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EEG-informed attended speaker extraction from
recorded speech mixtures with application in

neuro-steered hearing prostheses
Simon Van Eyndhoven, Tom Francart, and Alexander Bertrand, Member, IEEE .

Abstract—Objective: We aim to extract and denoise
the attended speaker in a noisy, two-speaker acoustic
scenario, relying on microphone array recordings from
a binaural hearing aid, which are complemented with
electroencephalography (EEG) recordings to infer the
speaker of interest. Methods: In this study, we propose
a modular processing flow that first extracts the two
speech envelopes from the microphone recordings, then
selects the attended speech envelope based on the EEG,
and finally uses this envelope to inform a multi-channel
speech separation and denoising algorithm. Results:
Strong suppression of interfering (unattended) speech
and background noise is achieved, while the attended
speech is preserved. Furthermore, EEG-based auditory
attention detection (AAD) is shown to be robust to the
use of noisy speech signals. Conclusions: Our results
show that AAD-based speaker extraction from micro-
phone array recordings is feasible and robust, even
in noisy acoustic environments, and without access to
the clean speech signals to perform EEG-based AAD.
Significance: Current research on AAD always assumes
the availability of the clean speech signals, which limits
the applicability in real settings. We have extended this
research to detect the attended speaker even when only
microphone recordings with noisy speech mixtures are
available. This is an enabling ingredient for new brain-
computer interfaces and effective filtering schemes in
neuro-steered hearing prostheses. Here, we provide
a first proof of concept for EEG-informed attended
speaker extraction and denoising.

Index Terms—EEG signal processing, speech
enhancement, auditory attention detection, brain-
computer interface, auditory prostheses, blind source
separation, multi-channel Wiener filter
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I. Introduction

In order to guarantee speech intelligibility in a noisy,
multi-talker environment, often referred to as a ‘cocktail
party scenario’, hearing prostheses can greatly benefit
from effective noise reduction techniques [1], [2]. While
numerous and successful efforts have been made to achieve
this goal, e.g. by incorporating the recorded signals of
multiple microphones [2]–[4], many of these solutions
strongly rely on the proper identification of the target
speaker in terms of voice activity detection (VAD). In an
acoustic scene with multiple competing speakers, this is a
highly non-trivial task, complicating the overall problem
of noise suppression. Even when a good speaker separation
is possible, a fundamental problem that appears in such
multi-speaker scenarios is the selection of the speaker of
interest. To make a decision, heuristics have to be used,
e.g., selecting the speaker with highest energy, or the
speaker in the frontal direction. However, in many real-
life scenarios, such heuristics fail to adequately select the
attended speaker.

Recently however, auditory attention detection (AAD)
has become a popular topic in neuroscientific and audio-
logical research. Different experiments have confirmed the
feasibility of a decoding paradigm that, based on record-
ings of brain activity such as the electroencephalogram
(EEG), detects to which speaker a subject attends in an
acoustic scene with multiple competing speech sources [5]–
[10]. A major drawback of all these experiments is that
they place strict constraints on the methodological design,
which limits the practical use of their results. More pre-
cisely all of the proposed paradigms employ the separate
‘clean’ speech sources that are presented to the subjects
(to correlate their envelopes to the EEG data), a condition
which is never met in realistic acoustic applications such
as hearing prostheses, where only the speech mixtures as
observed by the device’s local microphone(s) are available.
In [11] it is reported that the detection performance drops
substantially under the effect of crosstalk or uncorrelated
additive noise on the reference speech sources that are used
for the auditory attention decoding. It is hence worthwhile
to further investigate AAD that is based on mixtures
of the speakers, such as in the signals recorded by the
microphones of a hearing prosthesis.

Nonetheless, devices such as neuro-steered hearing pros-
theses or other brain-computer interfaces (BCIs) that
implement AAD, can only be widely applied in realistic
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scenarios if they can operate reliably in these noisy condi-
tions. End users with (partial) hearing impairment could
greatly benefit from neuro-steered speech enhancement
and denoising technologies, especially if they are imple-
mented in compact mobile devices. EEG is the preferred
choice for these emerging solutions, due to its cheap and
non-invasive nature [12]–[17]. Many research efforts have
been focused on different aspects of this modality to enable
the development of small scale, wearable EEG devices.
Several studies have addressed the problem of wearability
and miniaturization [13]–[16], data compression and power
consumption [16], [17].

In this study, we combine EEG-based auditory atten-
tion detection and acoustic noise reduction, to suppress
interfering sources (including the unattended speaker)
from noisy multi-microphone recordings in an acoustic
scenario with two simultaneously active speakers. Our
algorithm enhances the attended speaker, using EEG-
informed AAD, based only on the microphone recordings
of a hearing prosthesis, i.e., without the need for the clean
speech signals1. The final goal is to have a computationally
cheap processing chain that takes microphone and EEG
recordings from a noisy, multi-speaker environment at
its input and transforms these into a denoised audio
signal in which the attended speaker is enhanced, and
the unattended speaker is suppressed. To this end, we
reuse experimental data from the AAD experiment in
[9] and use the same speech data as in [9] to synthesize
microphone recordings of a binaural hearing aid, based
on publicly available head-related transfer functions which
were measured with real hearing aids [18]. As we will
show further on, non-negative blind source separation is a
convenient tool in our approach, as we need to extract the
speech envelopes from the recorded mixtures. To this end,
we rely on [19], where a low-complexity source separation
algorithm is proposed that can operate at a sampling rate
that is much smaller than that of the microphone signals,
which is very attractive from a computational point of
view. We investigate the robustness of our processing
scheme by adding varying amounts of acoustic interference
and testing different speaker setups.

The outline of the paper is as follows. In section II, we
give a global overview of the problem and an introduction
to the different aspects we will address; in section III
we explain the techniques for non-negative blind source
separation, and cover the extraction of the attended speech
from (noisy) microphone recordings; in section IV we de-
scribe the conducted experiment; in section V we elaborate
on the results of our study; in section VI we discuss these
results and consider future research directions; in section
VII we conclude the paper.

1We still use clean speech signals to design the EEG decoder in
an initial training or calibration phase. However, once this decoder
is obtained, our algorithm operates directly on the microphone
recordings, without using the original clean speech signals as side-
channel information.

II. Problem statement
A. Noise reduction problem

We consider a (binaural) hearing prosthesis equipped
with multiple microphones, where the signal observed by
the i-th microphone is modeled as a convolutive mixture:

mi[t] = (hi1 ∗ s1)[t] + (hi2 ∗ s2)[t] + vi[t] (1)
= xi1[t] + xi2[t] + vi[t]. (2)

In (1), mi[t] denotes the recorded signal at microphone
i, which is a superposition of contributions xi1[t] and
xi2[t] of both speech sources and a noise term vi[t]. xi1[t]
and xi2[t] are the result of the convolution of the clean
(‘dry’) speech signals s1[t] and s2[t] with the head-related
impulse responses (HRIRs) hi1[t] and hi2[t], respectively.
These HRIRs are assumed to be unknown and model the
acoustic propagation path between the source and the
i-th microphone, including head-related filtering effects
and reverberation. The term vi[t] bundles all background
noise impinging on microphone i and contaminating the
recorded signal.

Converting (1) to the (discrete) frequency domain, we
get

Mi(ωj) = Hi1(ωj)S1(ωj) +Hi2(ωj)S2(ωj) + Vi(ωj) (3)
= Xi1(ωj) +Xi2(ωj) + Vi(ωj) (4)

for all frequency bins ωj . In (3), Mi(ωj), S1(ωj), S2(ωj)
and Vi(ωj) are representations of the recorded sig-
nal at microphone i, the two speech sources and the
noise at frequency ωj , respectively. Hi1(ωj) and Hi2(ωj)
are the frequency-domain representations of the HRIRs,
which are often denoted as head-related transfer func-
tions (HRTFs). All microphone signals and speech con-
tributions can then be stacked in vectors M(ωj) =
[M1(ωj) . . .MK(ωj)]T , X1(ωj) = [X11(ωj) . . . XK1(ωj)]T

and X2(ωj) = [X12(ωj) . . . XK2(ωj)]T , where K is the
number of available microphones. Our aim is to enhance
the attended speech component and suppress the inter-
fering speech and noise in the microphone signals. More
precisely, we arbitrarily select a reference microphone (e.g.
r = 1) and, assuming without loss of generality that
s1[t] is the attended speech, try to estimate Xr1(ωj)
by filtering M(ωj), which is the full set of microphone
signals2. Hereto, a linear minimum mean-squared error
(MMSE) cost criterion is used [2], [3]:

J(W(ωj)) = E
{
|W(ωj)HM(ωj)−Xr1(ωj)|2

}
(5)

in which W is a K-channel filter, represented by a K-
dimensional complex-valued vector, where the superscript
H denotes to the conjugate transpose. Note that a different
W is selected for each frequency bin, resulting in a spatio-
spectral filtering, which is equivalent to a convolutive
spatio-temporal filtering when translated to the time-
domain. In section III-C, we will minimize (5) by means

2In the case of a binaural hearing prosthesis, we assume that
the microphone signals recorded at the left and right ear can be
exchanged between both devices, e.g., over a wireless link [4].
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of the so-called multi-channel Wiener filter (MWF).
Up to now, it is not known which of the speakers is the

target or attended speaker. To determine this, we need to
perform auditory attention detection (AAD), as described
in the next subsection. Furthermore, the MWF paradigm
requires knowledge of the times at which this attended
speaker is active. To this end, we need a speaker-dependent
voice activity detection (VAD), which will be discussed in
subsection III-D. We only have access to the envelopes of
the microphone signals, which contain significant crosstalk
due to the presence of two speakers. Hence, relying on
these envelopes would lead to suboptimal performance (i.e.
misdetections of the VAD), motivating the use of an inter-
mediate step to obtain better estimates of these envelopes.
As stated, we employ non-negative blind source separation
to obtain more accurate estimates of the envelopes, which
will prove to relax the VAD problem (see III-B).

B. Auditory attention detection (AAD) problem

In (1), either s1[t] or s2[t] can be the attended speech.
Earlier studies showed that the low frequency variations of
speech envelopes (between approximately 1 and 9 Hz) are
encoded in the evoked brain activity [20], [21], and that
this mapping differs whether the speech is attended to by
the subject (or not) in a multi-speaker environment [6]–
[8], [22], [23]. This mapping can be reversed to categorize
the attention of a listener from recorded brain activity.
In brief, the AAD paradigm works by first training a
spatiotemporal filter (decoder) on the recorded EEG data
to reconstruct the envelope of the attended speech by
means of a linear regression [5], [9]–[11]. This decoder
will reconstruct an auditory envelope, by integrating the
measured brain activity across κ channels and for τmax
different lags, described by

ŝ
A

[n] =
τmax∑
τ=0

κ∑
k=1

rk[n+ τ ]dk[τ ] (6)

in which rk[n] is the recorded EEG signal at channel k and
time n, dk[τ ] is the decoder weight for channel k at a post-
stimulus lag of τ samples, and ŝ

A
[n] is the reconstructed

attended envelope at time n. We can rewrite this expres-
sion in matrix notation, as ŝ

A
= R d, in which ŝ

A
is a vec-

tor containing the samples of the reconstructed envelope,
d = [ d0[0] . . . d0[τmax] . . . dκ[0] . . . dκ[τmax] ]T is a vector
with the stacked spatiotemporal weights, of length chan-
nels× lags, and where the matrix with EEG measurements
is structured as R = [ r1 . . . rN ]T , where there is a vector
rn = [ r0[n] . . . r0[n + τmax] . . . rκ[n] . . . rκ[n + τmax]]T for
every sample n = 1 . . . N of the envelope. We find the
decoder by solving the following optimization problem:

d̂ = arg min
d
‖ ŝ

A
− s

A
‖2 (7)

= arg min
d
‖R d− s

A
‖2 (8)

in which s
A

is the real envelope of the attended speech.
Using classical least squares, we compute the decoder
weights as

d̂ = (RTR)−1RTs
A
. (9)

The matrix RTR represents the sample autocorrelation
matrix of the EEG data (for all channels and considered
lags) and RTs

A
is the sample cross-correlation of the EEG

data and the attended speech envelope. Hence, the decoder
d̂ is trained to optimally reconstruct the envelope s

A
of the

attended speech sources. If the sample correlation matrices
are estimated on too few samples, a regularization term
can be used, like in [10]. As motivated in subsection IV-B,
we omitted regularization in this study.

The decoding is successful if the decoder reconstructs
an envelope that is more correlated with the envelope of
the attended speech than with that of the unattended
speech. Mathematically, this translates to r

A
> r

U
, in

which r
A

and r
U

are the Pearson correlation coefficients
of the reconstructed envelope ŝ

A
with the envelopes of

the attended and unattended speech, respectively. In this
paper, rather than requiring the separate speech envelopes
to be available, we make the assumption that we only have
access to the recorded microphone signals (except for the
training of the EEG decoder based on (9)). In section III,
we address the problem of speech envelope extraction from
the speech mixtures in the microphone signals, to still be
able to perform AAD using the approach explained above.

III. Algorithm pipeline
Here, we propose a modular processing flow that com-

prises a number of steps towards the extraction and
denoising of the attended speech, shown as a block di-
agram in Fig. 1. We compute the energy envelopes of
the recorded microphone mixtures (represented by the
‘env’-block and explained in subsection III-A) and use
the multiplicative non-negative independent component
analysis (M-NICA) algorithm to estimate the original
speech envelopes from these mixtures (subsection III-B).
These speech envelopes are fed into the AAD processing
block described in previous subsection, which will indicate
one of both as belonging to the attended speaker, based
on the EEG recording (arrows on the right). Voice activity
detection is carried out on the estimated envelopes, and
the VAD track that is selected during AAD serves as input
to the multi-channel Wiener filter (subsection III-D). The
MWF filters the set of microphone mixtures, based on this
VAD track, yielding one enhanced speech signal at the
output (subsection III-C).

A. Conversion to energy domain (ENV)
In order to apply the AAD algorithm described in

subsection II-B, we need the envelopes of the individual
speech sources. Since we are only interested in the speech
envelopes, we will work in the energy domain, allowing
to solve a source separation problem at a much lower
sampling rate than the original sampling rate of the



4

Fig. 1. Pipeline of the proposed processing flow.

microphone signals. Furthermore, energy signals are non-
negative, which can be exploited to perform real-time
source separation based only on second-order statistics
[24], rather than higher-order statistics as in many of
the standard independent component analysis techniques.
These two ingredients result in a computationally efficient
algorithm, which is important when it is to be operated
in a battery-powered miniature device such as a hearing
prosthesis. A straightforward way to calculate an energy
envelope is by squaring and low-pass filtering a micro-
phone signal, i.e., for microphone i this yields the energy
signal

Emi [n] = 1
T

T∑
w=1

mi[nT + w]2 (10)

in which n is the sample index of the energy signal, T
is the number of samples (window length) to compute the
short-time average energy Emi

[n], which estimates the real
microphone energy, E{m2

i [nT ]}.
Based on (1), and assuming the source signals are

independent, we can model the relationship between the
envelopes of the speech sources and the microphone sig-
nals as an approximately linear, instantaneous mixture of
energy signals:

Em[n] ≈ A Es[n] + Ev[n] . (11)

Here, the short-time energies of the K microphone signals
and the S speech sources are stacked in the time-varying
vectors Em[n] and Es[n], respectively, and are related
through the K × S mixing matrix A, defining the overall
energy attenuation between every speech source and every
microphone. Similarly, the short-term energies of the N
noise components that contaminate the microphone sig-
nals are represented by the vector Ev[n]. For infinitely
large T and infinitely narrow impulse responses, (11) is
easily shown to be exact. For HRIRs of a finite duration
and for finite T , it is a quite rough approximation, but
we found that it still provides a useful basis for the
subsequent algorithm that aims to estimate the original
speech envelopes from the mixtures, as we succeed to
extract the original speech envelopes reasonably well (see
next subsection and section V). The literature also re-
ports experiments where the approximation in (11) has
succesfully been used as a mixing model for separation of
speech envelopes, even in reverberant environments with
longer impulse responses than the HRIRs that are used

here [19], [25].

B. Speech envelope extraction from mixtures (M-NICA)

The M-NICA algorithm is a technique that exploits
the non-negativity of the underlying sources [24] to solve
blind source separation (BSS) problems in an efficient way.
It demixes a set of observed signals, that is the result
of a linear mixing process, into its separate, nonnegative
sources. Under the assumption that the source signals are
independent, non-negative, and well-grounded3, it can be
shown that a perfect demixing is obtained by a demixing
matrix that decorrelates the signals while preserving non-
negativity. Similar to [19], we will employ the M-NICA
algorithm, to find an estimate of Es[n] from Em[n] in (11).
The algorithm consists of an iterative interleaved applica-
tion of a multiplicative decorrelation step (preserving the
non-negativity), and a subspace projection step (to re-fit
the data to the model). An in-depth description of the M-
NICA algorithm is available in [24], which also includes
a sliding-window implementation for real-time processing.
Attractive properties of M-NICA are that it relies only on
2nd order statistics (due to the non-negativity constraints)
and that it operates at the low sampling rate of the
envelopes. These features foster the use of M-NICA, as
the algorithm seems to be well matched to the constraints
of the target application, namely the scarce computational
resources and the required real-time operation. Note that
the number of speech sources must be known a priori.
In practice, we could estimate this number by a singular
value decomposition [19]. We will refer to Em[n] and
Ês[n] as the microphone envelopes and demixed envelopes,
respectively, where ideally Ês[n] = Es[n]. As with most
BSS techniques, a scaling and permutation ambiguity
remains, i.e., the ordering of the sources and their energy
cannot be found, since they can be arbitrarily changed
if a compensating change is made in the mixing matrix.
In real-time, adaptive applications, these ambiguities stay
more or less the same as time progresses and are of little
importance (see [19], where an adaptive implementation
of M-NICA is tested on speech mixtures). It is noted that,
to perform M-NICA on (11), the matrix A should be
well-conditioned in the sense that it should have at least
two singular values that are significantly larger than 0.
This means that the energy contribution of each speech
source should be differently distributed over the K mi-
crophones. In [19] and [25], this was obtained by placing
the microphone several meters apart, which is not possible
in our application of hearing prostheses. However, we use
microphones that are on both sides of the head, such that
the head itself acts as an angle-dependent attenuator for
each speaker location. This results in a different spatial
energy pattern for each speech source and hence in a well-
conditioned energy mixing matrix A.

3A signal is well-grounded if it attains zero-valued samples with
finite probability [24].
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C. Multi-channel Wiener filter (MWF)

For the sake of conciseness, we will omit the frequency
variable ωj in the remainder of the text. The solution that
minimizes the cost function in (5) is the multi-channel
Wiener filter Ŵ [2]–[4], found as

Ŵ = arg min
W

E
{
|WHM−Xr1|2

}
(12)

= R−1
mmRxx er (13)

= (Rxx + Rvv)−1Rxx er (14)

in which Rmm is the K × K autocorrelation matrix
E{MMH} of the microphone signals and Rxx is the
K × K speech autocorrelation matrix E{X1XH

1 }, where
the subscript 1 refers to the attended speech. Likewise,
Rvv is the K×K autocorrelation matrix of the undesired
signal component. Note that the MWF will estimate the
speech signal S1 as it is observed by the selected reference
microphone, i.e., it will estimate Hr1S1, assuming the
r-th microphone is selected as the reference. Hence, er
is the r-th column of an identity matrix, which selects
the r-th column of Rxx corresponding to this reference
microphone.

The matrix Rxx is unknown, but can be estimated as
Rxx = Rmm − Rvv, with Rmm the ‘speech plus inter-
ference’ autocorrelation matrix, equal to E{MMH} when
measuring during periods in which the attended speaker is
active. Likewise, Rvv can be found as E{MMH}, during
periods when the attended speaker is silent. All of the
mentioned autocorrelation matrices can be estimated by
means of temporal averaging in the short-time Fourier
transform domain. Note that more robust ways exist to es-
timate Rxx, compared to the straightforward subtraction
described here. The MWF implementation we employed
uses a generalized eigenvalue decomposition (GEVD) to
find a rank-1 approximation of Rxx as in [3]. The rationale
behind this is that the MWF aims to enhance a single
speech source (corresponding to the attended speaker)
while suppressing all other acoustic sources (other speech
and noise). Since Rxx only captures a single speech source,
it should have rank 1.

Applying the MWF corresponds to computing (14) and
performing the filtering WHM for each frequency ωj
and each time-window in the short-time Fourier domain.
Finally, the resulting output in the short-time Fourier
domain can be transformed back to the time domain again.
In practice, this is often done using a weighted overlap-add
(WOLA) procedure [26].

As mentioned above, when estimating Rxx and Rnn

from the microphone signals M, we rely on a good
identification of periods or frames in which both (at-
tended) speech and interference are present (to estimate
the speech-plus-interference autocorrelation Rmm) versus
periods during which only interference is recorded (to
estimate the interference-only correlation Rvv). Making
this distinction corresponds to voice activity detection,
which we discuss next.

D. Voice activity detection (VAD)
The short-time energy of a speech signal gives an indica-

tion at what times the target speech source is (in)active. A
simple voice activity detection (VAD) algorithm consists
of thresholding the energy envelope of the target speech
signal. Note that in our target application, the speech
envelopes are also used for AAD. After applying M-NICA
on the microphone envelopes, we find two demixed en-
velopes, which serve as better estimates of the real speech
envelopes. Based on the correlation with the reconstructed
envelope ŝA from the AAD decoder in (6), one of these
demixed envelopes will be identified as the envelope of the
attended speech source. This correlation can be computed
efficiently in a recursive sliding-window fashion, to update
the AAD decision over time, which is represented by a
time-varying switch in Fig. 1. For each AAD decision,
the chosen envelope segment is then thresholded sample-
wise for voice activity detection. Ideally, the envelope seg-
ments on which the VAD is applied all originate from the
attended envelope, although sometimes the unattended
envelope may be wrongfully selected, depending on the
AAD decisions that are made. This will lead to VAD
errors, which will have an impact on the denoising and
speaker extraction performance of the MWF.

IV. Experiment
For every pair of speech sources (1 attended and 1

unattended), we performed the following steps:
1) compute the microphone signals, according to (1)
2) find the energy-envelope of the microphone signals,

as described in subsection III-A
3) demix the microphone envelopes with M-NICA, as

described in subsection III-B
4) find the VAD track for the attended speech source,

as described in subsection III-D, based on the results
of the auditory attention task described in IV-B

5) compute the MWF for the attended speech source,
as described in subsection III-C, based on the AAD-
selected VAD track from step 4

6) filter the microphone signals with this MWF using a
WOLA procedure, to enhance the attended speech
source

Furthermore, we also investigate the overall performance
if step 3 is skipped, i.e., if we use the plain microphone
envelopes without demixing them with M-NICA. In that
case, we manually pick the two microphone envelopes that
are already most correlated to either of both speakers.
Note that this is a best-case scenario that cannot be
implemented in practice.

A. Microphone recordings
We synthesized the microphone array recordings using
a public database of HRIRs that were measured using
six behind-the-ear microphones (three microphones per
ear) [18]. Each HRIR represents the microphone impulse
responses for a source at a certain azimuthal angle relative
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to the head orientation and at 3 meters distance from
the microphone. The HRIRs were recorded in an anechoic
room and had a length of 4800 samples at 48 kHz. As
speech sources, we used Dutch narrated stories (each with
a length of approximately six minutes and a sampling rate
of 44.1 kHz), that previously served as the auditory stimuli
in the AAD-experiment in [9].

To determine the robustness of our scheme, we included
noise in the acoustic setup. We synthesize the microphone
signals for several speaker positions, ranging from -90◦

to 90◦. The background noise is formed by adding five
uncorrelated multi-talker noise sources nk[n] at positions
−90 ◦, −45 ◦, 0 ◦, 45 ◦ and 90 ◦ and at 3 meters distance,
each with a long-term power PNk

= 0.1Ps, in which Ps
is the long-term power of a single speech source. Note
that these noise sources were not present in the stimuli
used in the AAD experiment, and are only added here to
illustrate the robustness of M-NICA to a possible noise
term in (11), and to illustrate the denoising capabilities
of the MWF. We convolve the two speech signals and five
noise signals with the corresponding HRIRs to synthesize
the microphone signals described in (1). The term vi[n]
thus represents all noise contributions and is calculated as∑
k(hik ∗ nk)[n], where the five hik[n] are the HRIRs for

the noise sources.
In our study, we evaluate the performance for 12 rep-

resentative setups with varying spatial angle between the
two speaker locations. Taking 0 ◦ as the direction in front
of the subject wearing the binaural hearing aids, the
angular position pairs of the speakers are −90 ◦ and 90 ◦,
−75 ◦ and 75 ◦, −90 ◦ and 30 ◦, −60 ◦ and 60 ◦, −90 ◦ and
0 ◦, −45 ◦ and 45 ◦, −90 ◦ and −30 ◦, −60 ◦ and 0 ◦, −30 ◦

and 30 ◦, −90 ◦ and −60 ◦, −60 ◦ and −30 ◦, and −15 ◦ and
15 ◦.

B. AAD experiment
The EEG data originated from a previous study [9],
in which 16 normal hearing subjects participated in an
audiologic experiment to investigate auditory attention
detection. In every trial, a pair of competing speech stimuli
(1 out of 4 pairs of narrated Dutch stories, at a sam-
pling rate of 8 kHz) is simultaneously presented to the
subject to create a cocktail party scenario; the cognitive
task requires the subject to attend to one story for the
complete duration of every trial. We consider a subset
of the experiment in [9], in which the presented speech
stimuli have a contribution to each ear - after filtering
them with in-the-ear HRIRs for sources at -90◦ and 90◦ -
in order to obtain a dataset of EEG-responses that is more
representative for realistic scenarios. That is, both ears
are presented with a (different) mixture of both speakers,
mimicking the acoustic filtering by the head as if the
speakers were located left and right of the subject. For
every trial, the recorded EEG is then sliced in frames of 30
seconds, followed by the training of the AAD decoder and
detection of the attention for every frame, in a leave-one-
frame-out cross-validation fashion. We use the approach
of [9], where a single decoder is estimated by computing

(9) once over the full set of training frames, i.e., a single
RTR and RTs

A
matrix is calculated over all samples in the

training set. This is opposed to the method in [5], where
a decoder is estimated for each training frame separately,
and the averaged decoder is then applied to the test frame.
In [9], it was demonstrated that this approach is sensitive
to a manually tuned regularization parameter and may
affect performance, which is why we opted for the former
method. The performance of the decoders depends on the
method of calculating the envelope sA of the attended
speech stimulus. In [9], it was found that amplitude en-
velopes lead to better results than energy envelopes. For
the present study, we work with energy envelopes (as
described in subsection III-A) and take the square root
to convert to amplitude envelopes, when computing the
correlation coefficients in the AAD task.

The present study inherits the recorded EEG data
from the experiment described above, and assumes that
decoders can be found during a supervised training phase
in which the clean speech stimuli are known4. Throughout
our experiment, we train the decoders per individual
subject on the EEG data and the corresponding envelope
segments of the attended speech stimuli, calculated by
taking the absolute value of the original speech signals and
filtering between 1 and 9.5 Hz (equiripple finite impulse
response filter, -3 dB at 0.5 and 10 Hz). Contrary to [5],
attention during the trials was balanced over both ears, so
that no ear-specific biasing could occur during training of
the decoder.

The trained decoder can then be used to detect to which
speaker a subject attends, as explained in subsection II-B.
We perform the auditory attention detection procedure
with the same recorded EEG data (using leave-one-frame-
out cross-validation) which is fed through the pre-trained
decoder, and then correlated with different envelopes to
eventually perform the detection over frames of 30 seconds.
In order to assess the contribution of the M-NICA algo-
rithm to the overall performance, we consider two options:
either the two demixed envelopes or the two microphone
envelopes that have the highest correlation with either
of the speech sources’ envelopes are correlated to the
EEG decoder’s output ŝ

A
. The motivation for the latter

option is that in some microphones, one of both speech
sources will be prevalent, and we can take the envelope
of such a microphone signal as a (poor) estimate of the
envelope of that speech source. This will lead to the best-
case performance that can be expected with the use of
envelopes of the microphones, without using an envelope
demixing algorithm.

C. Preprocessing and parameter selection
Speech fragments are normalized over the full length

to have equal energy. All speech sources and HRIRs were
resampled to 16 kHz, after which we convolved them
pairwise and added the resulting signals to find the set
of microphone signals.

4Note that in a real device, only one final decoder would need to
be available (obtained after a training phase).
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The window length T in (10) is chosen so that the energy
envelopes are sampled at 20 Hz. To find the short-term
amplitude in a certain bandwidth, we take the square
root of all energy-like envelopes and filter them between 1
and 9.5 Hz before employing them to decode attention in
the EEG epochs. Likewise, all κ = 64 EEG channels are
filtered in this frequency range and downsampled to 20 Hz.
As in [5], τmax in (6) is chosen so that it corresponds to
250 ms poststimulus. For a detailed overview of the data
acquisition and EEG decoder training, we refer to [9].

VAD tracks for the envelopes of both the attended
and unattended speech are binary triggers (‘on’ or ‘off’),
that are 1 when the energy envelope surpasses the chosen
threshold. The value for this threshold was determined as
the one that would lead to the highest median SNR at the
MWF output, for a virtual subject with an AAD accuracy
of 100% and in the absence of noise sources. After ex-
haustive testing, this value was set to 0.05 max

{
Ês

}
and

0.10 max {Em} for the demixed and microphone envelopes,
respectively (see subsection V-D). We form one hybrid
VAD track by selecting and concatenating segments of
30 seconds of these two initial tracks, according to the
AAD decision that was made in the same 30-second
trial of the experiment, as described in subsection IV-B.
This corresponds to a non-overlapping sliding window
implementation with a window length of 30 seconds (note
that the AAD decision rate can be increased by using an
overlapping sliding window with a window shift that is
smaller than the window length). Thus, this overall VAD
track, which is an input to the MWF, follows the switching
behavior of the AAD-driven module shown in Fig. 1.

The MWF is applied on the binaural set of six micro-
phone signals (resampled to 8 kHz, conform to the pre-
sented stimuli in the EEG experiment), through WOLA
filtering with a square-root Hann window and FFT-length
of 512. Likewise, the VAD track is expanded to match this
new sample frequency.

For this initial proof of concept, both M-NICA and the
MWF are applied in batch mode on the signals, meaning
that the second-order signal statistics are measured over
the full signal length. In practice, an adaptive implemen-
tation will be necessary, which is beyond the scope of
this paper. However, performance of M-NICA and MWF
under adaptive sliding-window implementations have been
reported in [24], [26], where a significant - but acceptable -
performance decrease is observed due to the estimation of
the second-order statistics over finite windows. Therefore,
the reported results in this paper should be interpreted
as upper limits for the achievable performance with an
adaptive system. For envelope demixing, 100 iterations of
M-NICA are used.

V. Results
A. Performance measures

The microphone envelopes at the algorithm’s input have
considerable contributions of both speech sources. What is
desired - as well for the VAD block as for the AAD block

- is a set of demixed envelopes that are well-separated in
the sense that each of them only tracks the energy of a
single speech source, and thus has a high correlation with
only one of the clean speech envelopes, and a low residual
correlation with the other clean speech envelope. Hence,
we adopt the following measure: ∆r

HL
is the difference

r
H
−r

L
between the highest Pearson correlation that exists

between a demixed or microphone envelope and a speech
envelope and the lowest Pearson correlation that is found
between any other envelope and this speech envelope. E.g.
for speech envelope 1, if the envelope of microphone 3
has the highest correlation with this speech envelope, and
the envelope of microphone 5 has the lowest correlation,
we assign these correlations to r

H
and r

L
, respectively.

For every angular separation of the two speakers, we will
consider the average of ∆r

HL
over all speech fragments

of all source combinations, and over all tested speaker
setups that correspond to the same separation (see sub-
section IV-A). An increase of this parameter indicates a
proper behavior of the M-NICA algorithm, i.e., it measures
the degree to which the microphone envelopes (‘a priori’
∆r

HL
) or demixed envelopes (‘a posteriori’ ∆r

HL
) are

separated into the original speech envelopes. Note that
for the ‘a priori’ value, we select the microphones which
already have the highest ∆r

HL
in order to provide a fair

comparison. In practice, it is not known which microphone
yields the highest ∆r

HL
’s, which is another advantage

of M-NICA: it provides only two signals in which this
measure already maximized.

The decoding accuracy of the AAD algorithm is the
percentage of trials that are correctly decoded. Analogous
to the criterion in subsection II-B, if the reconstructed
envelope ŝ

A
at the output of the EEG decoder is more cor-

related with the (demixed or microphone) envelope that
is associated with the attended speech envelope than with
the other envelope, we consider the decoding successful.
Here, we consider a (demixed or microphone) envelope to
be associated to the attended speech envelope s

A
if it has a

higher correlation with the attended speech envelope than
with the unattended speech envelope.

We evaluate the performance of the MWF by means of
the improvement in the signal-to-noise ratio (SNR). For
the different setups of speech sources, we compare the SNR
in the microphone with the highest input SNR to the SNR
of the output signal of the MWF, i.e.

SNRin = max
i

{
‖xi1‖2

2

‖xi2 + vi‖2
2

}
(15)

SNRout =

∥∥∥∑M
i=1 wi ∗ xi1

∥∥∥2

2∥∥∥∑M
i=1 wi ∗ (xi2 + vi)

∥∥∥2

2

(16)

where the samples of the signal and noise contributions
xi1[n], xi2[n], and vi[n] from (1) are stacked in vectors
xi1, xi2, and vi, respectively, covering the full record-
ing length, and wi is the time-domain representation of
the MWF weights for microphone i (where the WOLA
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Fig. 2. Effect of M-NICA, shown for a certain time window. Top
figure: original speech envelope (black) and microphone envelope
(green). Bottom figure: original speech envelope (black) and demixed
envelope (red).

procedure implicitly computes the convolution in (16) in
the frequency domain). Note that we again assume that
s1 represents the attended speech source and s2 is the
interfering speech source, which is why xi2 is included
in the denominator of (15) and (16) as it contributes to
the (undesired) noise power. Since an unequal number of
speaker setups were analyzed at every angular separation,
we will mostly consider median SNR values.

B. Speech envelope demixing

To illustrate the merit of M-NICA as a source separation
technique, we plot the different kinds of envelopes in Fig. 2.
In the top figure, the green curve represents an envelope
of the speech mixture as observed by a microphone, while
the black curve is the envelope of one of the underlying
speech sources. The latter is also shown in the bottom
figure, together with the corresponding demixed envelope
(red curve). All envelopes were rescaled post hoc, because
of the ambiguity explained in subsection III-B. The mi-
crophone envelope has spurious bumps, which originate
from the energy in the other speech source. The demixed
envelope, on the other hand, is a good approximation of
the envelope of a single speech source. The improvement
of ∆r

HL
is shown in Fig. 3, for the noise-free and the

noisy case. For all relative positions of the speech sources,
applying M-NICA to the microphone envelopes gives a
substantial improvement in ∆r

HL
, which indicates that

the algorithm achieves reasonably good separation of the
speech envelopes and hence reduces the crosstalk between
them. There is a trend of increasing ∆r

HL
for speech

sources that are wider apart. Indeed, for larger angular
separation between the sources, the HRIRs are sufficiently
different due to the angle-dependent filtering effects of the
head, ensuring energy diversity. The mixing matrix A will
then have weights that make the blind source separation
problem defined by (11) better conditioned. When multi-
talker background noise is included in the acoustic scene,
∆r

HL
is seen to be slightly lower, especially for speech

sources close together, when the subtle differences in
speech attenuation between the microphones are easily
masked by noise.

30° 60° 90° 120° 150° 180°
0

0.2

0.4

0.6

0.8

1

angular separation

∆ 
r H

L

Influence of M−NICA, in noise−free and noisy case, on ∆ r
HL

 

 

microphone envelopes, noise−free case

demixed envelopes, noise−free case

microphone envelopes, noisy case

demixed envelopes, noisy case

Fig. 3. Effect of M-NICA: ∆rHL for different separation between the
speech sources, for microphone and demixed envelopes in the noise-
free case (dark and light blue, respectively) and microphone and
demixed envelopes in the noisy case (yellow and red, respectively).

C. AAD performance
Fig. 4 shows the average EEG-based AAD accuracy

over all subjects versus ∆r
HL

for different speaker separa-
tion angles, when the microphone envelopes or demixed
envelopes from the noise-free case are used for AAD.
The cluster of points belonging to the demixed envelopes
has moved to the right compared to the cluster of the
microphone envelopes, conform to what was shown in
Fig. 3. Three setups can be distinguished that have a sub-
stantially lower AAD accuracy and ∆r

HL
than the others.

Two of them are setups with a separation of 30 ◦, while the
third one corresponds to a separation of 60 ◦. These results
are intuitive, as the degree of cross-talk is higher when
the speakers are located close to each other. The speakers
then have a similar energy contribution to all microphones,
which results in lower quality microphone envelopes for
AAD and also aggravates the envelope demixing problem,
as demonstrated in Fig. 3.

Remarkably, despite the substantial decrease in cross-
talk due to the envelope demixing, the average decoding
accuracy does not increase when applying the demixing
algorithm, i.e., both microphone envelopes and demixed
envelopes seem to result in comparable AAD performance.
However, it is important to put this in perspective, as
the accuracy measure for AAD in itself is not perfect
(and possibly not entirely representative) when the clean
speech signals are not known. Indeed, a ‘correct’ AAD
decision here only means that the algorithm selects the
candidate envelope that is most correlated to the attended
speaker, even if this candidate envelope still contains a
lot of crosstalk from the unattended speaker. Therefore,
the validity of this measure depends on the quality of the
candidate envelopes, i.e., a correct AAD decision according
to this principle may have little or no practical relevance
if the selected candidate envelope does not contain a high-
quality ‘signature’ of the attended speech that can even-
tually be exploited in the post-processing stage (VAD and
MWF) to truly identify or extract the attended speaker.
Moreover, M-NICA automatically produces as many can-
didate envelopes as there are speakers, circumventing the
selection of the optimal microphones that would otherwise
be necessary, as explained in section IV.



9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
75

80

85

90

∆ r
HL

de
co

di
ng

 a
cc

ur
ac

y 
(%

)
Decoding accuracy vs ∆ r

HL

 

 

demixed envelopes
microphone envelopes

−90° and −30°

−60° and −30°

−90° and −60°

Fig. 4. Average decoding accuracy over subjects versus ∆rHL

for the twelve tested speaker setups, using microphone envelopes
(green) or demixed envelopes (red) from the noise-free case. The
combinations of speaker positions that lead to the lowest performance
are indicated.

To further illustrate how envelope demixing influences
the AAD algorithm, we show in Fig. 5 the correlation of
the EEG decoder’s output ŝ

A
with the true envelopes (in

Fig. 5a), and with the two candidate demixed envelopes
(in Fig. 5b) as well as with the two candidate microphone
envelopes (in Fig. 5c). The point cloud when using the
demixed envelopes (Fig. 5b) better resembles the point
cloud based on the clean speech envelopes, showing the
influence of the demixing process. However, it seems that
the variance is higher, as the demixing is not perfect.
We observe that the point cloud corresponding to the
microphone envelopes (Fig. 5c) is clustered around the
main diagonal. Intuitively, this is explained by the fact
that the microphone envelopes are not yet separated into
separate speech envelopes, and hence they have a consid-
erable mutual resemblance.

Finally, we note that a large variability exists in the
decoding accuracy over all subjects, which is illustrated
in Fig. 6. It spans a range between 52% and 98%, and
provides the only subject-specific effect on the overall per-
formance of our processing scheme. The decoding accuracy
using either microphone envelopes or demixed envelopes is
in general lower than the performance which is obtained
using the clean speech envelopes, in an idealized scenario,
as expected. Again, we observe that envelope demixing in
general does not improve nor lower the AAD accuracy,
even if it raises the ∆r

HL
. However, we restate that the

AAD accuracy measure employed here is in itself only
partially informative. Indeed, this accuracy measure only
quantifies how well the AAD algorithm is able to select
the envelope with highest correlation with the attended
speaker, but not how well this envelope actually represents
the attended speaker. The latter is important to also gen-
erate an accurate VAD track that only triggers when the
attended speaker is active. For this reason, it is relevant
to include the demixing step in the analysis, as we show
in the next subsection.

D. Denoising and speech extraction performance
The median input SNR is shown in Fig. 7, for the

different angular separations between the speakers, and
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Fig. 5. Scatter plot of the correlation coefficients rA and rU of
the reconstructed envelope with the envelopes of the attended and
unattended speech, respectively, for all trials from the noise-free case.
Every trial corresponds to one point and is correctly decoded if this
point falls below the black decision line rA = rU . The envelopes of
the attended and unattended speech are either the clean envelopes
(a), demixed envelopes (b), or microphone envelopes (c). Note that
the latter two figures consist of more points than the first one, since
AAD was performed for 12 different speaker setups.
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envelopes from the noise-free case are shown, over all 12 speaker
setups.
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Fig. 7. Input SNR taken from the microphone with highest SNR,
in the noise-free case (blue) and the noisy case (red), for all angular
separations between the speakers.

for both the noise-free and the noisy case. It is noted that
in the noisy scenarios, the inclusion of five uncorrelated
noise sources with an energy that is 10% of that of the
speech sources, lowers the input SNR with approximately
10 log10(5 · 0.1) = 3 dB. For equal-energy speech sources
that are sufficiently far apart and/or for low noise levels,
the input SNR is higher than zero, because in most
microphones, one speech source is prevalent over the other
due to head shadow and thus for every speech source we
can find a microphone signal that gets most of its energy
from that particular speech source (recall that the input
SNR is defined based on the ‘best’ microphone).

Fig. 8 shows the output SNR for the varying angular
separations between the speech sources, ranging from 30 ◦

to 180 ◦. Boxplots show the variation in MWF performance
when using the AAD results of each of the 16 subjects
(median subject-specific SNR value per angular separa-
tion, i.e., 16 values per boxplot). First, we investigate the
performance for acoustic setups without additional noise.
The output SNR is much higher when computing the
AAD/VAD combination based on the demixed envelopes
(see Fig. 8a), compared to the SNR when computing the
AAD/VAD based on the original microphone envelopes
(see Fig. 8b). In the latter case, the performance of the
MWF drops as the speech sources are closer together
(smaller angular separation). A similar, but smaller effect
is observed for the AAD/VAD based on the demixed
envelopes. Fig. 8c and Fig. 8d show the output SNR in
the presence of multi-talker background noise when using
demixed and microphone envelopes, respectively. In this
case, the SNRs are lower - yet still satisfactory, given the
sub-zero input SNR - and again the demixed envelopes are
seen to be the preferred choice for use in the VAD. The
improvement in SNR when choosing demixed envelopes
for the AAD/VAD over the microphone envelopes is sig-
nificant, both in the noiseless and in the noisy case (p
< 10−8, 2-way repeated measures ANOVA). Note that
all variability in the SNR over subjects is purely due to
the difference in the decoding accuracy, as explained in
the previous subsection. The black square markers in the
figures show the output SNR for a virtual subject with a
decoding accuracy of 100%. It is seen that the SNR for

subjects with a high decoding accuracy closely approxi-
mates this ideal performance, and sometimes even surpass
it (as the envelopes used for VAD are still imperfect, this
is a stochastic effect). As a measure of robustness, we
analyzed over which range of VAD thresholds the results
we found are valid. From Fig. 9, we see that the VAD
based on demixed envelopes gives rise to a high output
SNR over a wide range of thresholds. By contrast, when
using the microphone envelopes, a low SNR is observed
for all thresholds. The VAD thresholds to generate the
results of Fig. 8 were chosen as the optimal values found
with these curves, and were reported in subsection IV-C.

VI. Discussion
The difference between the SNR at the input and

output of the MWF is substantial, demonstrating that
MWF denoising can rely on EEG-based auditory attention
detection to extract the attended speaker from a set of
microphone signals. Furthermore, for the first time, the
AAD problem is tackled without use of the clean speech
envelopes, i.e., we only use speech mixtures as collected
by the microphones of a binaural hearing prosthesis. This
serves as a first proof of concept for EEG-informed noise
reduction in neuro-steered hearing prostheses.

Even in severe, noisy environments, subzero input SNRs
are boosted to acceptable levels. This positive effect is
significantly lower when leaving out the envelope demixing
step, showing the necessity of source separation tech-
niques. Rather than applying expensive convolutive ICA
methods on the high-rate microphone signals based on
higher-order statistics the M-NICA algorithm operates in
the low-rate energy domain and only exploits second-order
statistics, which makes it computationally attractive. In
fact, we circumvent an expensive BSS step on the raw
microphone signals by using the fast envelope processing
steps and that way postpone the spatiotemporal filtering
of the set of microphone signals until the multi-channel
Wiener filter. As opposed to convolutive ICA methods,
the MWF only extracts a single speaker from a noise
background with much lower computational complexity
and a higher robustness to noise. From the results in Fig. 8,
we see that the demixing using M-NICA has a strong
positive effect on the denoising performance. Although
M-NICA indeed slightly improves the AAD accuracy,
the use of microphone envelopes without demixing still
yields a comparable performance, which is remarkable.
The main reason for this is that we always compare with
microphones which already have a high ∆r

HL
, i.e., micro-

phones in which one of the two speech sources is already
dominant. Such microphone envelopes with sufficiently low
crosstalk - resulting in an acceptable AAD accuracy - are
present due to the angle-dependent attenuation through
the head. In practice however, we do not know which of the
microphones provide these good envelopes, which means
that the use of M-NICA is still important to obtain a good
AAD performance, as it requires no microphone selection.
Furthermore, based on Fig. 9, M-NICA seems to lead to
more robust VAD results by providing better estimates for
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Fig. 8. Boxplots of the output SNR over all subjects and for different angles of speaker separation, using (a) demixed envelopes in the noise-
free scenario, (b) microphone envelopes in the noise-free scenario, (c) demixed envelopes in the noisy scenario, (d) microphone envelopes in
the noisy scenario. All SNR values represent the median SNR over all pairs of stimuli and possibly multiple speaker setups, per combination
of subject and angular separation. The black squares indicate the output SNR for the ideal case of a subject with perfect AAD, i.e. an
accuracy of 100%.

the speakers’ envelopes, which seems to be the main reason
for the improved output SNR when using the MWF.

The performance of our algorithm pipeline is seen to
be robust to the relative speaker position, i.e., even for
speakers that are close together, the combination of enve-
lope demixing and multi-channel Wiener filtering results in
satisfactory speaker extraction and denoising. The simple
VAD scheme proved to be effective, and is insensitive
to its threshold setting over a wide range. Note that a
straightforward envelope calculation was used for AAD,
and that more advanced methods for envelope calculation
[9] or for increased robustness in attention detection [27]
may further increase the accuracy. Also increasing the
window length (larger than 30s) improves AAD accuracy,
at the cost of a poorer time resolution (the latter is also
improved upon in [27]). The MWF performance in the
case of a perfectly working AAD (shown in Fig. 8) leads
us to believe in the capabilities of the proposed processing
flow, especially after incorporation of expected advances
in AAD methods.

Future research should aim at collecting EEG measure-
ments from noisy, multi-speaker scenarios over different
angles to validate the proposed processing for both the
AAD and the speech enhancement on a unified dataset.
It should be investigated whether representative EEG can
be collected in real life using miniature and semi-invisible
EEG devices, e.g., based on in-the-ear [13] or around-
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Fig. 9. SNR at output of the MWF for thresholds going from 1%
to 25% of the maximum short-term energy, using demixed (red) or
microphone (green) envelopes. No multi-talker noise was added, and
an idealized AAD track with accuracy of 100% was used. SNRs are
given as the median value over all subjects and all angular separations
between the speakers.

the-ear EEG [14], and possibly combining multiple such
devices [16]. A study in [10] has demonstrated that a high
AAD accuracy can still be obtained with only 15 EEG
channels, although this study assumed availability of the
clean speech signals. It has to be investigated whether
these results still hold in the case where only the speech
mixtures are available, as in this paper.

As a next step, we aim to adjust the proposed processing
scheme to an adaptive implementation, which would be
suitable for online, real-time applications.
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VII. Conclusion
We have shown that our proposed algorithm pipeline

for EEG-informed speech enhancement or denoising yields
promising results in a two-speaker environment, even in
conditions with substantial levels of noise. Our technique
is extensible to multi-speaker scenarios, and except for
an initial training phase, the algorithm operates solely
on the microphone recordings of a hearing prosthesis,
i.e., without knowledge of the clean speech sources. We
have demonstrated that, although the AAD performance
decreases, the AAD-informed MWF is still able to extract
and denoise the attended speaker with a satisfactory
output SNR. All of the elementary building blocks, per-
forming speech envelope demixing, voice activity detec-
tion, speech filtering, and auditory attention detection,
are computationally inexpensive and are implementable
in real-time. This renders them very attractive for use
in battery-powered hearing prostheses which have severe
constraints on energy usage. With this study, we made
the first attempt to bridge the gap between auditory
attention detection in ideal scenarios with access to clean
speech envelopes, and neuro-steered attended speech en-
hancement in situations that are more representative for
real life environments (without access to the clean speech
envelopes).
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