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Abstract—Neural dust (ND) is a wireless ultrasonic backscatter
system for communicating with implanted sensor devices, re-
ferred to as ND motes (NDMs). Due to its scalability, ND could
allow to chronically record electro-physiological signals in the
brain cortex at a micro-scale pitch. The free-floating NDMs are
read out by an array of ultrasonic (US) transducers through
passive backscattering, by sequentially steering a US beam to
the target NDM. In order to perform such beam steering, the
NDM positions or the channels between the NDMs and the
US transducers have to be estimated, which is a non-trivial
task. Furthermore, such a sequential beam steering approach
is too slow to sample a dense ND grid with a sufficiently high
sampling rate. In this paper, we propose a new ND interrogation
scheme which is fast enough to completely sample the entire
ND grid, and which does not need any information on the
NDM positions or the per-NDM channel characteristics. For each
sample time, the US transducers transmit only a few grid-wide US
beams to the entire ND grid, in which case the reflected beams
will consist of mixtures of multiple NDM signals. We arrange
the demodulated backscattered signals in a 3-way tensor, and
then use a canonical polyadic decomposition (CPD) to blindly
estimate the neural signals from each underlying NDM. Based
on a validated simulation model, we demonstrate that this new
CPD-based interrogation scheme allows to reconstruct the neural
signals from the entire ND grid with a sufficiently high accuracy,
even at relatively low SNR regimes.

I. INTRODUCTION

Chronic high-resolution electro-physiological recordings in

the brain or the peripheral nervous system would allow for

major breakthroughs in the field of neuro-stimulation or brain-

machine interfaces, allowing to improve life quality for pa-

tients suffering from debilitating neurological disorders [1].

In [2] the ‘neural dust’ (ND) concept has been introduced,

consisting of a wireless ultrasonic backscatter system for com-

municating with implanted passive sensor devices, referred

to as ND motes (NDMs). Very recently, a ND system has

been validated in-vivo to record electro-physiological activity

in the peripheral nervous system of a rat [3]. Although [3]

uses mm-scale NDMs, the ND concept has been shown to

be scalable to sub-mm scale, which one day could allow to

chronically and wirelessly record electro-physiological signals

within the brain cortex at a micro-scale pitch [2]. To this end, a

large number of free-floating NDMs is implanted in the cortex

at a 2mm depth in a grid with a 100 µm pitch, in which
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each NDM measures action potentials or ‘spikes’ generated

by nearby neuron cells [2], [4]. A grid of ‘interrogators’

equipped with ultrasound (US) transceiver arrays are attached

to the cortex to collect the neural signals measured by the

NDMs. The NDMs modulate their recorded neural signal onto

a reflected US carrier through passive backscattering, which

the interrogator then demodulates and at its turn transmits the

result through the skull to an external transceiver based on

near-field electromagnetic communication [2], [4].

As the system is based on passive backscattering, multiple

NDMs will reflect the US carrier, generating major interfer-

ence when reading out the signal of a targeted NDM. In [4],

it was demonstrated that this interference can be suppressed

by combining transmit (Tx) and receive (Rx) beamforming

techniques to target individual NDMs. However, this technique

assumes that the NDM positions or the channel characteristics

between the individual NDMs and the US transducers can be

estimated, which is a non-trivial task in itself. Furthermore,

this approach requires a sequential interrogation of the NDMs

based on time-multiplexing, in which the number of Tx-Rx

time slots directly depends on the ND grid density. Due to the

high sampling rate at which every NDM has to be sampled

(typically >20kHz), and since each Tx-Rx time slot should be

longer than the time of flight of the US wave, only 10% of a

ND grid with 100µm pitch can be read out.

In this paper, we propose a new ND interrogation scheme

in which the number of Tx-Rx time slots is independent of

the grid density, allowing to read out an entire ND grid with

100µm pitch. Furthermore, it does not need any information

on the NDM positions or the channels between the US trans-

ducers and the NDMs. In this new interrogation scheme, the

US transducers transmit only a few (non-focal) Tx beam pat-

terns that cover the entire grid of NDMs. After demodulation,

the reflected beams will contain mixtures of the neural signals

observed by the different NDMs. We arrange the demodulated

backscattered signals in a 3-way tensor, where the dimensions

consist of (1) the number of US transducers, (2) the number

of collected time samples of the neural signals, and (3) the

number of Tx US beam patterns per time sample. We use

the canonical polyadic decomposition (CPD) to decompose

the tensor in rank-1 terms, and we show that -under certain

conditions- each term will only contain the neural signals of

a single NDM. This blind CPD-based interrogation scheme

allows to read out the entire NDM grid, which is validated on



simulated data using the physical ND model described in [2],

[4], which has been experimentally validated in [5] and in [6].

II. DATA MODEL

In this section, we briefly review the ND data/simulation

model of [2], [4]. Consider a ND system consisting of a

linear grid of K NDMs with a 100µm pitch as shown in Fig.

1. A linear array with Q square-shaped 100µm×100µm US

transducers (TDs) transmits US carrier waves to the NDM

grid over a depth of 2 mm in the neocortex. The carrier

signal transmitted by TD q consists of a sinusoid1 of which

the amplitude and phase at time t are represented by the

complex-valued signal Xq(t). The corresponding US signal that

is observed at time t at the k-th NDM is then given by

Skq(t) = Hkq ·Xq(t) (1)

where Hkq is a complex-valued channel coefficient that models

an attenuation and a phase shift of the US carrier wave, which

depends on various factors such as, e.g., the distance between

NDM k and TD q, the US path loss constant in brain tissue,

the directivity gain of TDk, etc. All these effects are taken into

account in our simulation model (details in [2], [4]).

The contributions from each transmitting TD are superim-

posed at NDM k, resulting in the signal

Sk(t) = ∑
q

Skq(t) = hT
k x(t) (2)

where hk = [Hk1 . . . HkQ]
T and x(t) = [X1(t) . . . XQ(t)]

T . Sk(t)
is modulated by the neural signal Vk(t) that is measured at

the k-th NDM and the amplitude-modulated signal Vk(t) ·Sk(t)
is backscattered to the TD array with an omni-directional

reflection pattern. By reciprocity, the Rx backscatter signal

from NDM k impinging on the interrogator is then given by

rk(t) = Sk(t) ·Vk(t) ·hk (3)

where rk(t) is a Q-dimensional complex-valued vector, of

which the q-th element contains the observation at TD q. Based

on the superposition principle, the contribution from the entire

ND grid on the TD array is

r(t) =
K

∑
k=1

rk(t)+n(t) (4)

where n(t) represents additive channel and receiver noise. Our

goal is to extract Vk(t), for all k = 1, . . . ,K based on r(t).
It is noted that, for the sake of clarity, the above model

is a slightly simplified representation of the actual physical

model in [2]. Nevertheless, the simulated data on which we

will validate our method (see Section IV) is generated using

the complete physical model in [2], [4].

III. CPD-BASED INTERROGATION OF NEURAL DUST GRIDS

A. Canonical Polyadic Decomposition

The Canonical Polyadic Decomposition (CPD), a.k.a.

PARAFAC or CANDECOMP, decomposes a tensor into a sum

1In our simulations, the carrier frequency is set to fc=10MHz, which
corresponds to a wavelength of λ = 150 µm in tissue [2].

Fig. 1. Schematic representation of the neural dust system.

Fig. 2. CPD of a 3-way tensor (figure from Tensor Lab user guide [8]).

of rank-1 tensors. For a 3-way tensor R ∈ C
Q×T×P, the CPD

of order K can be written as (see Fig. 2)

R =
K

∑
k=1

ak ◦bk ◦ ck +E (5)

where ak, bk, and ck are Q-, T -, and P-dimensional vectors,

respectively, ◦ denotes the outer product, and where E denotes

a possible error term in case the tensor rank is larger than K.

The least-squares based CPD will try to find ak, bk, and ck

such that the squared entries of E are minimized.

As opposed to matrix decompositions, tensor decomposi-

tions such as the CPD often have milder uniqueness properties,

even without imposing any constraints on the factors (such as

statistical independence or orthogonality), which makes them

very useful for blind source separation.

Definition (Kruskal Rank): The Kruskal rank of a matrix

A is the largest number j such that any set of j columns of

A is linearly independent.

Corollary: If all columns of a Q×K matrix A with Q ≥ K

are linearly independent, then its Kruskal rank is equal to K,

i.e., the number of columns.

Let A denote the Q×K matrix containing all ak’s in its

columns, and let KrA denote the Kruskal rank of this matrix

(and similarly for the matrices B and C). Assuming R can

be written as a sum of K rank-1 tensors, then a sufficient

condition for the CPD to be unique2 is that [7]

KrA +KrB +KrC ≥ 2K +2 . (6)

It is noted that this is a sufficient condition, and less strict or

generic uniqueness conditions have later been proposed [7].

B. A CPD-compatible model of neural dust

We will now construct a tensor based on the backscatter

signals from a neural dust grid, which approximately satisfies

2Uniqueness is up to an arbitrary non-zero scaling of the 3 factors and a
permutation of the K terms.



the CPD model (5) and the uniqueness condition (6). The main

idea is to read out each sample of Vk(t) multiple times, but

with different ultrasound excitation (i.e., different amplitude

and phase). To this end, for each time slot of length ε seconds,

the TD array creates a different random Tx beam pattern by

letting each of the Q TDs add a random phase to the carrier.

Let us first consider a single NDM, say mote k. Assume that

NDM k at time t is excited with a US wave with amplitude

a(t) and phase φ(t), i.e., Sk(t) = a(t)e jφ(t). At the TD array

in Rx mode, this will be observed as (see (3))

rk(t) = a(t)e jφ(t) ·Vk(t) ·hk (7)

where we ignored the thermal noise3 in (4). Since the TD array

changes the Tx beam pattern after every ε seconds, the same

NDM k is excited at time t +ε with a US wave with different

amplitude a(t +ε) and phase φ(t +ε). If we now assume that

1/ε is at least P times larger than the effective bandwidth of

Vk(t), then it holds that Vk(t) ≈ Vk(t + nε), ∀ n ∈ {1, . . . ,P},

and hence

∀n ∈ {1, . . . ,P} : rk(t +(n−1)ε)≈Vk(t) · ck,n ·hk (8)

where

ck,n = a(t +(n−1)ε)e jφ(t+(n−1)ε) . (9)

Define the matrix

Rk(t) = [rk(t) rk(t + ε) . . . rk(t +(P−1) · ε)] . (10)

Then, based on (8), we can observe that Rk(t) has a rank-1

structure

Rk(t)≈Vk(t) ·hk · c
T
k (11)

where ck is a P-dimensional vector containing the coefficients

ck,n as defined in (9). The vector ck in (11) can be considered to

be a P-dimensional random complex-valued vector, which will

be different for each NDM k due to the different positions of

the NDMs and the random Tx phases chosen at the TD array.

Let fs = 1/∆ denote the sampling rate at which we aim to

read out the neural signal Vk(t) (typically fs = 20kHz). In the

sequel, we refer to sample times according to fs as ‘neural

samples’, and we refer to sample times according to 1/ε as

‘Tx/Rx samples’. Assume that P and ε are chosen such that

∆ = P · ε , i.e., the Tx/Rx sampling rate is P times larger than

the neural sampling rate, such that (8) holds. For each neural

sample time of Vk(t), we then collect P Tx/Rx samples of rk(t)
at the transducer array, which we use to populate the Q×P

rank-1 matrix Rk(t), as defined in (10)-(11).

We now assume that the random Tx beam pattern, i.e., the

vector ck, repeats itself after every P · ε = ∆ seconds, i.e.,

after every P Tx beams, the transducers repeat the same Tx

sequence. A crucial observation is now that, due to the ∆-

periodicity of the beam patterns, each matrix Rk(t) for each

neural sampling time t ∈ {0,∆,2∆, ...} is exactly the same

complex-valued rank-1 matrix up to a real-valued amplitude

scaling with Vk(t), i.e.,

Rk(t +n∆)≈Vk(t +n∆) ·hk · c
T
k . (12)

3In section IV, we will investigate the influence of noise.

By collecting all these matrices for different neural sampling

times into a tensor Rk, we can easily see that this will be a

rank-1 tensor, i.e.,

Rk ≈ ak ◦bk ◦ ck (13)

where

ak ∼ hk (14)

bk ∼ [Vk(0)Vk(∆)Vk(2∆) . . . ]T (15)

ck ∼ [ck,1 ck,2 . . . ck,P]
T . (16)

If we now consider all K NDMs, we can use the superposi-

tion principle to see that the tensor based on the superimposed

Rx waves is equal to

R =
K

∑
k=1

Rk ≈
K

∑
k=1

ak ◦bk ◦ ck (17)

and hence it satisfies the CPD model (5). The CPD (17) can

be computed using the free Matlab toolbox ‘Tensor Lab’ [8].

Note that the number of Tx-Rx time slots (per second) to

populate R is P · fs, which is independent of the number of

NDMs K. This is different from the original approach where

each NDM is read out sequentially, in which case the number

of Tx-Rx time slots is directly depending on K.

C. Uniqueness of the neural dust CPD

If we can guarantee that the CPD of the complex-valued

tensor R obtained in (17) is unique, then we know that the

factors bk will contain the samples of the individual neural

signals Vk(t), ∀ k ∈ {1, ...,K} (up to an arbitrary complex-

valued scaling for each k, see Subsection III-D). As a by-

product, we find the channel coefficients hk in the factors ak.

Note that the number of components in the CPD is equal to

the number of NDMs K. This means that the matrices A, B,

and C have dimensions Q×K, T ×K, and P×K, respectively,

where T is the number of collected neural samples. The entries

in the matrix A correspond to channel coefficients, the entries

in B correspond to neural signal samples, and the entries in

C correspond to the local observation of P different beam

patterns at the NDMs. The entries in these matrices can be

viewed as random complex numbers where each individual

column depends on the position of the corresponding NDM

(for A and C) or the samples of the neural signals (for B).

Because these positions and samples are different for each

NDM, we can assume that A and B will have K linearly

independent columns, and C will have P independent rows,

so all three matrices will have full rank with high probability.

If we assume that Q ≥ K (sufficient TDs), and T ≥ K

(sufficiently long sample window), then both A and B will be

tall matrices, and hence we can assume based on the corollary

in Subsection III-A that KrA = KrB = K with probability 1.

As the sum of the Kruskal ranks of A, B, and C must be

larger than 2K + 2, we eventually obtain the condition that

KrC ≥ 2, i.e., any 2 out of K columns of the P×K matrix C

must be linearly dependent. In principle this holds if P ≥ 2

(with probability 1) due to the randomness of the entries in



C. Nevertheless, if K is large, and if P = 2, there is a high

probability that there exist 2 out of K random 2-D vectors

that are approximately the same. This will make the CPD ill-

conditioned, and the decomposition will give inaccurate source

separation results. Therefore, P should be chosen as large as

possible. Indeed, in a higher dimensional space, the probability

of observing two (out of K) random points that are close to

each other quickly decreases. However, note that the value of P

will be bounded by the number of different US beam patterns

that can be transmitted, reflected, received, and demodulated

within one interval of ∆ seconds. Based on these constraints

and using the ND model in [2], P can not be chosen larger

than 10 for a neural sampling rate of 20kHz (details omitted).

D. Extracting real-valued neural samples from complex-

valued CPD factors

The CPD is only unique up to an arbitrary scaling of the 3

factors (ak, bk, ck) in each component k. This is a fundamental

ambiguity in any blind source separation problem, which is

usually not a issue if only the shape of the source signal is of

interest, rather than its true amplitude. However, in our case

this arbitrary scaling is complex-valued, whereas the signal

Vk(t) is a real signal. Therefore, we have to find an amplitude-

preserving complex scaling factor that makes the imaginary

part of all entries in bk as small as possible, i.e., our goal is to

find a rotation in the complex plane such that ℑ(bk)≈ 0. Let

Bk be a 2-column matrix that contains the real and imaginary

part of bk in its two columns, i.e.,

Bk = [ℜ(bk)ℑ(bk)] . (18)

Then we aim to find an orthogonal (rotation) matrix Q such

that the entries in the second column of

B̃k = BkQ (19)

are as close to zero as possible. In theory, the second column

can be made exactly zero, since all rows of Bk should be

collinear as bk consists of real-valued samples of Vk(t), which

are all multiplied by the same (unknown) complex-valued

scalar. However due to noise and model deviations, this will

only be approximately satisfied. Finding the optimal rotation

boils down to a principal component analysis, which can be

solved using the singular value decomposition of B:

Bk = UΣQT (20)

from which we obtain the orthogonal 2 × 2 matrix Q. The

first column of Q will project the rows of Bk onto the first

principal component, hence the first column of B̃k contains an

estimate of the samples of Vk(t) (up to a real-valued scaling

and sign ambiguity), which we denote as Ṽk(t).

IV. SIMULATION RESULTS

A. Performance Metric

As a performance metric, we use the signal-to-error ratio

(SER), which quantifies the total error power between the

reconstructed Ṽk(t) and the true neural signal Vk(t), relative

to the power of Vk(t) (a high SER is better), i.e.,
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Fig. 3. Box plots with SER values for different values of P.
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Fig. 4. Reconstruction of Vk(t) for different values of P (for k = 67, i.e., a
NDM in the middle of the grid)

SERk = max
α∈R

10 · log10

∑t Vk(t)
2

∑t(Vk(t)−αṼk(t))2
(21)

where α is used to resolve the scaling ambiguity in Ṽk(t).

B. Simulation results

The simulation data is generated using the physical model

described in [2], [4]. We show simulation results for a 1D-

grid of K = 133 NDMs, and an array of Q = 180 TDs.

The center point distance between the NDMs is 150 µm,

whereas this is 100 µm for the interrogator transducer array

elements (resulting in Q > K). The signals Vk(t) are mutually

uncorrelated and consist of synthetic action potential signals,

i.e., neural spikes, with superimposed biological noise (details

in [4]). Unless stated otherwise, we computed the CPD of

order K = 133, i.e., with exactly as many components as there

are NDMs. We use 10000 neural samples which corresponds

to a 0.5s segment of the signal Vk(t) ( fs = 20kHz), resulting

in a tensor of dimension 180×10000×P.

In Fig. 3, we demonstrate how the SER improves as a

function of P. The boxplots capture the SER values over

all K = 133 NDM signals (red points indicate outliers). We

find that P should satisfy P ≥ 4 in order to have a decent

performance (although a significant number of NDMs is still

poorly reconstructed if P = 4).

In Fig. 4, we show a time segment of the original signal

Vk(t), and the reconstructed signal by using the CPD (for

different values of P). This shows that the CPD is able to accu-

rately demix the different NDM signals if P ≥ 4. Note that the

CPD can introduce a delay ambiguity of one sample. This is

because the derivation of our CPD model assumes that every P
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Fig. 5. SER for each NDM signal when using a CPD of order 10, whereas
K = 133 (with P = 8).

subsequent Tx/Rx samples [Vk(t)Vk(t+ε) . . .Vk(t+(P−1)ε)]
correspond to the same neural sample, i.e., either Vk(t) or

Vk(t +∆) =Vk(t +Pε), yielding a 1-sample ambiguity.

In Fig. 5, we investigate how a low-order CPD performs,

i.e., whether it keeps its demixing ability if the number

of NDMs is underestimated and hence a CPD is computed

with less components than the true number of underlying

NDMs. To this end, we have computed a CPD with only

10 components (with P = 8). As demonstrated in Fig. 5,

the 10 extracted components indeed correspond to 10 NDM

signals with a decent reconstruction quality (SER>10dB), and

hence the remaining 123 NDM signals are not mixed in these

10 components. Of course, we do not know which NDM

signals are extracted. However, we can use the steering vector

estimates in the matrix Ak to identify the position of the NDMs

corresponding to the extracted signals.

Finally, we have performed a down-scaled experiment, in

which only 10 neighboring TD elements are activated in Tx

(with P = 8), and where 30 TDs (the 10 Tx TDs + 2×10

neighboring TDs on both sides) are activated in Rx. This

results in a tensor with dimension 30 × 10000 × 8. As the

number of Rx TDs (30) is much smaller than the total number

of NDMs (K = 133), we can only extract a subset of the neural

signals. Furthermore, since only 10 TDs are active in Tx mode,

only a region with approximately 30 NDMs will reflect a

significant amount of US energy. We compute a CPD of order

15 (i.e., 15 components). The reconstruction accuracy for all

NDMs is shown in Fig. 6. It is observed that the 15 NDM

signals that are accurately extracted (SER> 10 dB) come from

adjacent NDMs. These are the NDMs that are closest to the

Tx TDs, as these capture and reflect the most energy.

In Fig. 7, we plot the result of the previous experiment for

different levels of Rx thermal noise n(t) in (4). We find that

the CPD-based extraction method is quite robust to noise, even

in low-SNR scenarios (up to 0dB). An SNR of 0dB means that

the noise power at one transducer element is equal to the power

of the superimposed reflected ultrasound waves observed at a

single transducer element. We still get reasonably high SER

values for such noisy conditions, which means that the CPD

also has noise reduction capabilities. Indeed, since spatio-

temporally white noise does not have a low-rank structure in

the tensor, the CPD can not model it well and hence most of

the noise power will be shifted to the error term in (5).
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Fig. 6. SER for each NDM signal when using only 10 TDs for Tx, and 30
TDs for Rx using a CPD of order 15 (with P = 8).
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Fig. 7. SER for 15 reconstructed NDMs for different levels of Rx noise.

V. CONCLUSIONS

We have presented a new CPD-based interrogation scheme

for ND, which allows to interrogate a dense grid of NDMs.

As opposed to previous approaches, we do not need to know

the channel or position of the NDMs, and we can read out the

entire grid, rather than just a subset. Based on a simulation

study, the proposed method obtains a good reconstruction

accuracy.
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