µt = 0, and σt = 1.5 unless explained otherwise. Each of these datasets consists
of 10 randomly generated sequences. In each sequence, 48 change points are
inserted along the temporal axis at each tn = tn−1 + ⌊τn⌋, with t0 = 0 and
tn ∼ N (100, 10). We introduce 4 types of change points, leading to the following
datasets:

Jumping Mean (JM) The Jumping Mean dataset is generated by changing
the value of µt at each tn.

Scaling Variance (SV) In the Scaling Variance dataset, the value of σt is
changed at each tn.

Changing coefficients (CC) Here, we set a2 = 0 and alternately draw a1
from two independent uniform distributions every time a change point is
crossed.

Gaussian Mixtures (GM) In this dataset, the time samples in the consecu-
tive segments are alternatively sampled from two different Gaussian mixture
distributions.

We include three real-world datasets:

Activity Recognition 1 (AR1) The HASC Challenge 2011 dataset [13] con-
sists of human activity recognition data collected by a triaxial accelerometer.
Similar to [8], we select the data from one person (subject 671) and use the
magnitude of the acceleration as input. Each segment corresponds to one of
the following six activities: staying still, walking, jogging, skipping, ascending
stairs, and descending stairs.

Activity Recognition 2 (AR2) We collected a second activity recognition
dataset from 8 participants. Each participant performed a sequence of ac-
tivities consisting of standing, walking, jogging, cycling, ascending stairs,
and descending stairs. Similar to the AR1 dataset, the magnitude of the
acceleration is collected by a triaxial accelerometer.

Bee Dance (BD) The bee dance dataset [18] consists of six sequences of a bee
performing a three-stage waggle dance. Each sequence is a three-dimensional
time series representing the location in 2D coordinates and angle differences.

All datasets except AR2 are the same datasets as those used in [8]. We did not
include the well log dataset as the number of change points for this dataset is
too small to evaluate the active learning step of our proposed algorithm.
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Table 1. Dataset properties: number of sequences, and the length and number of
change points per sequence (min.–max.).

Sequences Length Change points

JM 10 4836–4925 48
SV 10 4834–4918 48

GM 10 4847–4932 48
CC 10 4864–4907 48

AR1 1 39397 36
AR2 8 15003–25103 22
BD 6 602–1124 15–28

3.2 Methodology

Hyperparameter settings The two steps of our algorithm rely on a window
size s. For each dataset, we use a window size smaller than the expected interval
between change points, but long enough to capture the statistics of the segments.
We set s to 30 for the synthetic datasets (JM, SV, GM, CC), 300 for the activity
recognition datasets (AR1, AR2), and 15 for the bee dance dataset (BD).

In addition to the window size, our algorithm has several parameters that are
independent of the dataset. For the random forest model, we use the implemen-
tation of scikit-learn [19] with the default hyperparameter settings. For (S)TIRE,
we learn both time-domain and frequency-domain features. Each auto-encoder
learns 3 features: 2 time-invariant features and 1 time-variant feature. In the loss
function, the values of γ and λ are set to 0.1 and 0.001, respectively. We train
the networks for 200 epochs using the Adam optimiser.

Evaluation We compare the detected change points to the ground truth change
points by computing the precision, recall, and F1 score. These metrics are defined
as follows:

precision =
TP

TP + FP
recall =

TP

TP + FN
F1 score = 2 · precision · recall

precision + recall

The number of true positives (TP ) is computed as the number of predicted
change points that are within a distance s from one of the ground truth change
points. Any predicted change point that is further than s from all ground truth
change points is counted as a false positive (FP ). The number of false negatives
(FN) is the number of ground truth change points that have a distance larger
than s to any predicted change point.

Typically, evaluating active learning methods involves reporting the perfor-
mance in terms of the number of examples labelled by an annotator. In our
setting, each example corresponds to one of the candidate change points. How-
ever, the number of candidate change points identified by AL-CPD varies as
more labels are acquired. Therefore, we report the performance relative to the



10 A. De Brabandere et al.

amount of work a human would have to do to fully annotate the data. This
would require partitioning each sequence into non-overlapping windows of size s
and then labelling each window as either containing a change point or not. We
refer to the total labelling effort as the number of potential change points in a
dataset:

P =

n∑
i=1

⌊
Ni

s

⌋
where n ranges over sequences and Ni is the length of the ith sequence. The
number of potential change points P for each dataset is as follows:

JM SV GM CC AR1 AR2 BD

P 1622 1617 1622 1621 131 516 328

When running active learning, AL-CPD receives a true answer if its queried
candidate change point t is within s samples from at least one ground truth
change point. Otherwise, it receives a false answer.

3.3 Q1: Comparison to existing change point detection algorithms

Table 2 shows the precision, recall, and F1 score for the baselines and AL-
CPD. We run AL-CPD for three different query budgets that correspond to 5%,
10% and 20% of all potential change points. In terms of the F1 score, AL-CPD
substantially outperforms the baselines on all datasets after querying 20% of
the potential change point locations. On the four synthetic datasets, querying
only 5% of the potential change points leads to better results compared to the
baselines. Because of the well-defined underlying process, the synthetic datasets
contain many similar change points. Hence, learning the definition of a change
point requires fewer labelled examples (i.e., fewer queries) compared to the more
complex real-world datasets.

GLR, RuLSIF, and KL-CPD achieve a perfect recall on all datasets except
GM and BD for RuLSIF. However, these methods find many false positives,
which results in a low precision. Hence, for the 20% query budget, the improved
performance of AL-CPD over these baselines can be attributed to the better
precision. FLOSS performs worse than all other baselines and AL-CPD in terms
of all evaluation metrics. Compared to TIRE, our algorithm achieves a better
precision on all datasets and a better recall on 5 out of 7 datasets after querying
10% of the potential change point locations.

Note that for the AR1 dataset, AL-CPD scores zero for all metrics for the
5% query budget. This occurs because none of the queried candidate windows
contained a change point. Hence, the learned random forest predicts that no
other windows contain a change point, leading to all candidate change points
being discarded.
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Table 2. Precision, recall, and F1 score of each baseline and AL-CPD after querying
5%, 10%, and 20% of all possible change point locations. For each dataset, we highlight
the best-performing baseline in bold and annotate each baseline outperformed by AL-
CPD after querying 20%, 10%, and 5% of the change point locations with |, ||, and |||,
respectively.

Precision

Baselines AL-CPD

GLR RuLSIF KL-CPD FLOSS TIRE 5% 10% 20%

JM 0.584||| 0.590||| 0.573||| 0.548||| 0.861||| 0.923 0.945 0.990
SV 0.585||| 0.589||| 0.581||| 0.556||| 0.702||| 0.756 0.810 0.908

GM 0.578||| 0.596||| 0.582||| 0.565||| 0.906||| 0.982 1.000 1.000
CC 0.583||| 0.057||| 0.574||| 0.571||| 0.738||| 0.790 0.836 0.954

AR1 0.354 || 0.366 || 0.382 || 0.389 || 0.500 || 0.000 0.889 0.941
AR2 0.485||| 0.532||| 0.523||| 0.415||| 0.630||| 0.826 0.856 0.973
BD 0.670||| 0.679||| 0.682||| 0.474||| 0.741||| 0.809 0.833 0.869

Recall

Baselines AL-CPD

GLR RuLSIF KL-CPD FLOSS TIRE 5% 10% 20%

JM 1.000 1.000 1.000 0.548||| 0.944||| 0.962 0.977 0.979
SV 1.000 1.000 1.000 0.556||| 0.852||| 0.919 0.933 0.940

GM 1.000 0.994 1.000 0.565||| 0.987 || 0.985 0.994 0.994
CC 1.000 1.000 1.000 0.571||| 0.783||| 0.831 0.875 0.875

AR1 1.000 1.000 1.000 0.556 | 0.861 0.000 0.361 0.611
AR2 1.000 1.000 1.000 0.591 || 0.830 0.551 0.722 0.807
BD 1.000 0.852 1.000 0.453||| 0.717||| 0.764 0.775 0.852

F1 score

Baselines AL-CPD

GLR RuLSIF KL-CPD FLOSS TIRE 5% 10% 20%

JM 0.738||| 0.742||| 0.729||| 0.548||| 0.900||| 0.942 0.961 0.985
SV 0.738||| 0.741||| 0.735||| 0.556||| 0.770||| 0.829 0.867 0.923

GM 0.733||| 0.745||| 0.736||| 0.565||| 0.945||| 0.983 0.997 0.997
CC 0.736||| 0.108||| 0.729||| 0.571||| 0.760||| 0.810 0.855 0.912

AR1 0.523 | 0.536 | 0.553 | 0.458 || 0.633 | 0.000 0.514 0.741
AR2 0.649||| 0.692 || 0.684 || 0.486||| 0.709 || 0.650 0.774 0.880
BD 0.799 | 0.752||| 0.806 | 0.453||| 0.726||| 0.779 0.793 0.857
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3.4 Q2: Labelling effort of AL-CPD

We investigate the effect of the number of acquired labels on AL-CPD’s perfor-
mance. Specifically, we evaluate how many queries are required to obtain an F1
score that is larger than a chosen percentage of the final F1 score achieved when
using an unlimited query budget.

Table 3 shows the percentage of change point locations needed to achieve
an F1 score of at least 80%, 90% and 95% of the final F1 score. Achieving an
F1 score of at least 80% of the final F1 score requires labelling between 0.1%
and 21.4% of all potential change point locations. In other words, the user saves
between 78.6% and 99.9% of the labelling effort compared to manually labelling
each window. Even to achieve an F1-score of 95% of the final one, AL-CPD still
reduces the effort compared to completely labelling the data by at least 68.7%.

Table 3. Percentage of change point locations that the user has to label in order to
obtain an F1 score of at least 80%, 90% and 95% of the final F1 score.

JM SV GM CC AR1 AR2 BD

80% 0.1% 1.9% 0.7% 0.2% 21.4% 7.2% 3.7%
90% 0.1% 10.9% 0.7% 9.3% 30.5% 16.1% 10.7%
95% 5.1% 19.3% 0.9% 15.7% 31.3% 22.9% 25.0%

3.5 Q3: Contribution of each component of AL-CPD

Our algorithm has two components: (1) selecting candidates by training a clas-
sifier, and (2) finding new candidates by training TIRE in a semi-supervised
setting. For research question Q3, we analyse the effect of each component on
the algorithm’s performance. To do so, we perform an ablation study that com-
pares the AL-CPD algorithm to two variants:

1. The A variant includes only component 1 of our algorithm,
i.e., the active learning step for selecting candidates.

2. The S variant includes only component 2 of our algorithm,
i.e., the semi-supervised setting of TIRE for finding new candidates.

In order to compare our algorithm to the two variants, we evaluate the area
under the learning curve (ALC) of the precision, recall, and F1 score. The ALC
is defined as follows:

ALC =
1

n

n∑
i=0

e(i)

where n is the total number of queries and e(i) is the evaluation metric (i.e.,
precision, recall, or F1 score) computed after the ith query.
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Table 4 shows that the A variant results in a better precision than the S
variant on most datasets. However, because the candidate selection component
of the A variant removes some of the true positive change points, this variant
has the lowest recall. By searching for new candidates, the S variant improves
the recall on all datasets. In terms of the F1-score, the full AL-CPD algorithm
outperforms both A and S on four datasets. For the other three datasets, the S
variant outperforms AL-CPD due to a better recall.

Table 4. Area under the learning curve of the precision, recall, and F1 score for each
variant. The performance of the best variant is highlighted in bold.

Precision Recall F1 score

A S AL-CPD A S AL-CPD A S AL-CPD

JM 0.973 0.961 0.968 0.941 0.974 0.972 0.956 0.967 0.970
SV 0.885 0.832 0.895 0.847 0.926 0.927 0.862 0.875 0.909

GM 0.974 0.977 0.974 0.965 0.991 0.971 0.973 0.984 0.976
CC 0.910 0.849 0.914 0.767 0.874 0.857 0.829 0.860 0.883

AR1 0.757 0.759 0.798 0.515 0.868 0.560 0.592 0.802 0.637
AR2 0.923 0.840 0.933 0.700 0.861 0.760 0.782 0.844 0.827
BD 0.864 0.836 0.877 0.701 0.805 0.821 0.769 0.819 0.845

3.6 Q4: Sensitivity analysis

For research question Q4, we analyse the hyperparameter sensitivity of AL-
CPD. Our algorithm has three main hyperparameters: the window size s and
two hyperparameters specific to STIRE: the balance between the reconstruction
and triplet loss λ and the margin γ.

Figure 1 compares the ALC of the F1 score for three different values of each
hyperparameter. For the window size s, we multiply the default window sizes
by a factor 0.5, 1 and 1.5 and report the average ALC of the F1-score over
all datasets. On average, shorter window sizes decrease the F1 score. This is
expected since capturing the characteristics of a segment requires a sufficiently
long portion of the time series. Longer windows do not further improve the
F1 score, and may even decrease the performance when exceeding the distance
between consecutive change points. The performance of our algorithm is robust
w.r.t. the reconstruction and triplet loss λ and the margin γ, since the ALC of
the F1 score is almost not affected by the values of these hyperparameters.

4 Conclusion

This paper presented AL-CPD, a change point detection algorithm that com-
bines active and semi-supervised learning. Instead of only relying on assumptions
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Fig. 1. ALC of the F1 score for three different values of the window size s, the balance
between the reconstruction and triplet loss, and the margin γ. The ALC is averaged
over all datasets.

about the changes in the underlying statistics of the given time series, AL-CPD
asks directed queries to the user in order to obtain labels. Our algorithm ex-
ploits these labels to eliminate incorrectly detected change points and to search
for new change points. In an empirical evaluation, we compared the performance
of AL-CPD to existing unsupervised CPD methods and showed that AL-CPD
is able to find more accurate change points with a query budget of at most 20%
of all potential change points.
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