Time-adaptive Unsupervised Auditory Attention
Decoding Using EEG-based Stimulus
Reconstruction

Simon Geirnaert, Tom Francart, and Alexander Bertrand

Abstract—The goal of auditory attention decoding (AAD) is to
determine to which speaker out of multiple competing speakers
a listener is attending based on the brain signals recorded
via, e.g., electroencephalography (EEG). AAD algorithms are a
fundamental building block of so-called neuro-steered hearing
devices that would allow identifying the speaker that should
be amplified based on the brain activity. A common approach
is to train a subject-specific stimulus decoder that reconstructs
the amplitude envelope of the attended speech signal. However,
training this decoder requires a dedicated ‘ground-truth’ EEG
recording of the subject under test, during which the attended
speaker is known. Furthermore, this decoder remains fixed
during operation and can thus not adapt to changing conditions
and situations. Therefore, we propose an online time-adaptive
unsupervised stimulus reconstruction method that continuously
and automatically adapts over time when new EEG and audio
data are streaming in. The adaptive decoder does not require
ground-truth attention labels obtained from a training session
with the end-user and instead can be initialized with a generic
subject-independent decoder or even completely random values.
We propose two different implementations: a sliding window and
recursive implementation, which we extensively validate on three
independent datasets based on multiple performance metrics.
We show that the proposed time-adaptive unsupervised decoder
outperforms a time-invariant supervised decoder, representing an
important step toward practically applicable AAD algorithms for
neuro-steered hearing devices.

Index Terms—auditory attention decoding, neuro-steered hear-
ing device, stimulus reconstruction, time-adaptive filtering, un-
supervised training, EEG

I. INTRODUCTION

The auditory attention decoding (AAD) task consists of de-
termining to which speaker out of multiple simultaneously
talking speakers a listener wants to attend. Such AAD tech-
nology could be employed in hearing aids, cochlear implants,
or other so-called ‘hearables’, to inform beamformers and

This work is supported by an Aspirant Grant from the Research Foundation
- Flanders (FWO) (for S. Geirnaert - 1136219N), FWO project nr. GOA4918N,
the European Research Council (ERC) under the European Union’s Horizon
2020 Research and Innovation Programme (grant agreement No 802895), and
the Flemish Government (AI Research Program). The scientific responsibility
is assumed by its authors. (Corresponding author: Simon Geirnaert.)

S. Geirnaert and A. Bertrand are with KU Leuven, Department of
Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems,
Signal Processing and Data Analytics and with Leuven.Al - KU Leuven
institute for AL, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium (e-mail:
simon.geirnaert @esat.kuleuven.be, alexander.bertrand @esat.kuleuven.be).

T. Francart and S. Geirnaert are with KU Leuven, Department of Neu-
rosciences, Research Group ExpORL, Herestraat 49 box 721, B-3000 Leu-
ven, Belgium and with Leuven.Al - KU Leuven institute for Al (e-mail:
tom.francart @kuleuven.be).

noise suppression algorithms about which speaker to enhance
and which other speakers to treat as background noise and
thus to suppress. Heuristics such as look direction can be
used to make an informed guess, yet such indirect metrics
often fail as they do not always sufficiently correlate with the
actual auditory attention. Ideally, the auditory attention can
be directly decoded at the source, i.e., the brain. It has been
extensively shown that the auditory attention information is
encoded in brain signals [[1]-[3]], which can be recorded, for
example, using electroencephalography (EEG). As such, EEG-
based AAD technology could contribute to so-called ‘neuro-
steered’ hearing devices [4], [3].

The predominant paradigm for AAD is stimulus reconstruc-
tion [6]. A stimulus decoder, consisting of a linear spatio-
temporal filter, is applied to multi-channel EEG data of the
listener to reconstruct the speech envelope of the attended
speaker. By computing the correlation between this recon-
structed speech envelope and the original speech envelopes of
the different competing speakers, the attended speech signal
and corresponding speaker can be identified [S]-[7]. However,
such a stimulus decoder is traditionally trained in a supervised
way, i.e., it assumes the attended speaker is known during the
training phase of the decoder. Such ground-truth labels can
be obtained by instructing the subject to attend to a specific
speaker during a dedicated EEG recording session.

In [8]], we proposed an unsupervised algorithm to train
a subject-specific stimulus decoder without the need for
ground-truth labels. Consequently, the first issue with the
traditional stimulus reconstruction method, i.e., the need for
acquiring labeled data during a dedicated training session,
is resolved while approximating the performance of a fully
supervised subject-specific decoder [8]]. However, this unsu-
pervised decoder is still trained in batch on a large amount
of (unlabeled) training data and then remains fixed during
operation. Such fixed decoders do not adapt to long-term
signal changes due to changing conditions and situations (e.g.,
non-stationarities in the neural activity, changing electrode-
skin contact impedances, shifting or loosening electrodes).
Therefore, in this paper, we modify and extend the algorithm
proposed in [8] such that the decoder adapts over time in an
unsupervised manner. The resulting decoder does not require
a dedicated training session and can automatically adapt to
new incoming non-stationary EEG data from the end-user and
thus serves as one of the first practical plug-and-play AAD
algorithms for neuro-steered hearing devices.

In Section [lI} we review the (unsupervised) stimulus recon-

struction algorithm for AAD. In Section we then present
and explain the proposed time-adaptive updating schemes.
These implementations are investigated and the hyperparam-
eter choices are validated in Section The proposed time-
adaptive unsupervised decoder is then tested and compared
to the fixed (time-invariant) supervised decoder in a time-
adaptive context in Section |V] by simulating a scenario where
electrodes are disconnected and applying the decoders on a
dataset recorded across multiple recording days.

II. (UN)SUPERVISED STIMULUS RECONSTRUCTION FOR
AAD

A. Review of stimulus reconstruction

Consider a C-channel EEG signal of which the ¢ channel
is denoted by w.(t), with ¢ the time sample index. In the
linear stimulus reconstruction paradigm, a spatio-temporal
filter or decoder d.(l) is applied to this C-channel EEG signal
to reconstruct the speech envelope of the attended speaker

sa(t) IS1-17]:

L-1

with the channel index c¢ ranging from 1 to C (spatial
combination of C' channels) and the time lag index [ranging
from O to L — 1 (temporal integration over L time samples).
This filter is an anti-causal filter, as L post-stimulus time lags
are used to reconstruct the attended speech envelope from the
EEG signal. To identify the attended speaker, the reconstructed
envelope §,(t) from the EEG is compared with original speech
envelopes- s1(t) and so(t) of the two simultaneously talking
speakers through the Pearson correlation coefficient. For the
sake of an easy exposition but without loss of generality,
we here assume only two competing speakers, although all
presented algorithms and procedures can be extended to more
speakers.

In the remainder of the paper, we will adopt a matrix-
vector notation, in which the decoder is written as d =
[di(0) di(1) dy(L—1) dy(0) do(L-1)]" €
REE. Assume (for now) the availability of K training
segments of 7' time samples, where the available training
information is described as {Xy, (s1,,82,), Uk},
containing an EEG data X matrix (collecting all T
time samples in training segment k; a rigorous definition is
given in (3)), speech envelopes s;, € R and sy, € RT
(similarly), and attention labels y, € {1,2}, indicating
which speech envelope (s;, or sg,) is the attended one (s,,)
(assuming constant attention across the whole segment). For
each training segment k, the attended speech envelope is
determined as

if yp =1,

if yp = 2. M

The speech envelope can be defined and extracted in different ways [9].
In this paper, we use the speech envelope extract procedure based on a
gammatone filterbank and power-law compression as proposed in [9]].

The decoder is then trained by minimizing the squared error
between the actual attended and reconstructed speech envelope
across all training segments:

d—argmmZHsdk X;<;d||2—argm1n\|s(1 Xd||27 (2)
d k=1

with s, = [sll SEK]T € RET the concatenated actual
attended speech envelope and where the block Hankel matrix
X € RETXCL represents the concatenated time-lagged C-

channel EEG with L time lags:

X1

X=| 1|, Xp=[Xp1 Xpc] e RT*CE(3)
XK

with Xy . € RT*L 3 Hankel matrix containing the time-

lagged EEG data of the k" training segment and ¢ EEG
channel:

$k7c(0) xk’c(l) Cﬂk7c(L — 1)
xk,c(l) :Ekyc(Q) xk’C(L)
Xk,c = . . .
(T —1) 0 - 0

Xd = §, € RET then represents the reconstructed speech
envelope over all training segments. The solution of () is
found by solving the normal equations:

d=R_ r,.,)
with
K
R, = X'X =) " X[X, € RO*CH
k=1
the estimated EEG autocorrelation matrix and
K
rpe = X's, = Y Xjs,, € R (5)

the estimated crosscorrelation vector between the EEG and the
attended speech envelope. It is important to notice that only
in (3) we need the attention labels y, to select the attended
speech envelope s,, in segment & (see (T))). We use shrinkage
to regularize the estimated autocorrelation matrix:

Tr (X™X) L
CL ’

with T € REEXCL the identity matrix and where the shrinkage

parameter 0 < A < 1 is analytically determined [10], [[11]):

Roo = (1 - VXX 4 A (©)

K T
> % [xuct, - X7
=1 A,

Tr(XTX)?
((XTX)) X0

A = min

with x} , € RYL the t" row of the matrix Xj..

Given the estimated decoder d and Tiest time samples of a
new EEG segment X (0 ¢ RTexCL of a subject listening
to one out of two competing speakers with speech envelopes

(1&5[) and sgm), a decision about the auditory attention of the

listener can be made by:

1) reconstructing the attended speech envelope from the
EEG: §(tst) = X (tes)q and

2) computing the Pearson coefficients
p(é(‘“t),sgtem) and p(é(“"“),sgem) this
reconstructed speech envelope and the original speech
envelopes. The speaker corresponding to the highest
correlation coefficient is identified as the attended
speaker.

correlation
between

For stimulus reconstruction, there is an important trade-off
between the accuracy of the decision and the decision segment
length Tie, i.e., the number of time samples used to make
a decision [5]], [12]. A longer decision segment leads to
more accurate estimates of the Pearson correlation coefficients,
thereby improving accuracy on the AAD decisions. However,
this comes with the drawback of a poorer time resolution at
which the AAD decisions are made due to the longer decision
segment length.

B. Unsupervised stimulus reconstruction

Let us now assume that the attention labels {y;}£ , are not
known, even during training, meaning that we do not know to
which of the speakers the subject is attending when designing
our decoder (i.e., using (I) has become impossible). If we
indeed can train the decoder without these labels, this would
avoid the need for a dedicated training session during which
the subject is instructed to attend to a specific speaker in
order to collect ground-truth data. As a result, performing
AAD becomes an unsupervised classification problem. The
absence of labels is a roadblock in the computation of the
crosscorrelation vector in (3), which requires the use of the
correct speech envelope in its calculation (using the unattended
envelope in (3) would result in a decoder that emphasizes the
wrong speaker).

In [8], we proposed an unsupervised batch-training pro-
cedure on an unlabeled dataset {Xy, (s1,,82,)} 0, of
K segments (i.e., attention labels {yx}& , are unavail-
able/unknown). The main idea is to iteratively retrain a decoder
by using labels that are predicted by the decoder from the pre-
vious iteration. A short description of this iterative procedure
is as follows. We start with an initial decoder d(®) at iteration
0, which can be, e.g., a pre-computed subject-independent
decoder or even a decoder with random entries. First, the EEG
autocorrelation matrix R, is estimated as in (6), which does
not require any attention labels. The iterative prediction of
the labels and updating of the decoder then comprises the
following steps:

1) given a decoder d(¥) that is available after the i itera-

tion, apply it on each EEG segment X}, to reconstruct
the attended speech envelope:

vk 8D = X;,d.

2) Per segment, correlate the reconstructed speech envelope
éﬁf} with both speech envelopes (s, ,s2,) to predict the
attended speaker. As before, the first speaker is identified
as the attended one if the sample Pearson correlation

coefficient p(é&?,slk) > p(égi),s%) and vice versa.

The predicted attended envelope is denoted as s__.) €
pred,,
{Slk) 52y, }
3) Using the EEG segments and corresponding speech en-
: K
velopes of the predicted attended speaker {spre 4 Thm1s
the crosscorrelation vector can be computed/upcllcated as
in (). It is crucial to use the original speech envelope
4(%) ;
(s1, or sy,) and not the envelope S, that was recon
structed from the EEG. Given the new crosscorrelation
vector, the decoder d“+1) can be updated as in (@). Then
return to step (1) and iterate until convergence.

This iterative unsupervised predicting of labels could po-
tentially inject incorrect labels and thus incorrect data in the
estimation of the decoder, which could in principle lead to a
downward spiral of incorrect updating and thus to a badly-
performing decoder. Remarkably, it was shown in [8] that
a self-leveraging effect occurs in this batch-mode iterative
updating where the new decoder outperforms the previous
decoder, despite the presence of labeling errors, resulting
in an upward instead of a downward spiral. This happens
even in the case where the initial decoder is initialized with
random values. This unsupervised subject-specific decoder
outperformed a supervised subject-independent decoder (i.e.,
trained on data from other subjects than the one under test) and
even closely approximated the performance of a supervised
subject-specific decoder [8].

III. TIME-ADAPTIVE UNSUPERVISED STIMULUS
RECONSTRUCTION FOR AAD

The unsupervised training procedure of Section assumes
the availability of multiple data segments at once (i.e., batch-
training). The batch computation is inherent to the procedure;
once a new decoder is computed, all labels in the recording
are repredicted to improve the next decoder. After the unsu-
pervised batch training, the final decoder is fixed and applied
to unseen data from the subject under test. However, such
a pre-trained time-invariant decoder does not adapt to non-
stationarities due to changing conditions and situations and
may thus perform suboptimally. Here, we propose a time-
adaptive realization of such an unsupervised AAD decoder,
i.e., a decoder that adapts itself over time when EEG and audio
data (processed in envelopes) are continuously streaming in.

Assume some initial decoder. Data segments of T4 samples
of EEG and audio data start streaming in. At a certain point
in time, assume the k™ segment of EEG data Xj, € RTwuxCL
(see (3)) and corresponding segments of the speech envelopes
of the two competing speakers (si,,S2,) € RT% become
available. There is no information available about which
speaker is the attended or unattended one in this segment. The
goal is now to update the decoder in an unsupervised manner
based on the newly available information, to which end we
will propose and compare two approaches (Section and
[-B).

In this time-adaptive procedure, it is important to distinguish
the updating segment length 7,4 from the decision segment
length Ti.. The former, equivalent to the segment length
T in the previous sections, corresponds to the length of
the segments on which the prediction of the labels for the

@) update pool

decoder &k,l 1

() apply decoder

decoder

Kkt new
segment /

time

- updating segment

@ update pool:
1. FIFO update pool of EEG/speech envelopes

| K—1

I {Xk—m, (slk,mvSZk,m)}

| m=0

| Tr(XiXe)

2. Compute Ryx, = (1=)X X+ —F

K—1
land Rex = > R,
m=0

while i </ and &k changes

v |

|
o () apply decoder (on whole pool) (dy—_1 in first iteration)
|

l@ predict labels

.

() update decoder

(3) predict labels (on whole pool)
K—-1
@ update decoder, given updating segments {Xk,m, 5predk,m} :

; 1. Compute rxs,_, = X"Lmsp,edkim,Vm €{o,..., K—1}

m=0"
K=1
and rs = Y rxs
m=0
2. Recompute dy = Ryt rys

! end while

Figure 1: The time-adaptive unsupervised sliding window scheme and algorithm to update a stimulus decoder, with repredictions of the labels on previous

segments.

updating/training and the updating/training itself is performed.
The latter corresponds to the length of the segments on which
AAD decisions are made to in the end steer the enhancement
algorithm in the hearing device. This decision segment length
is, therefore, much more sensitive to speed (e.g., because of
switches in auditory attention [|12]) than the updating segment
length, as there can be some delay allowed in updating the
decoder. Therefore, the updating segment length is typically
larger than the decision segment length Ty > Tiey, i.€., within
each updating segment, multiple AAD decisions are made.
In the time-adaptive sliding window approach (Sec-
tion [[II-A), the aforementioned batch-mode procedure is mim-
icked (i.e., including repredictions of the labels of previous
segments) but over a finite time horizon that is implemented as
a sliding window. In Section [[II-B| we propose an alternative
time-adaptive approach that does nor recompute previously
predicted labels and, therefore, can be implemented recur-
sively. This is much more attractive from a computational and
memory usage point of view. Both approaches to update the
decoder are explained in more detail in the following sections.

A. Sliding window implementation

In the sliding window implementation (Figure [I)), a pool of
K data segments of updating segment length T4 is per-
manently kept in memory using a first in, first out (FIFO)
principle. When a new data segment { Xy, (s1, , s2,)} becomes
available, the oldest data segment is discarded and the pool
is updated with the newest one, resulting in the new pool
{Xp—m, (Slk_ws%_m)}i;é- The stimulus decoder is then
updated similarly to the batch-mode implementation explained
in 8] and Section but on the finite pool of K segments.
First, the EEG autocorrelation matrix of the new segment
is computed similarly to (6):
Tr (X} Xk)
CL L ®
with the regularization parameter A\ recomputed per new
segment k using (7). The aggregated autocorrelation matrix
across the whole pool of K segments can then be up-
dated/recomputed:

szk = (1 —)\k)Xsz + Ak

-1

K
Ro = Y Ruwy .- ©)
m=0

The autocorrelation matrices of the previous segments can be
recomputed or stored and retrieved from previous computa-
tions. We found empirically that better results are obtained
when regularizing the new autocorrelation matrix (8) before
being stored and combined in (@), instead of regularizing the
combined autocorrelation matrix (9), i.e., affer combining the
autocorrelation matrices from the different segments.

Using the decoder dj_; from the previous step, the iter-
ative procedure of predicting labels, updating the crosscor-
relation vector(s), and decoder on the pool of K segments
{Xk,m, (Slk—m, , stfm) }fl;é can be initiated. Given the per-
segment predicted attended speaker {Spredk,m}g;(l) (initially
obtained using flk,l), the crosscorrelation vectors can be
updated as in (B):

Tos = X mSpred, > Vm € {0,..., K —1}.

The aggregated crosscorrelation vector and corresponding de-
coder can then be computed as:

K-1
A 1
Tys = E Tosp m = d, = R;pw Tys-
m=0

This predict-and-update procedure is then iterated [times
on the same pool of K segments. Based on [8], we choose
I = 5, after which the iterative batch updating procedure is
generally observed to have converged to a final decoder [S]]
(see also Figure [6). Given that we iterate over this pool of K
segments, this approach can only be implemented in a sliding
window manner and not recursively. Lastly, the pool size pa-
rameter K represents an important trade-off between accuracy,
adaptivity, and computational complexity and memory usage.
A longer sliding window (i.e., larger K) means that more
data is available to compute the decoder, resulting in a better
approximation of the batch-mode decoder but also resulting in
a lower adaptivity and higher memory requirements (see also
Section [IV]).

B. Recursive implementation

As an alternative to the sliding window implementation, we
propose a single-shot predict-and-update scheme (Figure [2).
As opposed to the sliding window approach, the labels of
previous updating segments are not repredicted, enabling a

Kt new
segment

i | 1

decoder dy_; —J

@ apply

previous decoder

time — updating segment

(2 predict label

Given updating segment (kaspredk)
1. Update Ry < aRyx + (1 — @) [(1 — A)XEX, +)\kwo

2. Update r,s < frys + (1 — 8)X}Spred,
3. Recompute dj = Ry,

Figure 2: The time-adaptive unsupervised recursive predict-and-update scheme
to update a stimulus decoder.

recursive implementation that is much more efficient from a
computational and memory usage point of view. In this recur-
sive implementation, the decoder resulting from the previous
update dj_1 is applied to the new segment {X, (s1,,S2,)} of
length T,,4 to predict the label of this new segment, resulting in
the predicted attended envelope speq, - To update the decoder,
a regularized autocorrelation matrix is computed based on
the new k™ segment as in (8], while the predicted attended
envelope is used to compute a crosscorrelation vector as in (3)):
Tys, = zspredk .

This new autocorrelation matrix R,,, and crosscorrelation
vector rys, can then be combined with the autocorrelation
matrix R;, and crosscorrelation vector r,, integrating all
previous information to update the decoder:

= Elk = R_lrl.s.

xrxr

Rzz — OéRmz + (1 - a)Rzmk
Tys — ﬁrass + (]- - 5)r15k

The influence of the weighting parameters o and 8 will be
empirically evaluated in Section

Unlike the sliding window implementation, which uni-
formly weighs the K past segments in the new decoder,
this recursive algorithm implements an exponential weighting
across all past segments. This exponential weighting could be
advantageous, especially in an adaptive context, as the more
relevant closest (past) segments have higher weights than those
further in the past. One can choose the weighting parameters «
and (3 such that the center of mass of the exponential weighting
is the same as of the sliding window approach [[13|]:

1 14+«

Kf
- d K = .
“ T K1 1—a

(10)

A possible drawback of this recursive implementation is
that previous labels are not repredicted, and that one can
not apply multiple iterations over a pool of segments as
in the sliding window version. This could lead to slower
convergence or poorer accuracies. However, the upside is that
the procedure is much easier to implement and much more
efficient in terms of memory and computation resources (see
Section [[II-C). In Section we will demonstrate that the
impact on convergence speed and accuracy is negligible.

C. Memory usage

1) Sliding window implementation: For the sliding window
implementation, at least the pool of K EEG segments (K X
Tuwa x C') and 2K speech envelopes (2K x T,q) need to be
permanently stored in memory. One does not need to store
the L different time lags, as these can always be generated
from the original EEG data. Furthermore, it is not possible to
simply store the autocorrelation matrices and crosscorrelation
vectors of the previous EEG segments - which would require
less memory usage - as for the repredictions of the labels,
the decoder has to be applied to the original EEG and speech
envelope data. This leads to the following memory usage:

(C+2)K Ty ~ O(KTwC),

where generally T,y >> K or C. As the storage of the
sample dimension T,4 is required, this is generally a very high
memory usage.

2) Recursive implementation: The recursive implementa-
tion minimally requires the permanent storage of one auto-
correlation matrix R, (built from % elements due
to symmetry) and one crosscorrelation vector r, (built from
CL elements). This leads to the following memory usage:

CL(CL +1)
2

which is, as expected, much less than the sliding window
approach.

To better appreciate the differences, consider the following
practical realistic example with C' = 24 EEG channels, L = 6
time lags, pool size K =19, and an updating segment length
T.4 equivalent to 1200 samples (corresponding to 60s when
the EEG and speech envelopes are downsampled to 20 Hz).
The sliding window approach then requires the storage of
592 800 elements, which is more than 50 times more than
for the recursive implementation, which requires to only story
10584 elements.

CL+ ~0(C?1?),

IV. VALIDATION AND COMPARISON

We test both versions of the time-adaptive unsupervised
stimulus reconstruction algorithm of Section [III} for different
hyperparameter settings (i.e., the updating segment length
T4, pool size K in the sliding window implementation, and
exponential forgetting factors «, 8 in the recursive implemen-
tation). In all experiments, we start from a different fully
random initial decoder, generating the first prediction(s). In
the recursive implementation, the initial autocorrelation matrix
and crosscorrelation vector are initialized with all zeros. We
compare the sliding window and recursive implementation and
select a set of hyperparameters on one dataset and validate
the chosen algorithm on a second one. These datasets are
introduced in Section while the performance metrics
are described in Section[[V-B] The experiments and results are
discussed in Section [[V-C] with a more detailed discussion on
the effect of repredictions of the labels in the sliding window
approach in Section The final settings are validated on
the second dataset in Section

A. Data and preprocessing

1) AAD datasets: The first AAD dataset (Dataset I) is
from [9] and contains the EEG (64-channel BioSemi Ac-
tiveTwo system, standard 10-20 layout, 8196 Hz sample rate)
and audio data of 16 normal-hearing subjects participating
in an AAD experiment, where the subjects were instructed
to listen to one of two competing speakers located at +90°
azimuth direction (in dichotic and head-related transfer func-
tion (HRTF)-filtered listening conditions). Per subject, eight
stories of 6 min and 12 repetitions of 2 min of those stories are
presented, resulting in 72 min data per subject. The attention
was balanced across left and right attended and listening
conditions. During the experiments, the eyes of the participants
were open. This dataset is available online [[14], and we refer
to [9] for more details.

The second AAD dataset (Dataset II) is from [15] and
will act as an independent validation dataset. It contains
the EEG (64-channel BioSemi ActiveTwo system, standard
10-20 layout, 512Hz sample rate) and audio data of 18
normal-hearing subjects in a similar AAD experiment with
two competing speakers, located at +60° azimuth direction
(HRTF-filtered) and using different acoustic room properties.
Per subject, 50 min of data (60 x 50 trials) are available. The
attention was again balanced across listening directions and
conditions. The eye gaze of the participants was fixed to a
crosshair. This dataset is also available online [[16f], and we
refer to [[15]] for more details.

2) Preprocessing: To preprocess the EEG and audio data,
we applied the same preprocessing steps as in [8]], [9]. The
speech signals are first filtered using a gammatone filterbank.
Using a power-law operation with exponent 0.6, an envelope
is computed for each subband signal. All subband envelopes
are afterward summed to one envelope. Both EEG and speech
envelopes are bandpass filtered between 1-9 Hz and down-
sampled to 20 Hz (Dataset 1)/32 Hz (Dataset II). In neither of
the datasets, additional re-referencing or artifact rejection has
been applied.

B. Performance metrics

To evaluate a specific implementation with a specific set of hy-
perparameters, we use three performance metrics, quantifying
the accuracy, adaptivity, and memory usage of each algorithm:

e Final accuracy: the final accuracy is defined as the
average of the accuracies on the independent test set
across the last 5min of updating, i.e., after the adaptive
decoder has had sufficient time to converge to a steady-
state regime.

o Settling time: in a time-adaptive context, not only accu-
racy but also adaptivity or speed of adaptation is an im-
portant metric. Here, we quantify the adaptivity with the
settling time, defined similarly as in control theory [17]].
This settling time is defined as the point in time where
the accuracy has reached a threshold for the first time
and remains above the lower bound of a predefined error
band for the remainder of the updating procedure. The
threshold is defined as a convex combination of the final

Accuracy [%]
100 -

threshold

error band

75 -

final

accuracy

settling time
= 79.0%

50
| | | | J

0 12 19 24 36 48

Time [min]

Figure 3: Illustration of the adaptation curve and performance metrics for a
representative subject (Subject 4) of Dataset I, starting from a random initial
decoder and updating every 60 s, for the recursive implementation with av =
B = 0.9 (average across ten runs).

accuracy and the initial chance level performance (50%;
before the updating procedure):

threshold = 0.95 X final accuracy + 0.05 x 0.5.

The error band, which allows taking the variability into
account, is defined as:

error band = final accuracy + 2M,

with M the difference between the maximum and mini-
mum across the last 5 min accuracies.

e Memory usage: the memory usage, i.e., the number of
elements that need to be permanently stored in memory,
is computed as in Section

Figure [3] illustrates the final accuracy and settling time per-
formance metrics for a representative subject and specific
implementation (this figure is only meant to illustrate the
updating procedure and the definitions of the performance
metrics, and should not be viewed as a validation result).

C. Hyperparameter selection

We test the different implementations of Section for dif-
ferent hyperparameter settings on Dataset 1. Per subject, we
randomly permute the 6 min trials of the first 48 min and use
those as the updating set, i.e., the data on which the time-
adaptive unsupervised updating from a random initial decoder
is performed. To track the accuracy of the updated decoder
over time, after each update, we evaluate the decoder on
the separate set of the last 24 min of repetition data, using
Tiest = 30s decision segments to make a decision about the
auditory attention (i.e., to compute the Pearson correlation co-
efficient with both speech envelopes). Per subject, we perform
ten random permutations. For the decoder, we choose time
lags up to 250ms [6]], [9]], which corresponds to L = 6 for
Dataset I and L = 9 for Dataset II (as both are sampled at
different rates). We choose updating segment length 7,4 = 60s
(different from decision segment length Ti, = 30s), ie.,

log10(memory
usage)

Settling time [min] [# elements]

35 — e recursive e 6.6

A sliding window %
LY
Ne
28 - Reco000 - (74.4%, 21.4 min) —_ ®
"\ e
o \®e g
e %°
21 . 0... °
4%
. B
14 -
f‘; ¢
[]
4 S 4o
m N
A
A
ol 4.8

Final accuracy [%)]

Figure 4: Average settling time vs. final accuracy for different parameter
settings across the 16 subjects of Dataset I and ten random permutations
per subject. The shaded area highlights the points that are close to or in the
Pareto front. The indicated recursive algorithm with a = 8 = 0.9 gives one
of the best trade-offs between final accuracy, adaptivity, and memory usage
across the evaluated settings.

we update the decoder every 60s. As the performance of
the stimulus decoder heavily depends on the amount of data
available to make a decision [5], [12]], similarly to [8], we
choose T4 as large as possible - without waiting too long
- to produce as reliable labels as possible. As explained in
the introduction of Section we can afford such a longer
delay in updating (as opposed to the decision segment length,
explaining why we work on different time resolutions for the
updating and testing). However, we do not take T4 larger
than 60s, as the performance of the stimulus decoder starts
to saturate above this segment length, and because this would
require a too long sustained attention on the same speaker.

Figure [] shows the average final accuracy, settling time,
and memory usage for different settings of the sliding win-
dow and recursive implementations across the 16 subjects of
Dataset I and ten random permutations. To compute the final
accuracy per setting, 16 (number of subjects) x10 (random
permutations) x5 (number of time points of updating; see
Section [[V-B)) x48 (number of 30s decision segments in the
24 min test set) evaluations are thus performed. The sliding
window implementation is evaluated for different updating
segment lengths (Tyq € {60,30,10s}) and pool sizes (K €
{10,20,...,60}, except for T,¢ = 60s, where the maximum
is K = 40). Only the results for 7,4 = 60s updating segments
are shown, which are found to be superior to 1,4 = 30s and
10s. Therefore, and for the clarity of Figure |4} the recursive
implementation is only evaluated for 7,9 = 60s and «,f
ranging independently from each other from 0.6 to 0.95 in
steps of 0.05 and o = [ranging in more fine-grained steps
of 0.005 from 0.8 to 0.95. As can be seen in Figure] the
memory usage of the recursive implementation is the same for
every setting (Section [lI-C2)), while this is dependent on the
pool size K and updating segment length 7,4 for the sliding

window implementation (Section [[II-CT). In general, there is
a clear positive correlation between a higher final accuracy
and a higher settling time, representing the trade-off between
accuracy and adaptability of the decoder. The points in the
shaded lower envelope area of the point cloud in Figure {4
represent the Pareto front, i.e., the settings that give the best
trade-off between a high final accuracy and low settling time.

Surprisingly, the Pareto front of the recursive implementa-
tions (i.e., without repredictions of previous labels) seems to
achieve very similar performances in terms of final accuracy
and settling time as the sliding window implementations (i.e.,
with repredictions of previous labels). In Section[I[V-D} we will
investigate more closely why these repredictions of previous
labels seem to have such little effect. Moreover, the recursive
implementation requires on average 16x less memory than the
sliding window implementation (see Figure @) and is computa-
tionally more efficient, making it the preferred implementation.

As indicated in Figure 4] one of the best choices across
the evaluated settings is the recursive implementation with
a = B = 0.9, resulting on average in 74.4% final accuracy
(standard deviation 12.1%) after 21.4 min (st. dev. 11.7 min)
(see Figure [3] for the per-subject performances). The latter
implies that it takes about 20 min before the decoder has
learned how to optimally decode the attended speaker starting
from a random decoder. These settings are therefore used in
the remainder of the experiments. Although there are a few
settings of the sliding window implementation (i.e., T4 = 60's
and K = 40) that give a slightly better final accuracy for
similar settling times, they require more memory storage (42X
more elements) and are also computationally heavier (due
to the repredictions of the labels). Lastly, plugging in the
hyperparameter values & = 8 = 0.9 in (I0), which allows
converting the forgetting factors a and g of the recursive
implementation to the equivalent pool size parameter K of the
sliding window implementation, results in K = 19 min. This
is indeed consistent with the results of the sliding window
implementation with K = 19, which has a very similar
performance (73.6% (st. dev. 13.2%) in 19.4min (st. dev.
11.5min)) while requiring much more memory. There is no
noticeable benefit from the exponential weighting over the
uniform weighting, given that the performance is tested on
an asynchronous, independent test set. In Section we
will concurrently test and update on the same data, potentially
revealing the benefit of exponential weighting.

D. Effect of repredictions

The results in Section show that the single-shot recursive
implementation without repredictions of the labels performs on
par with the sliding window implementation with repredictions
of the labels of previous segments. This suggests that, in the
considered time-adaptive context, the iterative repredictions of
labels on the current pool of K segments have no additional
benefit and that the labels hardly change between before and
after the relabeling procedure. This is confirmed by computing
the total number of labels that changed between before and
after the iterative relabeling procedure in all updates before the
settling time, i.e., before reaching steady-state performance.

Settling time [min]

40 - ® Dataset | []
A Dataset Il A
OA
30 L A
A 4 b
meanpataset | A A
A
o) *
20 o , A
meanpataset 11 }
A [
A
10 A A
A
e 0
ol o AA

40 50 60 70 80 90

Final accuracy [%)]

|
100

Figure 5: Individual settling time vs. final accuracy per subject of Dataset
I and II (average across runs) for the chosen recursive implementation with
a =8 =09T,y = 60s (Dataset I) and « = 8 = 0.916,Tqy = 50s
(Dataset II).

Training
accuracy [%] after it.
80 - 5
75
70
65
60

55

50

1 10 20 30 40
Amount of updating data K [min]

Figure 6: The training accuracy on 30s decision segments for the batch-
mode unsupervised iterative updating procedure as a function of the amount
of updating data, for different numbers of relabeling iterations (‘init’ refers to
the accuracy when no iterations are performed; average across all subjects of
Dataset I and random permutations). Given that the updating segment length
Tuws = 60s, the amount of updating data corresponds to pool size K (in
number of minutes).

For T,y = 60s, this total number of labels that changed
is (on average across subjects and random permutations in
Section only 0.16 for K = 10, 0.70 for K = 20, and
1.13 for K = 40. This shows that the number of self-corrected
labels in the iterative relabeling procedure is minimal, even
more so if the pool size K is small.

To more closely investigate this dependence of the relabel-
ing on the pool size K, we compute the training accuracy
(i.e., the percentage of correct labels in the updating set)
in the different iterations as a function of the size of the
updating set for the batch-mode unsupervised algorithm in [8]]
using T,g = 60s updating segments and Ty, = 30s decision

segments. Per subject and size of the updating set, ten runs
with different randomly selected updating sets of size K
from the total dataset are performed. Figure [6] then shows the
average training accuracy across subjects and runs on Dataset
I. From Figure [f] it is clear that the self-correcting behavior
on the predicted labels of the first iteration only starts to occur
when the updating set contains more than 14-20 min of data.
This can be explained from a mathematical point of view
as an overfitting effect: when K is small, the decoder has
enough degrees of freedom to span all initial predictions in
the subsequent iterations, leading to an overfitted decoder.

When K > 14, there is a clear effect of the second
and subsequent iterations (until convergence to the fixed
point [8]]). This effect, however, seems not to be present in
the time-adaptive context. This is explained by considering
the initial decoder for each new decoder update when a new
segment becomes available. In the batch-mode design, this
initial decoder is always a random decoder, whereas in the
time-adaptive context, this will only be the case for the first
received data segment. In the later updates, the initial decoder
is already improved based on past data. Consider the case
of Ty = 60s, K = 20 in Figure [f] In the time-adaptive case,
already 19 updates will have been completed before a full pool
of K = 20 segments becomes available. After 19 updates,
however, the decoder has already substantially improved (see
also Figure [3). Therefore, as suggested in Figure[6} the decoder
will not exhibit random performance but performance close to
the one of the converged decoder in Figure [6] Consequently,
the effect of a reprediction on the labels on previous segments
in the pool will be similar to the effect of the last iterations
(3, 4, 5) in Figure |§|, that is, very small. In other words, the
initial decoder is then already close to the fixed point of the
updating procedure [8].

Given the important trade-off in memory usage and compu-
tational complexity, these insignificant improvements do not
outweigh the additional required resources.

E. Validation on an independent dataset

To confirm that the recursive implementation with 7,4 = 60s
and @« = f = 0.9 is a robust choice across subjects and
datasets, and that no overfitting of the hyperparameters has
occurred on Dataset I, we apply the recursive algorithm on the
completely independent Dataset II, again starting from a fully
random decoder. Given that Dataset II only contains 50 s trials,
we choose Tyq = 50s. Furthermore, given that o = § = 0.9
is equivalent with K = 19 according to (I0), resulting in
a 19min history when using 60s segments, this becomes
K = 22.8 for 50 s segments. Using (T0), the equivalent choice
for Dataset II becomes o = 3 = 0.916.

We test this recursive implementation with T, = 50s
and o = S = 0.916 on each of the 18 subjects of Dataset
I by ten times randomly selecting 40 min as the updating
set and the remaining 10 min as test set. The average final
accuracy and settling time (on 30s decision segments) are
76.2% (st. dev. 12.4%) and 18.8 min (st. dev. 10.3 min) (see
Figure [3] for the per-subject performances). As this is very
similar to the performance obtained in Section [[V-C] (and even

slightly better), it confirms that the chosen specific recursive
implementation is a robust choice.

V. EVALUATION IN TIME-ADAPTIVE CONTEXT

In Section we have tested the proposed time-adaptive un-
supervised stimulus reconstruction algorithm asynchronously,
i.e., the test set is time-independent from the updating set.
While these experiments allowed to investigate the behavior of
the proposed method, they do not necessarily reflect a practical
use case of the algorithm as in a neuro-steered hearing
device application, i.e., while the time-adaptive unsupervised
decoder needs to simultaneously update/adapt and provide
AAD decisions. In Section [V-A] we simulate on Dataset I
a situation where electrodes are disconnected, for example,
due to movements. In Section we then evaluate the time-
adaptive unsupervised decoder on a third dataset, i.e., while
needing to adapt across multiple recording days.

A. Suddenly disconnecting EEG electrodes

1) Experiment: We compare the fixed supervised decoder
with the proposed time-adaptive unsupervised decoder using
the selected recursive implementation with « = 5 = 0.9
and T,qg = 60s from Section when simulating a situation
where electrodes are disconnected. Per subject of Dataset I,
we randomly permute the 6 min-trials of the first 48 min, to
which we add the last 24 min of repetition data, resulting
in 72min of data. The fixed supervised decoder is trained
on the first 30 min (i.e., using the available attention labels).
Furthermore, also during these first 30 min, the time-adaptive
unsupervised decoder has time to update itself starting from a
fully random initial decoder, with the autocorrelation matrix
and crosscorrelation vector initialized with all zeros.

After these first 30 min of data, we simulate the case where
a number of electrodes are disconnected, as could occur in
practice, by setting some EEG channels to zero. On these last
42 min of data with disconnected electrodes, the original fixed
supervised decoder (trained with all electrodes) is then applied
on each Ty = 30s decision segment, while the time-adaptive
unsupervised decoder keeps on continuously updating per
Tuwa = 60s, and decoding the auditory attention per Tis = 30's
decision segment. We then compare both decoders after the
electrodes are disconnected, i.e., by computing the accuracy
across all binary decisions on the last 42 min (thus also taking
the settling period of the adaptive decoder after the change into
account).

This experiment is performed in two scenarios: when start-
ing from the full high-density 64-channel EEG setup and from
a reduced 22-channel subset, where the electrodes are selected
corresponding to the mobile 24-channel SMARTING EEG
system from mBrainTrain. The latter is added to compare the
results with those in Section where a third dataset is
introduced that is recorded using this 24-channel EEG system.
The number of disconnected electrodes is varied from 0 to 32
(for the 64-channel case) and from O to 11 (for the 22-channel
case). Per number of disconnected electrodes, ten random
permutations (i.e., of randomly permuting the first eight 6 min-
trials and set of disconnected electrodes) are performed.

2) Results: Figure[7a]shows the average accuracy across all
16 subjects of Dataset I and the ten random permutations (per
subject and number of disconnected electrodes) as a function
of the number of disconnected electrodes, starting from the full
high-density 64-channel setup and reduced 22-channel setup.
When no electrodes are disconnected, the fixed supervised
decoder outperforms the time-adaptive unsupervised one with
around 4.4% in accuracy in both cases. This difference in
accuracy is expected and in line with the batch results obtained
in [8)]. However, in the 64-channel setup, already when dis-
connecting three electrodes, the adaptive unsupervised decoder
performs better than the fixed supervised one. This effect is
already present after two electrodes for the more mobile setup
of 22 channels. The difference between both decoders then
increases up to 13.9% for the 64-channel setup and 8.3% for
the 22-channel setup.

These performance differences seem to be mainly due to the
decrease in accuracy of the fixed supervised decoder, which
has been trained without taking the disconnected electrodes
into account, while the time-adaptive unsupervised decoder
remains relatively stable (especially in the 64-channel case).
This shows that the latter decoder can effectively adapt to
disconnected electrodes, quickly finding an almost equivalent
alternative way to decode the attended speech envelope from
the reduced set of electrodes. The fact that the adaptive
decoder obtains similar performances with only 32 channels
compared to 64 channels comes not as a surprise, given that
in [18]], it was shown that the number of EEG channels could
be reduced to around ten without a loss in performance,
however, given an optimal channel selection procedure (while
here we simulate random electrode disconnections, as would
occur in practice).

This experiment clearly shows the added value of the time-
adaptive unsupervised approach, effectively and automatically
adapting to changes in the EEG setup, here simulated by
electrodes that are disconnected. Furthermore, we have only
simulated one change in the (EEG) setup in an otherwise
very controlled experiment, and already obtained a better
performance with the time-adaptive approach when two or
three electrodes are disconnected. In practice, such changes
would occur in combination with other non-stationarities in
the data, which is investigated in the next section.

B. Adaptation across multiple recording days

While in Section the proposed time-adaptive unsuper-
vised decoder is tested in a more time-adaptive context where
electrodes are disconnected, the non-stationarities in the data
are still limited to this single change. Furthermore, the EEG
data per subject are recorded in one session, with only small
breaks in between, and in a very controlled setup. Therefore,
in this section, we evaluate the proposed method on a third
dataset where the decoder needs to adapt across multiple days
of recordings, potentially combined with electrodes that are
disconnected.
1) Data and preprocessing:

a) AAD dataset: We use a third dataset (Dataset III)

containing EEG and audio data of two subjects from a

Accuracy [%]

80
-4.5%

adaptive unsupervised, 64-channel

-4.3%

70 -

T

~ 0@ 4
J
4

+

=

w

©

NS

2

60

adaptive unsupervised,

22-channel 22-channel fixed supervised,
64-channel
50 -, ! ! ! |
0 8 16 24 32

Number of electrodes disconnected

(a)

Accuracy [%]
90 -

+2.3%
80

adaptive unsupervised

70
+16.6%

60 fixed supervised

50 -

Number of electrodes disconnected

(b)

Figure 7: The accuracy on 30 s decision windows of the fixed supervised and time-adaptive unsupervised decoder as a function of the number of disconnected
electrodes for (a) Dataset I (electrodes are disconnected after the first 30 min of (training) data) and (b) Dataset III (electrodes are disconnected after the
first two (training) sessions). The accuracies are averaged over all 16/2 (Dataset I/Dataset III) subjects and ten runs (per subject and number of disconnected

electrodes).

longitudinal AAD experiment across multiple days, carried
out at the participants’ homes. A two-talker AAD experiment
was conducted in eight different sessions that took place on
seven different days. In each session, four blocks of 6 min
stories are presented to each subject, resulting in a total of
192 min of AAD data per subject. The audio stimuli differed
across all sessions. The first two sessions took place on the
same day, while the other six sessions took place on different
days (see also Figure [8a). The EEG was measured using a 24-
channel SMARTING mobile EEG system from mBrainTrain
at a 500 Hz sample rate. More detailed information about this
dataset can be found in [19].

While this dataset was initially recorded for the purpose of
neurofeedback experiments, it can be used to test the proposed
time-adaptive unsupervised decoder as it reflects the practical
use case of a neuro-steered hearing device. The algorithm will
need to adapt over various days, meaning that there will be
changes in, for example, EEG setup, electrode impedances,
conditions, speaker and story characteristics, and state of mind
of the user, as would all occur in practice. While two subjects
are not enough to draw firm (statistical) conclusions, it allows
showcasing how the proposed algorithm can be used in a
practical, online context.

b) Preprocessing: The EEG data and audio envelopes are
preprocessed in the same way as in Section The only
difference is that L = 400 ms is chosen as the post-stimulus
range of time lags for the decoder, reflecting the choice in [[19].

2) Experiment: We compare the fixed supervised decoder
with the proposed time-adaptive unsupervised decoder. Again,
we only consider the recursive version of the time-adaptive
decoder, as it performs similarly to the sliding window version
while requiring much less resources. As shown in Figure [8a]
the supervised, fixed decoder is trained on the 48 min of
data from the first two sessions on the first day, using the

information about which speaker is the attended one. This
fixed decoder is then applied per T = 30s decision segment
on all other sessions on the other days. As such, this decoder
reflects the practical use case where first data of a new neuro-
steered hearing device user need to be recorded in an a priori
calibration session, whereafter the trained decoder is loaded
onto the device.

The time-adaptive unsupervised decoder is implemented
using the settings as determined in Section[[V]and is initialized
with a fully random decoder, while the autocorrelation matrix
and crosscorrelation vector are initialized with all zeros. Per
T.wa = 60s, the decoder is continuously updated using the
recursive implementation with & = 8 = 0.9. To fully leverage
the time-adaptivity of this decoder, after each update, it is,
similarly to Section applied to the next two Tiyq = 305
decision segments to make AAD decisionsd (Figure. The
first 48min of the first two sessions on the first day are
used to let the decoder initialize and converge as in Figure [3]
starting from a random initial decoder. In between sessions,
as one would do in a practical scenario as well, the current
autocorrelation matrix R, and crosscorrelation vector r,,, are
re-used (hence the ‘parameter transfer’ in Figure and not
re-initialized each time from scratch.

Per 30s decision segment, a decision about the attended
speaker is made, resulting in a binary correct/incorrect de-
cision. To provide a comprehensible plot when plotting the
accuracy over time, these binary decisions are smoothed using
a 29-point moving average (i.e., per segment taking the past
and following 7 min into account). To assure a fair comparison
between the fixed supervised and time-adaptive unsupervised
decoder, the total accuracy is computed as the average over

2Two 30s decision segments as the decoder is only being updated every
60s.

fixed, supervised:

approx. 7 days rest 1 day

1 day

1 day 3 days rest 7 days rest

48 min | 24 min

| 24min | 24 min | 24 min |

24 min l

supervised | training

decoder d

time-adaptive, unsupervised:

unsupervised training
+ testing

()

Accuracy [%]
100 -

Session 1 & 2 Session 3 Session 4

80 -

60 -

S1
40+

20 -

O L

100 -

80 -

60 -

s2
40+

20 -

Session 5 Session 6 Session 7 Session 8

fixed supervised - 80.2%

adaptive unsupervised - 80.2%

adaptive unsuperviséd - 83.0%

fixed supervised - 78.5%

48 72

| | | J
96 120 144 168 192

Time [min]

(b)

Figure 8: (a) The setup of Dataset III. The fixed decoder is trained in a supervised manner on the first two sessions on the first day and tested on all other
sessions on the other days. The proposed time-adaptive unsupervised decoder is initialized with a random decoder and is continuously updated over time
and tested/applied on/to each next two decision segments. The autocorrelation matrix and crosscorrelation vector are stored in between sessions (‘parameter
transfer’). (b) The smoothed accuracy as a function of time of the fixed supervised and adaptive unsupervised decoder for both subjects of Dataset III. The
first 48 min are used as the training set for the fixed supervised decoder, explaining why there is no accuracy there. The final accuracies are computed from

Session 3 onward on 30s decision windows.

all binary decisions across all but the first 48 min of the first
two sessions on the first day.

Lastly, similarly to Section we evaluate the perfor-
mance in case one or more electrodes are disconnected by
simulating 0 to 12 disconnected electrodes after the first two
sessions (see also Section [V-AT). Per number of disconnected
electrodes, ten random selections of electrodes are performed.

3) Results: Figure [8] shows the smoothed accuracy as a
function of time of both the fixed supervised and time-adaptive
unsupervised algorithm for both test subjects. As explained
before, there is no test accuracy present in the first 48 min
for the fixed supervised decoder, as it is trained on those
sessions. During those first two sessions, the time-adaptive
unsupervised decoder converges after £25 min, starting from
a random initial decoder. This is more or less in line with the
results of Section [V-C| and IV-E]

The fixed supervised decoder reaches a total accuracy of
80.2% (subject 1) and 78.5% (subject 2), while the proposed

time-adaptive unsupervised decoder reaches a total accuracy
of 80.2% and 83.0%. The latter thus performs on par with the
former for the first subject while outperforming the former
with 4.5% for the second subject. Furthermore, our approach
does not require an a priori calibration session with the
end-user but can be implemented in a plug-and-play fash-
ion on a device. Lastly, more severe changes in the setup
and conditions can occur. For example, Figure @ shows
the results of simulating disconnected electrodes. When no
electrodes are disconnected, the accuracies are the same as in
Figure However, when one electrode is disconnected, the
time-adaptive unsupervised decoder already outperforms the
fixed supervised decoder with 6.0%, increasing to 16.6% when
12 electrodes are disconnected. This shows that the proposed
method would be able to adapt to such changes, while the
fixed supervised decoder only performs worse.

To evaluate whether, besides the favorable memory usage,
the recursive implementation also benefits from the exponen-

tial weighting compared to the uniform weighting in a sliding
window implementation in a time-adaptive context, we test the
sliding window implementation with K = 19 (i.e., equivalent
to o« = B = 0.9) but without repredictions of the labels
(to be in line with the recursive implementation which also
does not repredict previous labels). The resulting accuracy is
79.9% (subject 1) and 81.6% (subject 2). While this is for
both subjects worse than the recursive implementation, we
cannot draw firm conclusions about this based on two subjects
alone. However, as expected, these results at least suggest that
an exponential weighting is favorable compared to a uniform
weighting in a time-adaptive context.

Although data from only two subjects are available in
this experiment, hampering clear statistical conclusions, the
results clearly show the potential of the proposed time-adaptive
unsupervised decoder in a practical AAD use case.

VI. DISCUSSIONS AND CONCLUSIONS

We adapted the offline batch version of the unsupervised
AAD stimulus reconstruction algorithm as proposed in [§]]
to a time-adaptive online version. This allows the decoder
to automatically adapt to non-stationarities in the EEG and
audio. We have developed both a sliding window implemen-
tation with repredictions of previous labels in a finite pool,
and a single-shot predict-and-update recursive implementation
without repredictions. The latter has the advantage, as it results
in similar performances for much less memory usage and
computational requirements (Section [[V). We have selected
the algorithm’s hyperparameters via extensive experiments and
validated these on an independent dataset. Furthermore, we
explained why there are hardly any changes in labels when
using iterative repredictions in this time-adaptive context while
this is the case in the batch-mode algorithm presented in [J].

We have also shown the additional benefit of the time-
adaptive unsupervised decoder compared to the fixed super-
vised decoder in a time-adaptive scenario, for example, when
simulating electrode disconnections (Section[V-A)). When elec-
trodes are disconnected, the former starts to clearly outperform
the latter. Lastly, the proposed time-adaptive unsupervised de-
coder outperformed the fixed supervised decoder on a dataset
that reflects a practical AAD use case (with testing across
multiple sessions on different days; Section [V-B). Given that
this dataset only contains two subjects, we are careful in
drawing firm conclusions. The results, however, clearly show
the potential of the proposed method.

As explained in [5]], [8], the stimulus reconstruction method
does not perform well enough on short decision segment
lengths for the online AAD application. In Section
there were no switches in auditory attention present, such
that a high accuracy could be obtained with 30s decision
segments. While this reduces the relevance of the proposed
algorithm as the ‘decision-maker’ in AAD, it is an excellent
candidate to provide reliable labels of the auditory attention to
update a faster algorithm (such as the common spatial pattern
filtering algorithm [20]) in an unsupervised manner but only
at low speeds. As an automatic ‘labeler’ to inform another
(supervised) AAD algorithm, the speed at which labels are
produced is less restricted.

To conclude, the proposed time-adaptive unsupervised stim-
ulus reconstruction method is an important step forward to the
online application of AAD in neuro-steered hearing devices.

REFERENCES

[1] S.J. Aiken and T. W. Picton, “Human Cortical Responses to the Speech
Envelope,” Ear and Hearing, vol. 29, no. 2, pp. 139-157, 2008.

[2] N. Mesgarani and E. F. Chang, “Selective cortical representation of
attended speaker in multi-talker speech perception,” Nature, vol. 485,
pp. 233-236, 2012.

[3] N. Ding and J. Z. Simon, “Emergence of neural encoding of auditory
objects while listening to competing speakers,” Proceedings of the
National Academy of Sciences of the United States of America, vol.
109, no. 29, pp. 11854-11859, 2012.

[4] S. Van Eyndhoven, T. Francart, and A. Bertrand, “EEG-Informed
Attended Speaker Extraction from Recorded Speech Mixtures with
Application in Neuro-Steered Hearing Prostheses,” IEEE Transactions
on Biomedical Engineering, vol. 64, no. 5, pp. 1045-1056, 2017.

[5] S. Geirnaert, S. Vandecappelle, E. Alickovic, A. de Cheveigné,
E. C. Lalor, B. T. Meyer, S. Miran, T. Francart, and A. Bertrand,
“Electroencephalography-Based Auditory Attention Decoding: Toward
Neurosteered Hearing Devices,” IEEE Signal Processing Magazine,
vol. 38, no. 4, pp. 89-102, 2021.

[6] J. A. O’Sullivan, A. J. Power, N. Mesgarani, S. Rajaram, J. J. Foxe,
B. G. Shinn-Cunningham, M. Slaney, S. Shamma, and E. C. Lalor,
“Attentional Selection in a Cocktail Party Environment Can Be Decoded
from Single-Trial EEG,” Cerebral Cortex, vol. 25, no. 7, pp. 1697-1706,
2014.

[71 M. J. Crosse, G. M. Di Liberto, A. Bednar, and E. C. Lalor, “The Mul-
tivariate Temporal Response Function (mTRF) Toolbox: A MATLAB
Toolbox for Relating Neural Signals to Continuous Stimuli,” Frontiers
in Human Neuroscience, vol. 10, p. 604, 2016.

[8] S. Geirnaert, T. Francart, and A. Bertrand, “Unsupervised Self-Adaptive
Auditory Attention Decoding,” IEEE Journal on Biomedical and Health
Informatics, vol. 25, no. 10, pp. 3955-3966, 2021.

[9] W. Biesmans, N. Das, T. Francart, and A. Bertrand, “Auditory-Inspired
Speech Envelope Extraction Methods for Improved EEG-Based Audi-
tory Attention Detection in a Cocktail Party Scenario,” IEEE Transac-
tions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 5,
pp. 402-412, 2017.

[10] O. Ledoit and M. Wolf, “A well-conditioned estimator for large-
dimensional covariance matrices,” Journal of Multivariate Analysis,
vol. 88, no. 2, pp. 365-411, 2004.

[11] Y. Chen, A. Wiesel, Y. C. Eldar, and A. O. Hero, “Shrinkage algo-
rithms for MMSE covariance estimation,” IEEE Transactions on Signal
Processing, vol. 58, no. 10, pp. 5016-5029, 2010.

[12] S. Geirnaert, T. Francart, and A. Bertrand, “An Interpretable Perfor-
mance Metric for Auditory Attention Decoding Algorithms in a Context
of Neuro-Steered Gain Control,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 28, no. 1, pp. 307-317, 2020.

[13] S. J. Orfanidis, “Exponential Smoothing,” in Applied Optimum Signal
Processing, 2018, pp. 221-315.

[14] N. Das et al., “Auditory Attention Detection Dataset KULeuven,”
Zenodo, 2019. [Online]. Available: https://zenodo.org/record/3997352

[15] S. A. Fuglsang, T. Dau, and J. Hjortkjer, “Noise-robust cortical tracking
of attended speech in real-world acoustic scenes,” Neurolmage, vol. 156,
pp. 435-444, 2017.

[16] S. A. Fuglsang, D. D. E. Wong, and J. Hjortkjer, “EEG and audio
dataset for auditory attention decoding,” Zenodo, 2018. [Online].
Available: https://doi.org/10.5281/zenodo.1199011

[17] K. Ogata, “Transient and Steady-State Response Analyses,” in Modern
Control Engineering, S5th ed. Pearson, 2010, pp. 159-268.

[18] A. Mundanad Narayanan and A. Bertrand, “Analysis of Miniaturization
Effects and Channel Selection Strategies for EEG Sensor Networks with
Application to Auditory Attention Detection,” IEEE Transactions on
Biomedical Engineering, vol. 67, no. 1, pp. 234-244, 2020.

[19] R. Zink, S. Proesmans, A. Bertrand, S. Van Huffel, and M. De Vos,
“Online detection of auditory attention with mobile EEG: closing the
loop with neurofeedback,” bioRxiv, no. 218727, 2017.

[20] S. Geirnaert, T. Francart, and A. Bertrand, “Fast EEG-based decoding
of the directional focus of auditory attention using common spatial
patterns,” IEEE Transactions on Biomedical Engineering, vol. 68, no. 5,
pp. 1557-1568, 2021.

https://zenodo.org/record/3997352
https://doi.org/10.5281/zenodo.1199011

	Introduction
	(Un)supervised stimulus reconstruction for AAD
	Review of stimulus reconstruction
	Unsupervised stimulus reconstruction

	Time-adaptive unsupervised stimulus reconstruction for AAD
	Sliding window implementation
	Recursive implementation
	Memory usage
	Sliding window implementation
	Recursive implementation

	Validation and comparison
	Data and preprocessing
	AAD datasets
	Preprocessing

	Performance metrics
	Hyperparameter selection
	Effect of repredictions
	Validation on an independent dataset

	Evaluation in time-adaptive context
	Suddenly disconnecting EEG electrodes
	Experiment
	Results

	Adaptation across multiple recording days
	Data and preprocessing
	Experiment
	Results

	Discussions and conclusions
	References

