KU LEUVEN

MW STADIUS

Center for Dynamical Systems,
Signal Processing and Data Analytics

Citation/Reference Ben Somers and Alexander Bertrand (2016),
Removal of eye blink artifacts in wireless EEG sensor networks
using reduced-bandwidth canonical correlation analysis

Journal of Neural Engineering, vol. 13, no. 6, pp. 066008, 2016.

Archived version Author manuscript: the content is identical to the content of the

published paper, but without the final typesetting by the publisher

Published version http://iopscience.iop.org/article/10.1088/1741-
2560/13/6/066008/meta

Journal homepage http://iopscience.iop.org/journal /1741-2552
Author contact ben.somers@med.kuleuven.be

+32(0)16 37 73 39
IR https://lirias.kuleuven.be/handle/123456789/552346

(article begins on next page)


http://iopscience.iop.org/article/10.1088/1741-2560/13/6/066008/meta
http://iopscience.iop.org/article/10.1088/1741-2560/13/6/066008/meta
http://iopscience.iop.org/journal/1741-2552
https://lirias.kuleuven.be/handle/123456789/552346

Removal of eye blink artifacts in wireless EEG
sensor networks using reduced-bandwidth canonical
correlation analysis

Ben Somers' and Alexander Bertrand?

'KU Leuven, Department of Neurosciences, Research Group Experimental Oto-Rhino-Laryngology
(ben.somers @med.kuleuven.be)
2KU Leuven, Department of Electrical Engineering (ESAT), Stadius Center for Dynamical Systems, Signal
Processing and Data Analytics (alexander.bertrand @esat.kuleuven.be)

Abstract— Objective: Chronic, 24/7 EEG monitoring requires
the use of highly miniaturized EEG modules, which only measure
a few EEG channels over a small area. For improved spatial
coverage, a wireless EEG sensor network (WESN) can be
deployed, consisting of multiple EEG modules, which interact
through short-distance wireless communication. In this paper, we
aim to remove eye blink artifacts in each EEG channel of a WESN
by optimally exploiting the correlation between EEG signals from
different modules, under stringent communication bandwidth
constraints. Approach: We apply a distributed canonical correla-
tion analysis (CCA-)based algorithm, in which each module only
transmits an optimal linear combination of its local EEG channels
to the other modules. The method is validated on both synthetic
and real EEG data sets, with emulated wireless transmissions.
Main Results: While strongly reducing the amount of data that
is shared between nodes, we demonstrate that the algorithm
achieves the same eye blink artifact removal performance as the
equivalent centralized CCA algorithm, which is at least as good
as other state-of-the-art multi-channel algorithms that require a
transmission of all channels. Significance: Due to their potential
for extreme miniaturization, WESNs are viewed as an enabling
technology for chronic EEG monitoring. However, multi-channel
analysis is hampered in WESNs due to the high energy cost for
wireless communication. This paper shows that multi-channel
eye blink artifact removal is possible with a significantly reduced
wireless communication between EEG modules.

I. INTRODUCTION

Current clinical EEG devices often make use of an electrode
head cap with wired connections to a computer and a power
source. This makes them impractical for everyday use in the
patient’s natural environment, and limits the possibilities of
comfortable measurements for extended durations. A first step
towards achieving mobile EEG recordings is the development
of wireless EEG headsets [1], [2]. Several wireless headsets
have appeared on the market, but these are still too heavy
and too bulky to wear them continuously in everyday life, and
offer only limited autonomy since the wireless transmission
of all EEG channels to a computer or smartphone consumes
a substantial amount of energy. However, advancements in
miniaturization of biomedical sensors, on-body or off-body
wireless transmitters and power efficient design give prospects
of miniature EEG modules capable of processing, logging and

transmitting relevant neurological data 24/7 over a long period
of time [3], [4].

For example, to design so-called neuro-steered hearing
prostheses [5], [6], a small EEG module can be integrated
into a hearing prosthesis for in-the-ear [7] or around-the-
ear [8] EEG recordings, and even the implanted electrodes
of a cochlear implant can be used to record EEG [9]. Such
small EEG modules are discreet, albeit limited in number of
channels and spatial coverage. If necessary, a second wireless
EEG module can be deployed at the other ear to obtain a
better spatial coverage, and to increase the number of available
channels [8]. This is similar to the existing concept of binaural
hearing aids, where a wireless link between hearing aids at
both ears allows communication for improved sound quality
and localization [10]. Similarly, two EEG modules at both ears
can exchange EEG data, which can be viewed as a two-node
wireless EEG sensor network (WESN) [11]-[14].

We can imagine other future applications which can rely on
discreet wearable EEG modules, such as sleep monitoring,
epilepsy monitoring, stress monitoring, and brain-computer
interfaces. There exist many examples of the research be-
ing done to realize these small EEG modules, such as the
development of soft, flexible arrays of electrodes that can
be mounted on the auricle [15], and the integration of EEG
electrodes into common headgear or silicone earpieces [16].
Other examples include electrodes that latch on to the scalp
despite the presence of hair [17], [18], or small electronics
that are implantable underneath the skin [19]. By letting a
multitude of such modules exchange EEG data with each other
in a WESN-like architecture, the spatio-temporal correlation
between their EEG signals can be exploited to solve a certain
signal processing task.

A big challenge that still needs to be overcome to make such
WESNS viable is to reduce the energy consumption, as battery
lifetime is a major limiting factor. The energy consumption in
such a system is dominated by wireless transmission. On-chip
processing can provide a solution here, but this is only possible
for local (single-channel) processing at each node individually
[3], [20]. Multi-channel EEG processing algorithms, e.g.,
for artifact removal, spatial filtering or source localization



implicitly require data centralization, which is highly energy-
inefficient. Distributed algorithms provide a key solution here,
as they can exploit the spatio-temporal correlation structure
across the different modules under the severe bandwidth and
energy constraints in a WESN [11]. This correlation structure
is exploited implicitly without centralizing the data, i.e., the
modules only share fused or compressed data with each other,
without information loss for the signal processing task at hand.
In this paper, we focus on eye blink artifact removal as the
signal processing task that is to be solved cooperatively by
the modules within the WESN. From here on, we will refer
to the different EEG modules in the WESN as the nodes of
the network.

Artifact removal is an important pre-processing step before
interpreting EEG, as the artifacts obscure underlying neural
activity, which is often an order of magnitude smaller in
amplitude. As eye blink artifacts are a common problem in
most EEG recordings [21], we aim to remove them using a
spatial filtering technique using all the channels of the WESN,
while taking the severe bandwidth constraints of a WESN
into account. Our goal is to remove the eye blink artifacts in
every channel of the WESN, by exploiting the spatio-temporal
correlation structure across all nodes in the network.

Although Independent Component Analysis (ICA) is cur-
rently the most popular method to remove eye blink artifacts
[22], it is computationally demanding and not amenable to a
distributed realization in WESNS. Previous work on distributed
eye blink artifact removal in WESNs takes a Multi-channel
Wiener Filtering (MWF) approach [11], [23], which is a semi-
supervised method, as the data needs to be split into clean and
corrupted EEG segments. Segregation methods such as thres-
holding are easy and cheap to implement, however they lead
to a high amount of false positives and negatives due to mis-
classification errors. Furthermore, this threshold is a parameter
that is very subject-dependent, and even time-dependent due to
changes in the electrode-skin contact impedance, which cause
signal drift. The segregation problem is further complicated in
a WESN, because each node needs a different threshold tuning
for optimal results, or the segmentation should be performed
by a single node (with highest artifact amplitude), and then the
results should be broadcast to all other nodes, which creates
additional communication load.

The above problems can be overcome by Canonical Corre-
lation Analysis (CCA). We will show that the most important
parameter to be tuned is a time lag, which can be chosen
equal across the nodes in the WESN and even across subjects.
Because of the Blind Source Separating (BSS) capabilities
of CCA, there is no need for an artifact detection step. In
[24], CCA is used to remove ocular artifacts from EEG
measurements, by including information from an electro-
oculogram (EOG) measured with an electrode placed near the
eyes. Similar results are obtained in [25] by making use of only
two EEG measurement channels and four EOG electrodes.
CCA has also been shown to be an effective method to remove
muscle artifacts from EEG data [26]. To our knowledge CCA
has not been applied yet as a method for eye blink artifact
removal in EEG recordings without an EOG reference.

In this paper, we will use the BSS capabilities of CCA

to remove eye blink artifacts without EOG references, and
then extend the algorithm towards a distributed realization,
which allows to substantially reduce the transmission cost in
a WESN, while still achieving a provable equivalent perfor-
mance as the centralized CCA algorithm. We validated the
DCCA algorithm’s performance using both synthetic and real
EEG data. Both these datasets are emulated as a WESN,
meaning that the electrodes are clustered and re-referenced
into galvanically separated nodes. For the synthetic EEG data,
a known artifact-free ground truth is available to verify our
results.

This paper is structured as follows: in Section II, we explain
the problem statement and how (D)CCA can be applied to
remove eye blink artifacts. In Section III, the experimental
procedures are given. In Section IV, we present the results
of the experiments, which are further discussed in Section V.
Finally, we draw conclusions in Section VI.

II. CCA-BASED ARTIFACT REMOVAL IN A WESN

A. Problem statement

Consider a WESN with K nodes. Node k € {1,..., K} has
access to M}, local EEG channels, stacked in a M}-channel
signal xy[t], which is treated as a Mj-dimensional stochastic
vector of which realizations are observed at different sample
times ¢ € N. The total number of EEG channels in the network
is Zszl M, = M. We model the Mj-channel EEG signal in
node k as

Xk[t] = dk[t] + Ilk[ﬂ, (l)

consisting of an eye blink artifact signal dg[¢], and the clean
EEG signal ny[t]. For the sake of conciseness, we will omit the
sample index ¢ in the sequel, where we treat x[t] as a single
observation of a multi-variate stochastic variable denoted by
Xr. In the estimation literature, the symbol d usually represents
the signal to be estimated (‘desired’), and the symbol n rep-
resents the undesired components (‘noise’). Although it may
appear strange to denote the artifact component as ‘desired’
and the clean EEG component as ‘noise’, this fits with the
rationale of our algorithm, which first estimates the eye blink
artifact signal by removing the EEG, and then subtracts a
scaled version of the estimated artifact signal from the raw
EEG data. From this point of view, the clean background EEG
can be viewed as ‘noise’ in the first (artifact estimation) step
of the algorithm. In the EEG-BSS literature, it is common
practice to write the EEG signal xj; as an instantaneous
mixture of S point-source signals s = [s; ...sg]T [22], i.e.,

X = Ags + 1y, )

where rj is a residu, and Ay is an M} x S mixing matrix
with element Ay ;; denoting the contribution of source j in
channel 4, for i = 1,..., M} and j = 1,...,5. We assume
without loss of generality that s; is the eye blink source signal
generated at the eyes, and hence dj can be modelled as [11],
[22]

d; =ap 151 3

where ay, ; is the first column of A; denoting the contribution
of the eye blink signal at each channel of node k. The clean



EEG signal is then modelled as
ng=Ag _15s_1+71} “4)

where A _; denotes Ay with the first column removed, and
s_1 is s with s; removed. Note that the source signal s is not
node-specific, while the mixing matrix A, which determines
how each source is mixed in the local channels, is node-
specific.

Our goal is not to estimate or unmix all source signals in s
(as is often the case in traditional BSS problems). Instead, we
only aim to estimate dj at each node, and hence each node
will produce a local estimate of the eye blink artifact signal
&k and subtract it from its measured EEG channels to find
an estimate of the clean EEG data 1. To do this, the node
needs a local estimate of the eye blink source signal s;, and
an estimate of the local eye blink mixing vector aj ;. In the
next Subsection II-B, we will explain how CCA can be used
to estimate the eye blink source signal, after which a; ; can
be estimated with a simple least squares fit. We first consider
the case of centralized CCA, where all nodes centralize their
EEG channels in a local processing unit. While the network-
wide correlation structure is more straightforward to exploit
when all channels are available, such data centralization is very
bandwidth- and energy-consuming, and is preferably avoided
in a WESN. In Subsection II-C, we explain how DCCA can
be used to avoid the expensive data centralization in a WESN
by exploiting the low dimensionality of the underlying artifact
sources.

B. Centralized CCA-based eye blink artifact removal

CCA is a statistical tool used to find common patterns
between two different multi-dimensional data sets based on
correlations in the data [27]. As we will show later on, it
is capable of separating eye blink artifacts from the neural
responses in EEG, because the former show specific temporal
and spatial correlation patterns.

Consider two sets of multi-channel stochastic time signals
x and Yy, their respective numbers of channels being M
and N. CCA then finds the M-dimensional vector ¥; and
the N-dimensional vector W; such that the single-channel
signals \A/JTX and v‘vJTy show maximal cross-correlation. These
vectors can be found for values of j up to min(M, N), under
the constraints that the j" direction is perpendicular to all
previous j—1 directions. Defining the data covariance matrices
R.., R,y and R, as respectively E{xx”}, E{xy’} and
E{yyT}, the maximization problem to find the j® direction
can be formulated as

o VTRmij
(¥, W;) = arg max . )
VW \/ vaRmvj . WjTRyij
under the constraints that
VIRuv; =0  Vie{l,2,...,j—1}
wiTRyywjzo Vie{l,2,...,5—1} ©

The vectors ¥; and W; are referred to as the j t principal CCA
direction between x and y. The single-channel signals \Affx
and ny are called the j™ principal CCA compononents of

x and y. The j™ correlation value p;, maximized in (5), is
referred to as the j canonical correlation coefficient.

To summarize, CCA finds orthogonal (i.e., uncorrelated)
directions in the M- and N-dimensional spaces in which x
and y are maximally correlated [27].

We can apply CCA to our eye blink artifact estimation prob-
lem, based on the source separation properties of CCA [25],
[26], [28]. Imagine all the EEG channels x, Vk € {1,..., K}
measured by the nodes in the WESN are transmitted to a
central processing unit and stacked in one M -dimensional
signal x. As the second multi-channel input signal for CCA
(i.e., y in the CCA description above), we use the time-delayed
version of x, denoted as x,. It is defined as the EEG channels
in x delayed with a time lag 7, i.e.

x[t] & x[t — 7]. 0

Then, after performing a CCA on x and x,, a demixing
matrix 'V can be constructed by putting all principal CCA
directions ¥; in the columns of V. It can be shown that VZx
approximates the source signals in s up to a scaling factor,
assuming that the sources have a different autocorrelation
function at the chosen time lag [26], [28], [29]. Ideally, the
autocorrelation function of the eye blink artifact signal at time
lag 7 is significantly larger than the autocorrelation of the other
(EEG) sources at time lag 7. If this is the case, applying CCA
to signals x and x, will extract the eye blink artifacts in the
first principal CCA component and hence (5) only has to be
solved for j = 1. In Section III-D, we will further elaborate
on the choice of 7. Note that this method of using CCA for
BSS assumes a good a priori choice of 7, so that the eye
blink artifacts show a sufficiently high autocorrelation at that
time lag. For BSS problems where the sources to be extracted
are completely unknown, CCA can be adapted to predict the
time lag (or a linear combination of multiple time lags) for
each unknown source [30]. However, for the case of eye blink
artifact removal, one single time lag can be chosen so that
the eye blink source is consistently extracted across subjects,
as will be shown in Section IV-B. This allows to reduce the
computational complexity of the algorithm.

When the eye blink source signal has been estimated, i.e.
as the first principal CCA component §; = ¥1x, it needs
to be rescaled to fit the artifact in each of the channels, and
then subtracted to find the artifact-free EEG data. In order to
estimate the appropriate scaling factors, first define

Aaé[aﬁ—L+uw“,am} (8)

as the single-channel time signal containing observations of
the estimated eye blink source $; in a window of length L,
and

Xé[xﬁ—L+H,HWXM} 9)

as the M-channel time signal containing observations of the
EEG channels in a window of length L. We find the scaling
factors as the solution of the Least Squares (LS) problem

(asi =)

(10)

o = arg min
[0 2



X}, r:;\i

- broadcast
Lk to K - 1 other

W

nodes

receive from

——— - — K -1 other
dk nodes

LS Fit

bl
=

node k

Fig. 1.

where ||-|| » denotes the Frobenius norm and where c is the
vector containing the scaling factors, defined as

(1)

in which «; is the scaling factor that fits the estimated eye
blink source §; to EEG channel i. Solving the optimization
problem in (10) can be done by computing a LS fit of S to
X. The LS solution for o can be found as

o = (S’ls’?)_lxk@f

a = [Oéh 7aﬂf]T7

12)

Note that « is a least squares estimation of the network-wide
eye blink source mixing vector a;, analogous to the node-
specific source mixing vector in (3). We now obtain the clean
EEG data ii by subtracting the scaled estimated artifacts as

13)

ﬁ:x—a:x—a§1,
where fi and d denote the estimates of the ng’s and dy’s,
respectively, stacked over all nodes.

C. Distributed CCA-based eye blink artifact removal

Keeping in mind the need to avoid energy-inefficient data
centralization in WESNs, we are interested in the capabilities
of CCA to remove eye blink artifacts in a distributed fashion.
An algorithm for Distributed CCA (DCCA) is derived in [28].
In the sequel, we assume that the WESN is fully connected,
i.e., a signal broadcast by a node is received by all other nodes.
However, this is mainly for the sake of an easy exposition,
as DCCA can also be formulated for partially connected
networks with short-distance communication between nearby
nodes [28].

Assuming we aim to extract the @ first principal CCA
components, then the DCCA algorithm lets each node perform
a linear compression of its M}, signals into a (J-channel signal,
which is then transmitted to the other nodes. As experiments
in [11] have demonstrated, eye blink artifacts can be assumed
to be one-dimensional (i.e., they appear as scaled versions
of a single-channel signal throughout all EEG channels).
Furthermore, we will demonstrate in Section IV that the eye
blink artifacts appear in the first principal CCA component
if the time lag 7 is properly chosen. This means that in our

Schematic illustration of the signal flow in the DCCA-based eye blink artifact removal algorithm at the k-th node of a WESN.

case ( = 1 and each node k linearly compresses its My EEG
channels into a single-channel signal, denoted as

Ty = clxy, (14)

where ¢y, is a M} x 1 compression vector which will be defined
later on. The DCCA algorithm will automatically learn an
optimal compression vector cj, such that all the nodes are
able to compute the centralized principal CCA component,
allowing to remove the eye blink artifacts as if each node
would have access to all the channels in the WESN. This
means that, although (14) is a lossy compressor in general,
it converges to a compressor that is lossless with respect to
the information that is needed to solve the network-wide CCA
problem.

The (K — 1)-channel signal containing the compressed
signals from the other nodes that node & receives is denoted
as X_. The subscript —k indicates that the compressed signal
from node k itself is not included in X_, i.e.,

R = [T1, oo s B, Thtls - TK]L (15)

In the DCCA algorithm with Q = 1, each node keeps
track of its local compression vector v, which is initialized
randomly. The nodes take turns to update their compression
vector until its entries have converged to stable values. The
signal flow and updating step of a node k within the DCCA
algorithm is depicted in Fig. 1 and goes as follows: the node
collects its own M, EEG channels, x;, and stacks them
together with the K — 1 compressed signals from the other

nodes, X_y, into an (M} + K — 1)-channel signal:

~ Xk
X = | = .
k % g

The same stacking operation is performed on the time-delayed
signals to produce X, j, where subscript 7 indicates the time-
delayed version, i.e.

(16)

N~

ink[t] Xk[t—T]. (17)

These two stacked signals are used as the inputs for a local
CCA operation (only to extract the first principal CCA compo-
nent), which allows to construct the principal CCA direction
v}, of dimension (M} + K — 1) as described in Subsection



II-B. From [28], it is then found that the linear compressor cy,
should be updated by replacing it with the first M} elements
of vy, i.e., the part of v, that is applied to the local channels
xj. Hence, the first My elements of v, are copied into cy
as indicated by the dashed line in Fig. 1. Once the node
compression vector ¢y is found, it is applied to x;. Note that
the role of vector ¢, in each node k is twofold: it compresses
the local EEG channels into a single-channel signal that is
broadcast to other nodes, but the compressor is also part of
the estimator vy that estimates the eye blink source signal
81k = VI Xy at node k.

If each node computes its local reduced-dimension CCA in
a sequential round-robin fashion, each time adapting its local
compression vector ¢y, accordingly (while the other nodes keep
their c; fixed), then it can be shown that all the compressors
c,,Vk € {1,..., K} will converge, after which all the local
estimates §1 5 = Vgik will be the same as the signal §;
computed by the centralized CCA [28], i.e., as if each node
would have access to all channels. The iterations can each
time be re-computed over the same signal segment, resulting
in an increased communication bandwidth. However, since
the spatial time-varying pattern a; of the eye blink signal
is typically not or only slowly time-varying, the iterations of
DCCA can be spread out over different signal segments in a
time-recursive fashion, similar to an adaptive filter.

After estimating the eye blink source signal 8, j, each node
will compute a set of scaling factors o in an analogous way
as in (10). Again, this can be done in practice by performing
a LS fit of §; ;, to each of the node’s M}, local EEG channels
in a least squares sense, by solving

ap = [an1, - aman)” = (S1eSTe) " XeST,,  (18)

where S’l,k and Xy are defined as the node-specific time
signals containing observations of respectively §;j; and xy
in a window of length L, analogous to (8) and (9), and where
oy, ; 1s the scaling factor that fits the eye blink estimate 31
to EEG channel ¢ of node k. The artifacts in node k£ can then
be subtracted to find the clean EEG channels as

ﬁk = Xi — dk = X — O - él,k‘- (19)

As mentioned earlier, it can be shown that the first principal
CCA component 51 j, estimated in every node with the DCCA
scheme converges to the same first component estimated
with a centralized CCA over all channels [28]. This result
is remarkable, since the problem statement of CCA in (5)
requires the network-wide covariance matrices to be computed,
which is not done anywhere during the DCCA algorithm
as it would be too bandwidth- and energy-intensive in a
WESN. Each node only uses local correlations between its
own channels and compressed channels from other nodes
without losing performance compared to centralized CCA. It
should be noted that such equivalence with the centralized
CCA does not hold for the other CCA components, since
information about them is completely lost in the compression
to a single-channel signal. However, for our purpose, where
the eye blink artifacts are separable in the first component,
this is not a problem. Nevertheless, the other components can

Fig. 2. Clustering of the 64 EEG electrodes into 9 nodes. The electrodes
are positioned according to the 10-20 system. Each node consists of several
recording electrodes (circles) and one fusion center with processor and
radiotransmitter (squares). The recording electrodes are referenced locally to
an electrode in the fusion center.

be estimated if an increase in bandwidth is allowed (see [28]).
In conclusion, with DCCA, a substantial reduction in commu-
nication bandwidth is achieved while maintaining the same
artifact removal accuracy as in the centralized case, because
DCCA exploits the underlying one-dimensional character of
the eye blink artifacts.

ITII. EXPERIMENT
A. EEG recording sessions

EEG measurements are performed with a 64-electrode EEG
system (Biosemi) with international 10-20 electrode placement
configuration. Several short EEG recordings of 9 subject are
obtained. The subjects blink the eyes every 5 seconds in
order to purposefully induce artifacts in the recordings at a
controlled rate. The subjects do not perform any other physical
or mental tasks during the recording. The data is recorded at
a sample rate of 8192Hz and later downsampled to 200 Hz
in a referential montage where electrode Cz is the reference
electrode. A mean subtraction on the EEG data is performed.

B. Emulating the WESN

In the envisioned WESN, the different sensor nodes are
galvanically isolated from each other. This means that no
common reference channel for the entire EEG electrode set
can be chosen. In each node, one channel needs to be selected
as the local reference channel for that node.

We emulate a WESN by partitioning the complete set of
electrodes into 9 nodes, as is shown in Fig. 2. Within each
node, one electrode is selected as the local reference. The
choice of a local reference electrode within a node does
not matter significantly, however electrodes near the sides of
the head and neck are more prone to pick up muscle and
electrode displacement artifacts, and should be avoided. The
local reference electrodes are chosen to be located centrally



within their node, as indicated by the squares in Fig. 2. All
other channels of that node are re-referenced with respect to
the chosen reference electrode. With r the index of the channel
corresponding to the selected reference electrode in node k
when referenced to Cz, the re-referencing operation can be
represented as a linear transformation as

O —1)x (M 1)
I(Mk—T)

Iy

—1a7, —
O —ryx(r—1) M=t

- X

(20)
where I,, denotes an n x n identity matrix, O,,, x, denotes an
m X n all-zero matrix, and —1,, denotes a vector of length n
containing only —1, and where x; denotes the vector with all
channels that correspond to the electrodes of node k. The re-
referencing matrix is an identity matrix of which the column
corresponding to the reference channel in node % only contains
—1, and the row corresponding to the reference channel in
node k is discarded. Note that the re-referencing matrix is
(M — 1 x My)-dimensional.

From a mathematical point of view, the information in
the re-referenced data sets do not differ much from the
original ones, since they are obtained by a full rank linear
transformation. This will not impact the linear mixing model
which is assumed in source separation algorithms such as CCA
and ICA. There is, however, a reduction by 1 in the number
of channels of each node, since the transformation matrix is
non-square and hence the original data can not be perfectly
reconstructed any more. This implies a loss of information due
to the galvanic decoupling between the nodes. It is noted that
the channels of each node float with respect to other nodes, so
that network-wide mixing vectors cannot be interpreted across
nodes any more.

In the emulated network, all wireless transmission chan-
nels are assumed to be ideal. The processing in all further
experiments are performed in batch mode, i.e. all correlation
matrices are computed over the full signal length.

Xk, ref =

C. Synthetic EEG data with known ground truth

In order to verify the artifact removal algorithms, a set of
synthetic EEG data is constructed in addition to the real artifact
data collected in the experiment described in Subsection III-A.
The EEG recordings of all subjects were cleared of major
artifacts with an ICA decomposition and manual component
rejection. In one subject, some heavily corrupted data segments
are cut out. The resulting data set is considered as clean EEG
data being the ground truth, i.e. ny in (1).

An eye blink template is created by cutting out an eye
blink segment from one subject and low-pass filtering it.
This template is repeated at random times with an average
occurrence of 1 blink every 5 seconds, resulting in the single-
channel eye blink artifact source s;. A mixing vector a;
is constructed by estimating eye blink artifact amplitudes in
real EEG data. The synthetic data is obtained by mixing the
artifact source over all channels as d = a;s1, and adding the
resulting multi-channel artifact signal d to the ground truth.
This constructs a synthetic EEG data set conform to the artifact
model in (3), with realistic eye blink amplitudes that are higher
in the channels near the eyes.

D. Effect of time lag

The choice of the time lag 7 in (7) is an important parameter
for the performance of CCA. As indicated in Subsection II-B,
for a good choice of 7, the autocorrelation of the eye blink
artifacts should be sufficiently larger than the autocorrelation
of the other EEG sources at that same time lag. If this is the
case, the eye blink artifact source can be extracted from the
EEG data in the first principal CCA component.

At the given sample rate of 200 Hz, the time lag can be
tuned with a resolution of 5ms. We will investigate whether
the same choice of time lag for all subjects suffices to remove
eye blink artifacts. For the purpose of comparison, the optimal
value will be sought for each individual subject.

E. Effect of input Signal-to-Noise Ratio

It is informative to evaluate the performance of CCA as a
function of the artifact amplitude, relative to the background
EEG level. We can only do this for the case of synthetic EEG
data, where the ground truth is known. The synthetic multi-
channel artifact signal d is scaled with a scaling factor ~ in
order to obtain a range of Signal-to-Noise Ratio (SNR) values.
We define the input SNR as the power of the pure artifacts d;
scaled with v, divided by the power of the clean EEG data
n1, converted to decibel, i.e.

E{(yd1)?}
E{(n)?}

Note that we selected channel 1 as the reference for defining
the SNR, which corresponds with electrode Fpl near the eyes.
This is just an arbitrary choice in order to define an SNR
measure, where preferably a channel with large eye blink
amplitude (as in Fpl) is used. The artifact scaling factor
can be chosen in order to obtain a desired SNR, e.g. we can
create synthetic data with an SNR of 3 dB by choosing v = 2.

Because the SNR varies between subjects, it should be
normalized to allow for inter-subject comparisons. A subject’s
SNR values are normalized by subtracting the SNR when
v = 1, i.e. the unscaled synthetic EEG data as constructed
in Subsection III-C. This defines the normalized SNR values
as

SNR = 10log,, 1)

SN Ruom = SNR — SNR|_, (22)

This means that, for the case where v =1, SN R0 is 0 dB
for all subjects. From here onwards, we will always refer to
normalized SNR values.

IV. RESULTS
A. Performance measures

We define a first measure that indicates to what degree the
actual EEG component (i.e. ny in (1)) is altered by applying
the artifact removal algorithm. Since the estimated artifacts
are subtracted from the EEG data, the estimated artifacts ak
should be small in the segments where no artifacts are present
in order to not add noise or remove actual EEG data in (13) and
(19). We propose the following Signal-to-Error Ratio (SER):

E{(z:)*}
i - 101log;
ZP 210 {()

SER = (23)

}
} clean segments
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Effect of time lag 7 on performance measures for synthetic EEG

where i denotes the index of the channel, and both numerator
and denominator are evaluated in the artifact-free (clean)
segments. The individual SER for each channel is averaged
over all channels with weights p; to obtain a single number
as performance measure. The channel-specific weights p; are
defined as the estimated artifact power in channel 7, obtained
by subtracting the measured signal power in the clean seg-
ments from the signal power in the segments where artifacts
are present:

pi = BE{(x:)*}] — BE{(z:)*}] 24)

In the chosen weighting approach, artifact removal in channels
that are more heavily corrupted with artifacts has a greater
contribution to the overall performance measure.

corrupted segments clean segments °

The second performance measure indicates whether the
estimated artifacts resemble the actual artifact shapes closely.
This means that the residue in every channel, obtained as
d; — cfi, should be as small as possible. This leads to the
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following Artifact-to-Residue Ratio (ARR):

M
1 E{(di)*}
A = — E i1
RR i i 1pl 0log

0 5
E{(dZ - dl)Q} corrupted segments
where both numerator and denominator are evaluated only in
the segments that contain artifacts. However, in the case of real
EEG data, the artifact signal d is unknown. The ARR can only
be used as a performance measure in synthetic data where a
ground truth is known. An estimate of the ARR for real data
can be obtained by approximating the pure artifact signal d
with the measured signal x in the corrupted segments, based
on the fact that the amplitude of the artifact is significantly
higher than the EEG amplitude. This leads to the following

ARR measure for real data:

)
ARR = — S " pi - 10logy,
Zp I8 T — doy?

} corrupted segments

SER and ARR should be evaluated simultaneously as they
measure different quality aspects of artifact removal. Good
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EEG data.

performance is indicated by both a high SER and a high ARR.

B. Effect of time lag

We perform CCA for different time lags 7 on both the
synthetic and real data. Fig. 3 shows boxplots of the SER and
ARR for the synthetic data of all 9 subjects, with time lags
varying from 5 to 50 ms. The rightmost boxplot represents the
performance measures in case the best time lag is chosen for
each subject individually. Outliers are shown as ‘+° symbols.

Fig. 4 shows the same, but this time with the real data.

C. Results on synthetic data

To our knowledge (D)CCA has not been applied yet as
a method for eye blink artifact removal in EEG recordings
without an EOG reference. Therefore, it is instructive to
compare it with other algorithms applied to the same set of
EEG recordings, while using the same performance measures.
The results for the synthetic data are shown in Fig. 5 for 5
different competing algorithms for eye blink artifact removal:
MWEF [11], [23], DANSE [11], [23], [31], ICA [22], CCA
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Fig. 6. Results of applying different artifact removal methods on the real
measured EEG data.

and DCCA. The MWF method relies on separating the data
in segments with and without artifacts to compute the filter
coefficients. This is achieved for eye blink artifacts by using
a threshold. DANSE is a distributed realization of a MWF,
which makes it interesting to compare with DCCA. For the
results with ICA, the data is processed with the ICA infomax
implementation of EEGLAB [22] to separate the data in
independent components. The components corresponding to
eye blinks are selected manually by observing their time
domain representation and spectrum, and are removed from
the data. For 7 out of 9 subjects, the eye blink components
are captured in one independent component, for the others
multiple components needed to be removed. For both CCA
and DCCA, a time lag of 15ms is used for all subjects,
which was chosen based on the results in Subsection IV-B
(see also the discussion on time lags in Subsection V-A). It
is noted that only CCA and DCCA did not rely on a manual
intervention: for MWEF/DANSE, the eye blink segments had
to be identified based on a subject-dependent threshold and
a manual validation. For ICA, the eye blink components
were manually selected from the full set of independent
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components.

On Fig. 5, the black triangles indicate the edges of the 95%
confidence intervals for the median. If confidence intervals of
different boxplots do not overlap, it can be concluded with
95% confidence that the medians are significantly different.

D. Results on real EEG data

The results of applying different eye blink artifact removal
algorithms on the real data are shown in Fig. 6 in an analogous
way as for the synthetic data. For CCA and DCCA, again a
time lag of 15ms is used.

For illustrative purposes, the result of applying distributed
CCA on a real EEG measurement, where again a time lag of
15ms is used, is shown in Fig. 7. In Fig. 7(a), the channels
of node 1 of the WESN are shown, as well as the eye
blink artifact that is estimated by DCCA in each of those
channels. The same channels after removing the estimated
artifacts are shown in Fig. 7(c). Note that channel F7 shows
no clear eye blink artifacts, despite being relatively close to
the eyes. This can be explained from the fact that this node
is referenced with respect to electrode AF3. In the emulated
WESN, channels with similar eye blink artifact amplitude as
their local node reference will have their artifact amplitude
strongly reduced. Also, channels in more posterior positions
than the local reference channel show an inversion of the eye
blink artifact. Fig. 7(e) shows a close-up view of a signal
segment between two artifacts in channel Fpl. The original
EEG is barely altered in signal segments in between the
artifacts. To give an illustration of the spatial pattern of the
eye blink artifacts, Fig. 7(b) shows a topographic scalp plot of
the original EEG amplitude during an eye blink, as captured
by the electrodes of the emulated WESN. As can be expected,
the largest amplitudes are found near the eyes. However, due
to the introduction of local references by the WESN, the
artifact amplitudes don’t decrease monotonically from frontal
to posterior channels. Fig. 7(d) shows the EEG amplitude at
the same point in time, but after artifact removal using DCCA.
The performance measures for this example of artifact removal
are a SER of 10.54 dB and an ARR of 11.96 dB.

E. Effect of input SNR

As explained in Subsection III-E, the normalized SNR of the
synthetic EEG data can be altered to study the effect of artifact
amplitude relative to the background EEG on performance.
The study is carried out for both distributed algorithms DCCA
and DANSE. The results are shown on Fig. 8. The normalized
SNR of 0 dB corresponds to the synthetic EEG data with
realistic artifact amplitudes derived from real EEG data. A
normalized SNR greater than 0 dB corresponds to synthetic
EEG where the artifact amplitudes are increased compared to
the original synthetic data set of Subsection III-C. An SNR
smaller than O dB corresponds to synthetic EEG where the
artifacts are downscaled. Every step of 3 dB corresponds to
an artificial doubling or halving of the eye blink artifact power.
For normalized SNRs lower than -6 dB, the artifact amplitudes
are smaller than the background EEG.

35 SER in function of normalized SNR, synthetic EEG data
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Fig. 8. Performance measures as a function of normalized input SNR.

V. DISCUSSION

A. Choice of time lag

From the results of the time lag study depicted in Fig. 3
(synthetic EEG data) and Fig. 4 (real EEG data), we can infer
how the time lag should be chosen. For increasing time lags,
a downward trend is observed in the boxplots. This can be
explained from the fact that the autocorrelation of the sources
in s typically becomes smaller if the time lag increases, and
hence also the canonical correlation coefficients of the differ-
ent CCA components become smaller, with smaller differences
between them. This leads to worse source separation by CCA
and thus worse artifact removal. For time lags over 50 ms, the
eye blink artifacts are no longer contained in the first CCA
component for all subjects and hence manual selection of the
eye blink component is needed. The artifacts not being present
in the first component has an additional disadvantage for the
distributed computation, since more than one CCA component
then has to be computed. As explained in Subsection II-C, the
number of channels that needs to be transmitted between the
nodes is equal to the number of principal CCA components
that need to be computed.



For very small time lags, slowly varying neural activity also
shows high temporal correlation with its time-delayed wave-
form, resulting in high canonical correlations corresponding
to the components that capture these sources. Choosing the
time lag too small thus also leads to poorly separated CCA
components.

These lag-dependent effects are observable in Fig. 3 and
Fig. 4, however the ARR is less susceptible to variations
in time lag, especially for real EEG data. The rightmost
boxplot in each of the figures represents the results where
for each of the 9 subjects, the time lag was chosen in a
subject-dependent fashion to produce the highest performance
measures. In practice these optimal time lags were all found
within the 5 - 20ms range. There is barely any observable
difference between this “optimal” subject-dependant choice of
7 versus choosing the same time lag for all subjects, as long
as it is in the 10 to 20 ms range.

Therefore, we propose, as a rule-of-thumb for separating
the eye blink artifact component with CCA-based methods,
to choose the time lag to be 15ms. In both synthetic as in
real EEG data, this parameter choice leads to near-optimal
algorithm performance for all subjects, and it makes sure the
eye blinks are present in the first CCA component without
leakage to other components. This results in a parameter
setting that can be generally applied to all subjects without
significant performance loss, and removes the need for manual
artifact component selection.

B. Performance in varying SNR conditions

Varying the input SNR influences the SER and ARR differ-
ently, as shown on Fig. 8. The ARR, which measures accu-
rateness of the artifact estimate, shows a clear upward trend
with increasing SNR. This is also intuitive, as a higher input
SNR of the artifacts allows for a more accurate estimation.
However, this seems to result in a corresponding decrease
in SER, which measures undesired distortion of the EEG
after applying artifact removal. This exposes a trade-off: at
low SNRs the artifacts are less accurately estimated, but the
distortion of the clean EEG is smaller. A similar trade-off can
be seen for DANSE, which is consistently outperformed by
DCCA.

Of course, for real EEG measurements, the SNR of artifacts
relative to the background EEG cannot be chosen, but are fixed
at a certain SNR depending on the subject. However, this study
shows that DCCA consistently captures the eye blink artifact
source in the principal CCA component over a wide range of
input SNRs.

C. Comparison of eye blink artifact removal algorithms

From the results it is clear that performance of CCA-
based methods is on par with ICA, the current state-of-the-art
method for EEG eye blink artifact rejection, for both of our
performance parameters. Besides this, the CCA-based methods
have the additional advantages that they are more energy-
efficient due to a lower complexity, there is no need for a
manual component selection, and they facilitate a distributed
realization.

When comparing CCA with the centralized MWF, and
its adaptive distributed implementation DANSE [11], [23],
the results indicate a superior performance of the CCA-
based methods for the SER (i.e. the degradation of artifact-
free segments) parameter, and an equal performance for the
ARR parameter (i.e. the ability to estimate the artifact shape
accurately). An advantage of ICA and CCA-based methods
over the MWF-based methods is the property of blind source
separation. For the MWF and DANSE, a separation of the
signals in clean and corrupted segments is required based on
a subject-specific threshold, which is prone to misclassification
errors.

DCCA achieves a high bandwidth reduction compared to the
centralized algorithms: each node compresses its local EEG
channels to a single-channel signal that is sent to all other
nodes. For K nodes with each M}, channels, the compression
factor is Mj. Also the computational complexity per node is
reduced: an M-channel CCA is a O(M?3) procedure since
it can be solved as a generalized eigenvalue decomposition
[32]. In the emulated WESN, each node only performs a local
(My + K — 1)-channel CCA.

From this comparison we conclude that DCCA is a well-
suited method to apply to distributed artifact removal in a
WESN with bandwith and energy constraints.

VI. CONCLUSIONS

In this paper, we have successfully used distributed CCA to
remove eye blink artifacts in EEG recordings from 9 subjects,
using both synthetic and real EEG data. In order to demon-
strate the algorithm performance, we emulated a distributed
wireless EEG network where each node in the network uses
a local reference. We found that the only important parameter
to be tuned, the time lag, can be chosen to be 15 ms for all
nodes in the network and across subjects. For this setting, the
eye blinks always occur in the first CCA component without
significant leakage to other components. This means that the
artifact rejection using DCCA can happen in an unsupervised
way.

Comparing DCCA with DANSE, which is another dis-
tributed algorithm that is applicable to distributed eye blink
artifact removal, we have found that DCCA achieves a better
performance while achieving the same bandwidth reduction.
Furthermore, for the envisioned application in WESNs, DCCA
has the advantage of unsupervised artifact removal. Comparing
DCCA to ICA, which is the current state-of-the-art for EEG
artifact removal, shows no significant performance differences.
However, ICA is not amenable to a distributed realization and
has a higher complexity.
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