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ABSTRACT

Spike sorting is the process of assigning each detected neu-
ronal spike in an extracellular recording to its putative source
neuron. A linear filter design is proposed where the filter out-
put allows for threshold-based spike sorting of high-density
neural probe data. The proposed filter design is based on
optimizing the signal-to-peak-interference ratio for each de-
tectable neuron in a data-driven way. Threshold-based spike
sorting using linear filters is particularly interesting for real-
time spike sorting because of the low computational complex-
ity and predictable delay of those filters, enabling closed-loop
neuroscience with unit-activity controlled brain stimulation.
We validate our method on both paired and hybrid in-vivo
recorded high-density data.

Index Terms— Real-time spike sorting, high-density
probes, matched filtering, interference suppression

1. INTRODUCTION

High-density (HD) neural probes, containing hundreds of
closely spaced electrodes [1], enable simultaneous recording
of electrical activity from thousands of neurons located near
the probe. Neuronal electrical activity consists, among other
contributions, of all-or-none action potentials, also called
spikes, which neurons generate to communicate with each
other. Each electrode on the probe typically observes spikes
from multiple neurons, which may overlap in time, and ev-
ery neuron is typically also observed on multiple electrodes.
Therefore, in order to study the neural activity on a per-
neuron basis, the single-unit activity, i.e., the spike times of
individual neurons, need to be retrieved from probe signals.
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This source separation process is referred to as spike sorting
[2] [3].

Spike sorting is based on the assumption that every neu-
ron generates a characteristic spatio-temporal spike waveform
on the probe, and that this waveform is stable over differ-
ent observations of spikes from the same neuron. Numer-
ous spike sorting algorithms have been developed exploiting
this assumption [4] [5] [6] [7] and many of these implement
a similar processing pipeline: first spikes are detected in the
recorded data, then features are extracted from those spikes,
next a clustering algorithm is applied on these features, and
finally previously unseen spikes can be classified using the
clustering information.

A recurring problem using such a processing pipeline is
that overlapping spikes are typically incorrectly classified, or
even worse, consistent overlap might result in the occurrence
of spurious clusters in the clustering phase, which might mis-
takenly be interpreted as an additional neuronal source. To
solve this problem, the typical spike sorting pipeline can be
augmented with a matched filtering stage, also referred to as
template matching [8] [9] [10], where neuron-specific tem-
plates are estimated based on the clustering information, after
which classification is done using linear template matching
filters where usually iterative deflation techniques are used to
resolve overlapping spikes [11] [12].

Classification based on linear filtering is also interest-
ing for real-time spike sorting. [13] Real-time spike sorting
promises to revolutionise neuroscience by enabling closed-
loop experiments [14], where stimulation can be controlled
using single-unit activity information. In such a context
low and deterministic computational complexity is required.
Hence, it is interesting to classify spikes according to their
putative neurons in a single shot, i.e., non-iteratively using a
thresholding operation on the per-neuron linear filter outputs.

A novel data-driven filter design is proposed which results
in filters suitable for threshold-based spike sorting. The filters
will maximize the signal-to-peak-interference ratio (SPIR),
aiming to minimize the influence of the dominant interfering



spikes, as opposed to conventional matched filters focussing
on optimizing the signal-to-noise ratio (SNR).

Matched filters taking into account interfering spike tem-
plates from other neurons as well as noise, have already been
proposed [15] [16]. In practice however these methods will
often lead to filters which still optimise SNR, because no
strategy for weighting the different interfering sources is pro-
posed, and the degrees of freedom of the filter are “wasted”
on minimizing background noise.

In Section 2 the filter design procedure is introduced. Sec-
tion 3 presents experiments applying the proposed filter de-
sign on both simulated and in-vivo acquired data. Section 4
will conclude this paper.

2. FILTER DESIGN METHODOLOGY

In this section, we explain our proposed data-driven multi-
channel filter design method for threshold-based spike sort-
ing. The filter design typically happens offline, where the fil-
ter is trained on some initial training data, after which it can
be used for real-time spike sorting on new incoming data.

2.1. SPIR maximization
Consider x [t] ∈ RN to be an observation of the high-pass
filtered extracellular potentials measured with an N -channel
probe at discrete time t. The cutoff frequency fc of the high-
pass filters is set to fc = 300Hz such that spiking neurons
become dominant signal sources in the filtered signal. Due to
high-pass filtering, we can assume that x [t] has zero-mean.

Now let x̄k [t] = [ xk [t] xk [t− 1] . . . xk [t− L+ 1] ]
T

∈ RL denote the observation of an L-taps delay line for the
kth channel of the probe at time t.
Stacking such delay lines for each channel k results in x̄ [t] =[
x̄1 [t]

T
x̄2 [t]

T
. . . x̄N [t]

T
]T
∈ RNL.

As spikes generated by the same neuron typically exhibit
the same spatio-temporal ‘signature’ waveform across the
probe, a spike template for a specific target neuron can be
estimated by averaging M example spikes, i.e.,

τ =
1

M

M∑
i=1

x̄ [ti]. (1)

where {t1, . . . , tM} denote the example spike times, ensur-
ing that all spikes are temporally aligned. In practice, ex-
ample spike times are obtained from an initial spike cluster-
ing stage [11], where each resulting cluster contains example
spikes corresponding to a specific target neuron.

For threshold-based spike sorting, our aim is to design
an optimal linear multi-channel filter for each of these tar-
get neurons/clusters, which maximizes the margin between
the filter’s peak response to spikes from the target neuron and
the filter’s peak response due to other interfering sources. An
interfering source is considered harmful if it has a high proba-
bility to generate a peak signal at the filter output that is larger

or similar to the typical peak-response amplitude of the tar-
get neuron spike, thereby incorrectly exceeding the thresh-
old. This may happen if the signal has a large amplitude in
the channels near the target neuron, and/or if it has a sim-
ilar spatio-temporal structure across the probe as the target
neuron template τ . In the sequel, we will refer to such po-
tentially harmful interfering sources as ’peak-interferers’, and
we will explain in Section 2.2 how to identify signal segments
with such potentially harmful sources. Besides such peak-
interference there is also less harmful background noise, such
that x [t] = s [t] + i [t] + b [t], with s [t] the signal generated
by the target neuron which is summarized by τ , i [t] the signal
generated by peak-interferers and b [t] background noise.

The optimal filter coefficients f that maximize the SPIR
are then given by:

f = argmax
w

∣∣wT τ
∣∣2

E
{∣∣wT ī [t]

∣∣2} s.t. ‖w‖ = 1, (2)

with w ∈ RNL. Note that f is only defined up to a scaling,
which is why we added the unit-norm constraint, which is an
arbitrary choice. The closed-form solution of this problem
can be straightforwardly found (e.g., using Lagrange multi-
pliers), and is given by

f =
R−1

ī̄i
τ

‖R−1
ī̄i

τ‖
, (3)

with Rī̄i = E
{
ī [t] ī [t]

T
}

the peak-interference covariance
matrix which can be estimated over signal segments exhibit-
ing peak-interference, which will be further explained in Sec-
tion 2.2. Note that Rī̄i might be ill-conditioned, in practice
this problem is often solved by considering only a subset of
electrodes closest to the target neuron or by applying a diag-
onal loading to the interference covariance matrix.

Spikes for the target neuron can then be detected by
thresholding the filter output y [t] = fT x̄ [t]. Without loss
of generality, it is assumed that the maximal absolute filter
response to a target spike is reached when the output has a
positive value. Given a suitable threshold Thr, spikes of the
target neuron are detected when y [t] > Thr.

Designing and applying such a filter for every neuron for
which its spike waveforms are detectable in the recording, and
thresholding the individual filter outputs, leads to a filter bank
with single-unit activity at each filter’s output.

2.2. Estimating peak-interference covariance Rī̄i

The proposed filter design requires the interference covari-
ance matrix to be known. A covariance estimate can be ob-
tained as follows:

R̂ī̄i =
1

m

m∑
j=1

ī [tj ] ī [tj ]
T
, (4)



but note that signals from interfering sources i [t] are not read-
ily available.

Next an interference sensing scheme is presented, which
is also visualized in Figure 1, for finding segments of x [t]
where i [t] 6= 0:

1. Required prior knowledge
The interference sensing scheme makes use of a matched
filter based on the spike template only, and as such re-
quires the spike template τ for the target neuron to be
available (e.g., from prior clustering). The spike times
{t1, . . . , tM} used for estimating the spike template are
also assumed to be known.

2. Template matching
Calculate the template matching output:

z [t] = (τn)
T
x̄ [t] . (5)

This template matching output can be viewed as an ini-
tial ‘naive’ matched filtering operation, which is opti-
mal if i [t] = 0 and b is white across space and time. It
will have a high output variance at times {t1, . . . , tM},
but also at times when the neuron is spiking which are
not included in the template estimation set, and at times
when peak-interfering sources are active (either due to
their high amplitude or due to having a similar spatio-
temporal structure as the template τ ).

3. Target safe zone
To prevent leakage of the target neuron’s spike covari-
ance in the interference covariance matrix, a target safe
zone is defined. The target safe zone is the interval
given below:(

(1− α) min
i

(z [ti]), (1 + α) max
i

(z [ti])
)
, (6)

with ti ∈ {t1, . . . , tM} and α ∈ R+ a parameter to
widen the target safe zone, e.g., α = 0.1 yields good
results in practice.

4. Noise floor
Next the noise floor b of z [t] is estimated. To this end a
median operator is used, such that b = mediant (|z [t]|)

5. Interference threshold
Finally the interference threshold Thrint is chosen
somewhere between the lower bound of the target safe
zone and the noise floor:

Thrint = β (1− α) min
i

(z [ti]) + (1− β) b, (7)

with β ∈ [0, 1] a tuning parameter, e.g., β = 0.5.

6. Interference segments
First using the interference threshold, candidate inter-
ference segments are identified when z [tj ] > Thrint,
over all tj .

template training spike times + raw data =

spatio-temporal template
...

...

Required prior knowledge

Template matching

safe zone
Noise floor

Interference threshold

Interference segments
...

... time

Target

Fig. 1. Graphical representation of the interference sensing
scheme.

Next for all candidate segments the local neighbour-
hood (tj − ε, tj + ε) is scanned for a local maximum
of z [t]. ε is chosen to be the number of samples cor-
responding to a duration of 1ms, which is the typical
duration of a spike. If a local maximum is found and it
is within the target safe zone, the candidate segment at
tj is rejected.

Replacing ī by x̄ in (4) is then used to estimate the inter-
ference covariance over all tj retained from the interference
sensing scheme.

It is possible that no candidate segments are retained, in-
dicating that there are no dominant interfering sources. The
interference covariance matrix can then be estimated over all
segments for which the template matching output amplitude
is not within the target safe zone, effectively optimizing the
SNR with respect to the background noise b [t].

2.3. Choosing spike sorting threshold

The prior knowledge used to estimate the spike template τ
can also be used to determine a spike sorting threshold Thr.
Given a matched filter as in (3), the threshold Thr can be de-
termined by applying step 4 and 5 of the interference sensing
scheme to y [t] instead of z [t]. The spike sorting threshold
Thr will then be given by (7).
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Fig. 2. a. Visualisation of the neurons’ morphology and their
relative position/orientation with respect to the probe. Each
black dot marks the location of an electrode on the probe.
b. Sample of the simulated extracellular potentials measured
on a subset of 20 electrodes. The colored blocks on top
code for the identity of the spiking neuron. c. Output from
three matched filters (color coded by target neuron), each one
trained using only the spike template of the target neuron. d.
Ground truth spike trains for each neuron. e. Color coded
output from three linear filters as proposed in this paper.

3. EXPERIMENTS

3.1. Illustrative example

The extracellular potentials impinging on a 128-channel HD
probe originating from three spiking morphologically de-
tailed neocortical layer 5b pyramidal cell models [17] are
simulated [18] as shown in figure 2a-b. Because the data
is acquired through simulation, ground truth spike times are

readily available (Figure 2d). Spike templates are then calcu-
lated for each neuron using (1).

Given a spike template for each neuron, conventional tem-
plate matching filters [10] are calculated similar to (5). The
result from applying those filters directly to the data, is shown
in Figure 2c. It can be observed that each filter output re-
sponds to all spikes from all neurons. As such, conventional
template matching is not optimal for threshold-based spike
sorting.

Now filters are trained for each neuron using the proposed
filter design given by (3). The output for each filter is shown
in Figure 2e. It can be seen from this figure panel that each fil-
ter output only responds to spikes generated by the filter’s cor-
responding neuron. These filters allow for a threshold-based
spike sorting of the simulated data.

3.2. Validation in-vivo recorded data

Having demonstrated the potential of the proposed filter
design for threshold-based spike sorting, this filter design
is applied to in-vivo recorded data for which ground truth
spike times are available. Two types of ground truth data are
used: paired recordings [19] and hybrid recordings [12]. The
datasets used for this validation are available online [20] [21].

A total of 46 neurons for which ground truth spike times
are available, were used for validating the use of the pro-
posed filter for threshold-based spike sorting. The following
spike sorting performance measurements are averages over all
ground truth neurons, including data from both paired and hy-
brid data. The average sensitivity of the spike sorting, defined
as true positives

true positives + false negatives , equals 88.3%. The average preci-

sion, defined as true positives
true positives + false positives , is equal to 94.7%. In

comparison, using conventional template matching leads to a
threshold-based spike sorting sensitivity of 81.0% and a pre-
cision of 89.1%.

The spike sorting thresholds Thr were tuned towards
high precision rather than high sensitivity. Such a precision-
sensitivity trade-off can be made by varying β in (7) in the
context of Section 2.3.

4. CONCLUSION

A linear filtering threshold-based spike sorting framework ap-
plicable to online spike sorting was introduced. For such a
framework to generate single-unit spike trains by a simple
thresholding operation on the outputs of the filter bank, filters
have to be designed that generate a high output variance only
when the corresponding neurons are active. A filter design
method was proposed that satisfies this requirement by opti-
mizing the signal-to-peak-interference ratio. The filter design
was tested on both simulated and real HD extracellular data
and was shown to considerably improve the threshold-based
spike sorting performance.
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