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Topology-Independent Distributed Adaptive
Node-Specific Signal Estimation in Wireless Sensor

Networks
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Abstract—A topology-independent distributed adaptive node-
specific signal estimation (TI-DANSE) algorithm is presented
where each node of a wireless sensor network (WSN) is tasked
with estimating a node-specific desired signal. To reduce the
amount of data exchange, each node applies a linear compression
to its sensors signal observations, and only transmits the com-
pressed observations to its neighbors. The TI-DANSE algorithm
is shown to converge to the same optimal node-specific signal
estimates as if each node were to transmit its raw (uncompressed)
sensor signal observations to every other node in the WSN. The
TI-DANSE algorithm is first introduced in a fully connected WSN
and then shown, in fact, to have the same convergence properties
in any topology. When implemented in other topologies, the
nodes rely on an in-network summation of the transmitted
compressed observations that can be accomplished by various
means. We propose a method for this in-network summation via
a data-driven signal flow that takes place on a tree, where the
topology of the tree may change in each iteration. This makes the
algorithm less sensitive to link failures and applicable to WSNs
with dynamic topologies.

Index Terms—Distributed signal estimation, wireless sensor
networks, Wiener filtering, ad-hoc topologies

I. INTRODUCTION

W IRELESS sensor networks (WSNs) typically consist of
a set of sensor nodes, that are deployed throughout a

sensing environment to detect or estimate a signal or parameter
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of interest. WSNs typically accomplish this estimation in one
of two ways. Either all the information is aggregated and
processed at a central location or each node takes part in the
processing of the data thereby distributing the computation.

In [1]–[4] the WSNs are tasked with estimating a signal
or parameter vector of interest. The sensor observations in
these WSNs are compressed and then transmitted to a fusion
center under a dimensionality constraint which is a by-product
of a bandwidth constraint. The fusion center then uses these
compressed observations to estimate the parameter vector or
signal of interest.

These type estimation of ’compress-and-centralize’ WSNs
have been extended to WSNs without a fusion center, in which
each node acts as a data sink and aims to estimate a parameter
vector or signal based on local sensor data and data obtained
from its neighboring nodes. A large part of the literature
considers the problem where all of the nodes are interested
in estimating a single parameter vector through iterative tech-
niques in which nodes share intermediate estimates of the
parameter vector with their neighbors. Well-known examples
of such algorithms are, e.g., diffusion [5]–[11], consensus
[12], [13], gossip [14], [15], or primal-dual decompositions
[16]. Instead of estimating the same parameter vector across
the WSN, in [17]–[19] it is assumed that there are multiple
parameter vectors of interest and each node is only interested
in a subset, possibly overlapping, parameter vector of interests,
thereby making the problem node-specific.

The estimation problem envisaged in this work is inherently
different than the previously mentioned literature pertaining to
parameter estimation. In the latter, the estimation variable is a
parameter vector of fixed dimension, which is assumed to be
static over time or at most slowly time varying. This allows
each node to perform iterative refinements of the parameter
vector estimate while sharing these intermediate estimates with
its neighbors, until all local estimates have converged to a
steady state. In this work, we are estimating signal samples,
and hence a new estimate variable is introduced at each
time instant. Initiating a new distributed iterative parameter
estimation algorithm, each time, for every individual sample of
a rapidly sampled signal, such as, e.g., an audio signal, is then
extremely expensive in terms of communication cost. Instead,
the nodes apply local compression or fusion rules on their
observed signals, before broadcasting them to their neighbors.

It is assumed that the nodes wish to estimate their so-called
desired signal observations which are linear mixtures of a set
of unknown independent source signals in the environment. It
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is noted that this is different than inverse problems and blind
source separation which aim to estimate the signal path and
unmix the original source signals [20]–[22].

To estimate their desired signal observations, each node
makes a weighted linear combination of their local sensor
signals and the compressed signals obtained from their neigh-
bors, where the weights are regularly updated based on a
linear minimum mean squared error (LMMSE) formulation,
assuming some quasi-stationarity conditions on the signals1.
This compression and estimation step is done only once per
sample at each node. Rather than iterating over the estimation
variables themselves (i.e., the signal samples), as would be
the case in parameter estimation, the LMMSE combination
weights and the fusion rules that the nodes use to compress
their signals are then recursively updated based on previously
observed inputs. This means that the algorithms iterate over
these fusion rules rather than the estimation variables.

A. Previous Work and Motivation

The main focus of this paper is to perform distributed signal
estimation where each node is tasked with estimating its own
node-specific desired signal without the availability of a fusion
center. Such distributed signal estimation techniques have been
applied in various contexts such as speech enhancement or
direction of arrival estimation in wireless acoustic sensor
networks and binaural hearing aids [23]–[25], and artifact
removal in wireless EEG sensor networks [26].

This type of node-specific signal estimation has been ex-
plored in fully connected, tree-topologies and combinations
thereof (mixed-topology) and has led to the introduction of
a host of distributed adaptive node-specific signal estimation
(DANSE) algorithms [27]–[29]. It has been shown that, even
though nodes only transmit a linearly compressed version
of their sensor signal observations, each node converges to
its optimal node-specific LMMSE signal estimate as if each
node were to transmit its raw uncompressed sensor signal
observations to every other node in the WSN. The compression
used is essentially lossless for the LMMSE task at hand, i.e.,
we obtain the so-called centralized LMMSE solution (as if
each node has access to all other uncompressed sensor signal
observations), independent of the noise correlation structure,
which is not possible when first compressing the data with
subspace techniques as in [15].

However, the local LMMSE filter coefficients, signal com-
pression and subsequent signal estimates of the previous
DANSE algorithm are neighbor-specific. This entails that the
nodes must communicate with the same neighbors during the
entire estimation procedure, i.e., the topology must remain
static. In the case where the topology would change, e.g. due
to a link failure, the DANSE algorithm would then have to
reconverge to a new set of filter coefficients to again obtain
the optimal node-specific LMMSE signal estimates within the
new network topology. However, besides link failure, there are
any number of reasons the links may change between nodes,
e.g., using a minimum broadcast energy with mobile nodes.

1This quasi-stationarity assumption is needed to accurately collect the
relevant statistics of the desired signals and noise.

In [29], a way to overcome this re-convergence was explored
for a mixed (or tree) topology. However, it required the nodes
to retain network-wide routing tables along with an increased
information exchange to transform the affected nodes’ filter
coefficients.

Also when nodes are added to the WSN, the computational
complexity of the DANSE algorithm in a fully connected and
to a smaller degree in a tree topology, at the nodes increases.
This increase in computational complexity therefore affects
the overall scalability of the algorithms as it can become
prohibitively expensive for the nodes to calculate their local
LMMSE filter coefficients.

B. Contributions

In this work, the topology-independent distributed adap-
tive node-specific signal estimation (TI-DANSE) algorithm
is presented which overcomes the aforementioned problems
of changing topologies and scalability. The aim is to let the
nodes converge to a new set of estimator and compression
parameters, which always yield the node-specific LMMSE
signal estimates, independent of the underlying topology. Fur-
thermore, the topology may even change in between iterations,
without the need to let the algorithm re-converge to a new
set of estimator and compression parameters for the new
topology. In fact, as long as the WSN remains connected, i.e.,
there exists a path between any two nodes, the TI-DANSE
algorithm is robust against changes in topology that can occur
due to mobile nodes, link failure, etc. It can be shown that the
convergence speed of the TI-DANSE algorithm is independent
of the topology or changes therein.

The TI-DANSE algorithm accomplishes this by letting
each node compress its signal observations based on a linear
compression rule and applying a linear transformation to the
sum of the compressed signal observations of the other nodes.
This usage of the sum of the compressed signal observations
of the other nodes not only results in a complexity reduction in
the per-node estimation problems but also makes the algorithm
completely scalable when compared to the previous versions
of the DANSE algorithm, which is shown in Section III-C.
This then means that there is no increase in the per-node
computational complexity when nodes are added to the WSN.

To converge to the optimal node-specific signal estimates,
the nodes in the TI-DANSE must have access to the sum of all
of the compressed signal observations that are shared by the
other nodes in the WSN. There are various means to calculate
an in-network sum, e.g., relying on gossip or consensus based
algorithms [12], [30]–[32]. Although these methods are useful
for the summation of fixed or slowly varying parameters, they
become impractical for the summation of signal observations
that are collected at high sampling rates. Indeed, these methods
typically need many iterations to converge to the solution, as
well as multiple (re)-broadcasts of the intermediary summed
variables. We therefore propose a method to calculate this in-
network sum which relies on a tree topology that is formed
from the set of available links. The method can be described in
a completely data-driven way, i.e., no upper layer coordination
is needed between nodes. Since a tree topology is used, the
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in-network sum can be accomplished in a maximum of 2
transmissions per node. The tree used for the data-driven signal
flow can be chosen randomly at every iteration which differs
from the original tree-DANSE (T-DANSE) algorithm [28]
where the tree must remain static during the entire estimation.

C. Paper Organization

The structure of the paper is as follows. In Section II the
data model is introduced as well as a centralized LMMSE
filtering process where it is assumed that all nodes have access
to all sensor signal observations in the WSN. Although this
contradicts its aims, in Section III the TI-DANSE algorithm is
first described in a fully connected topology for the sake of an
easy exposition along with a proof of convergence. In Section
IV it is explained how the specific nature of the TI-DANSE
algorithm allows it to be applied in any topology, relying on
an in-network summation of compressed signal observations.
A method for this in-network summation is proposed that, at
every iteration, partitions the WSN into a tree followed by a
data-driven signal flow. Numerical simulations are performed
in Section V showing the convergence of the TI-DANSE
algorithm compared to previous realizations of the DANSE
algorithm. Finally conclusions are given in Section VI.

Notation: Throughout this paper we use the following
notation. Lowercase letters denote scalars and boldface lower-
case letters denote column vectors. Boldface uppercase letters
denote matrices. (·)T , (·)H denote the transpose and conjugate
transpose respectively. The expectation of a random variable
is denoted as E{·}, the cardinality of a set S is denoted as
|S|, ‖ · ‖2 and ‖ · ‖F represent the l2 and Frobenius norm
respectively.

II. PROBLEM SETUP

We assume a WSN with K nodes, where the set of nodes is
denoted as K = {1, . . . ,K}, and where each node k ∈ K has
access to Mk sensor signals. Each sensor signal is modeled
as a combination of a node-specific desired signal component
and additive noise, i.e., the sensor signal for the mth sensor
of node k is

yk,m = dk,m + nk,m (1)

where dk,m and nk,m are the desired signal component and
additive noise, respectively. It is noted that the noise is not
assumed to be spatially white, i.e., the noise can be correlated
across the different nodes. The sensor signals of node k are
placed in a stacked vector of length Mk of the form:

yk = [yk,1, . . . , yk,Mk
]T (2)

where dk and nk are defined similarly so that

yk = dk + nk . (3)

Similar to [27], we assume that the desired signal compo-
nents of each node share the same latent Q-dimensional signal
subspace which is given as

dk = Ψks (4)

where s is a Q-dimensional vector that contains the source
signals and Ψk is an unknown Mk×Q steering matrix, which

contains the transfer function between the source and sensors
and is assumed to be unique for each node. We will also
assume that Mk > Q,∀ k in the sequel, as this will make the
exposition of the algorithm easier. The case where Mk < Q
will be briefly addressed in Section III-A.

Each node, k, is tasked with estimating a node-specific
desired signal dk, which is a subset of the desired signal
components of (4), i.e.,

dk = Ψks (5)

where Ψk is again an unknown matrix that contains a subset of
the rows of Ψk in (4). Note that none of the elements in (5) are
known, except for the fact that dk contains the desired signals
as observed in a known subset of the sensors at node k. This
means that it is only assumed that node k knows which of its
sensor signals it is trying to estimate. An example of this data
model is multi-microphone hearing aids which are typically
interested in estimating a desired signal as it impinges on one
of the microphones of the device (typically the front facing
microphone) and uses the other microphone signals to aid in
a noise reduction algorithm [25].

For the ease of exposition but without loss of generality, the
number of channels in dk is assumed to be equal to Q in the
sequel, such that Ψk is a Q×Q square matrix which will also
be assumed to be of full rank in the sequel. The node-specific
desired signals can therefore be related to one another by (4)
as

dk = Ψk(Ψq)
−1dq . (6)

Note that the aim for each node is to perform sensor signal
denoising, i.e., a node k aims to estimate the desired signal,
dk, as it is observed by its local sensor(s). Although the desired
signal components can be the result of a mixing process (see
(5)), we do not aim to unmix them.

We first assume that each node has access to every sensor
signal in the WSN, that is, each node broadcasts observations
of its Mk sensor signals to all other nodes in the WSN, which
we refer to as a centralized filtering process. In Section III we
discuss how this filtering can be performed in a distributed
fashion, where each node only has access to the compressed
sensor signal observations of every other node and can only
iteratively update a portion of its node-specific estimator.

The sensor signals of the entire WSN are represented as a

stacked vector y, of length M =
K∑
q=1

Mq , i.e.,

y = [yT1 . . .y
T
K ]T (7)

and the stacked vectors d and n are defined similarly, so that
again we have

y = d + n . (8)

An estimate, ďk, of the node-specific desired signal, dk, of
node k is defined by applying a linear filter-and-sum operation
on all the sensor signals in the WSN, i.e., ďk = WH

k y. Note
that we consider the case where the signals are complex-
valued, which allows to, e.g., apply the algorithm in each
frequency bin in the (short-time) Fourier transform domain
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to also capture time-domain convolutions. The filter Wk can
be thought of as a stacked set of filters, i.e.,

Wk =




Wk1

...
WkK


 (9)

where Wkq ∈ CMq×Q represents the filter that node k
applies to the received sensor signal of node q, yq , and
Wkk ∈ CMk×Q represents the filter that node k applies to its
own sensor signals. The node-specific filter for node k, Wk,
is found as the linear minimum mean squared error (LMMSE)
estimator of the node-specific desired signal dk, i.e.,

Ŵk =




Ŵk1

...
ŴkK


 = arg min

Wk1,...,WkK

E





∥∥∥∥∥dk −
K∑

q=1

WH
kqyq

∥∥∥∥∥

2

2





(10)
= arg min

Wk1,...,WkK

Jk(Wk) (11)

where Jk(Wk) is the cost function of node k.
The solution to (10) is given as the multi-channel Wiener

filter (MWF) [33] which has the form

Ŵk = R−1yyRydk
(12)

where Ryy = E{yyH} and Rydk
= E{yd

H

k }.
Under the assumption of (short-term) stationarity of the sig-

nals, the estimation of Ryy is accomplished straightforwardly
by averaging over observations of yyH . As the desired signal
and the additive noise are assumed to be uncorrelated, Rydk
may be represented as

Rydk
= E{yd

H

k } (13)

= E{dd
H

k } (14)

= E{ddH}Ek (15)
= RddEk (16)

where Ek is an M×Q selection matrix containing only zeros,
except for a single entry equal to one in each column to select
the desired columns of Rdd corresponding to the sensors that
define the desired signals in dk in (5). While it is assumed
each node knows the dimension of the latent Q-dimensional
signal subspace and which local sensor signal observations dk
they wish to estimate, this can be supplanted using subspace
tracking techniques.

We note that while Rdd is unobservable, it can be estimated
indirectly from Ryy by exploiting on/off behavior or some
prior knowledge of the signals [23]–[26], [33]. If it is assumed
that the desired signals exhibit on/off behavior, Ryy can be
estimated, at a time t, using some type of short-term averaging
by means of a forgetting factor α

Ryy[t] = αRyy[t− 1] + (1− α)yyH (17)

when the desired signals are present. Likewise when only noise
is present, a noise only matrix Rnn[t] can be estimated in a
similar fashion. This then allows for Rdd to be estimated as
Rdd = Ryy −Rnn.

While it is implicitly assumed that the desired signal and
noise statistics are sufficiently stationary to be collected via
short-term averaging there exist other methods to collect the
relevant statistics in non-stationary environments by various
means such as extracting quasi-stationary segments [34],
assigning a signal-presence probability [35], or using the
generalized eigenvalue decomposition [36].

By combining (6) and (12) we see that the columns of
the MWF at each node k all span the same Q-dimensional
subspace, i.e.,

Ŵk = ŴqΨkq ,∀k, q ∈ K (18)

with Ψkq =
(
Ψq

)−H
Ψ
H

k .

III. TI-DANSE IN A FULLY CONNECTED WSN
In the previous section, it was assumed that each node

transmits observations of all of its sensor signals to every other
node in the WSN such that each node can compute (12). We
now look, instead, to the case where each node only transmits
observations of a compressed version of its sensor signals by
means of the TI-DANSE algorithm. For the ease of exposition,
we first describe the TI-DANSE algorithm in a fully connected
WSN, where each node is able to directly communicate with
every other node in the WSN. In Section IV the TI-DANSE
algorithm is described in WSNs with any topology, where
it will be shown that the same local compression that is
introduced in this section can also be applied.

A. The TI-DANSE algorithm

We envisage a fully connected WSN, where each node
transmits observations of a, yet to be defined (see (28)),
linearly compressed version of its sensor signals denoted as
zk. Since the compression that generates zk changes in each
iteration of the TI-DANSE algorithm, the signal statistics of
zk will change over time. Therefore, we will add an iteration
index i as a superscript to zk. Each iteration corresponds to
a single update of the local compression rule and LMMSE
estimator at one node (this will be defined in (23)). In between
two iterations, nodes continuously share and fuse compressed
sensor observations with their neighbors through the signals
zik until sufficient observations are available to the updating
node to accurately estimate the second order statistics required
to perform the update (see (23)). Each node then collects
observations of its own sensor signals, yk, and observations
of K − 1 linear compressed signals from the other nodes,
ziq, ∀q ∈ K\{k}.

Each node now sums the linearly compressed signals from
the other nodes. For example, the sum at node k is denoted
as ηi−k, where the subscript −k indicates that there is no
contribution from node k and is given as

ηi−k =
∑

∀q∈K\{k}
ziq . (19)

Node k places ηi−k in a stacked vector with its own sensor
signals represented as

ỹik =

[
yk
ηi−k

]
. (20)
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Since node k only has access to its own sensor signals yk
and sums the ziq signals of the other nodes, it can only control a
specific part of its node-specific estimator Wk, namely, Wkk

(see (9)) and apply a transformation Gk ∈ CQ×Q to ηi−k.
The node finds its LMMSE estimator with respect to (20) at
iteration i by solving
[

Wi+1
kk

Gi+1
k

]
= arg min

Wkk,Gk

E
{∣∣∣
∣∣∣dk −

[
Wkk Gk

]H
ỹik

∣∣∣
∣∣∣
2

2

}

(21)

Wi+1
k = arg min

Wk

Jk(Wk) (22)

where Jk(Wi
k) is the cost function of node k at iteration i.

The solution to (21) is similar to (12) which using (20) is
given as [

Wi+1
kk

Gi+1
k

]
= R−1

ỹikỹ
i
k

Rỹikdk
(23)

where Rỹikỹ
i
k

= E{ỹikỹiHk } and Rỹikdk
= E{ỹikd

H

k }.
The local estimation of Rỹikỹ

i
k

at node k, can be accom-
plished in a similar manner as given in Section II exploiting
the on-off behavior of the signal. If we define d̃ik similarly to
(20), which contains only the desired signals components at
node k, then Rỹikdk

can be estimated in a similar fashion to
(16) as

Rỹikdk
= E{ỹikd

H

k } (24)

= E{d̃ikd
H

k } (25)

= E{d̃ikd̃i Hk }Ẽk (26)

= Rd̃ikd̃
i
k
Ẽk (27)

where Ẽk is an (Mk + Q) × Q matrix that has the same
functionality as Ek in (16).

After node k has updated its node-specific LMMSE estima-
tor, Wkk and Gk, it updates the compression used to generate
its own broadcast signal, zi+1

k . In particular, zi+1
k is formed

by first linearly combining the sensor signals yk by means
of the corresponding part of the estimator, Wi+1

kk , and then
transforming this result by the inverse of the other part of the
estimator,

(
Gi+1
k

)−1
, i.e.,

zi+1
k =

(
Gi+1
k

)−H
Wi+1H

k yk (28)

= Pi+1H
k yk (29)

Pi+1
k , Wi+1

kk

(
Gi+1
k

)−1
. (30)

The matrix Pi+1
k is an Mk × Q matrix, and hence yields a

compression ratio of Mk

Q . This process is outlined in Table I
where it is assumed that the nodes update in a round-robin
fashion and is depicted in Figure 1 for node k.

The estimate of dk, denoted as ďik, at any node k and at
any point in the iterative process is given as

ďi+1
k = Wi+1H

kk yk + Gi+1H
k ηi−k . (31)

Although zik contains an iteration index, node k does not
re-transmit the observations of zik each time it performs an up-
date. An update at node k only means that future observations
of yk will be compressed into observations of zi+1

k instead

yk Wi H
kk +

Gi H
k

(
Gi

k

)−H

∑
∀q∈K\{k}

ziq = ηi
−k

ďi
k

zik

Fig. 1: A depiction of the filtering and compression scheme
for the TI-DANSE algorithm for node k.

TABLE I: TI-DANSE in a fully connected WSN.

1) Initialize i← 0, k ← 1
2) Initialize W0

qq , P0
q and G0

q randomly, ∀q ∈ K
3) Each node transmits its compressed signal observations, zik .
4) Node k updates its node-specific local parameters, Wkk and

Gk , by minimizing its LMMSE criterion based on its own
sensor signals and the summed signals transmitted from the
other K − 1 nodes[

Wi+1
kk

Gi+1
k

]
= arg min

Wkk,Gk

E
{∣∣∣∣∣∣dk − [ Wkk Gk

]H
ỹik

∣∣∣∣∣∣2
2

}
(32)

for which the solution is given by (23) and repeated here for
convenience as,[

Wi+1
kk

Gi+1
k

]
= R−1

ỹi
k
ỹi
k

Rỹi
k
dk

. (33)

The compression matrix is then updated as

Pi+1
k = Wi+1

kk

(
Gi+1
k

)−1
. (34)

The other nodes do not update their node-specific local
parameters:

∀q ∈ K\{k} : Wi+1
qq = Wi

qq ,G
i+1
q = Gi

q ⇒ Pi+1
q = Piq .

(35)
5) i← i+ 1
6) k ← (i mod K) + 1
7) return to 3

of zik (using the new Pi+1
k ). The iterations of TI-DANSE are

only performed on the estimator Wkk, Gk and the compressor
Pk, but not on the signal observations. In practice, the TI-
DANSE algorithm is implemented in a block-adaptive fashion,
i.e., the first block of L samples is estimated as ď1

k[n] (with
n = 0, ..., L−1), the second block of L samples is estimated as
ď2
k[n] (with n = L, ..., 2L−1), etc. This means that the initial

samples are not well estimated, as the TI-DANSE algorithm
has not yet converged.

We note in the case there is a node k with Mk < Q, it
should merely broadcast its raw sensor signal observations to
another node q who will then incorporate these in its own set
of Mq sensor signal observations (node k is then excluded as
a node in TI-DANSE, as its function will be taken over by
node q).
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B. Convergence and Optimality
When node k solves its node-specific LMMSE estimation

problem, it essentially finds a parameterized version of the
node-specific filter given in (9), i.e.,

Wk =




P1Gk

...
Wkk

...
PKGk




=




W11G
−1
1 Gk

...
Wkk

...
WKKG−1K Gk




(36)

where it can only manipulate the entries in Wkk and Gk. The
parameterization in (36) defines a solution space Wk,∀k ∈
K simultaneously. The next theorem shows that this solution
space contains the MWFs given in (12).

Theorem 1. If (5) holds then the MWFs given in (12) lie in
the solution space defined by the parameterization in (36).

Proof. Setting Gk = Ψ
H

k , ∀k, then

G−1q Gk =
(
Ψq

)−H
Ψ
H

k (37)

= Ψkq . (38)

Substituting (38) into (36) and setting Wkk = Ŵkk, ∀k ∈ K
yields

∀k ∈ K : Ŵk =




Ŵ11G
−1
1 Gk

...
Ŵkk

...
ŴKKG−1K Gk .




=




Ŵ11Ψk1

...
Ŵkk

...
ŴKKΨkK




(39)
which, when comparing with (18), shows that the solution
space defined by the parameterization in (36) contains the
MWFs given in (12).

Theorem 2. Consider a WSN with a fully connected topology.
If (5) holds, then for any initialization in steps 1 and 2 in Table
I, the TI-DANSE algorithm obtains the node-specific LMMSE
signal estimates corresponding to the MWFs given in (12) for
every node k ∈ K.

Proof. See Appendix

Remark 1. We note that the given parameterization is non-
unique, i.e.,

{Ŵ11,Ŵ22, . . . ,ŴKK ,G1,G2, . . . ,GK} (40)

and

{Ŵ11,Ŵ22, . . . ,ŴKK ,TG1,TG2, . . . ,TGK} (41)

will result in the same estimator Ŵk for any invertible T. As
a consequence, the Gk matrices computed in the algorithm
described in Table I may not converge in the strict sense
(we refer to Remark 2 in the Appendix for further details).
Nevertheless, since the optimal estimator Ŵk itself is unique,
the non-uniqueness of its parameterization does not have an
impact on the convergence and optimality of the actual signal
estimates that are produced by the algorithm.

TABLE II: LMMSE computational complexity at each iter-
ation assuming the inversion of an M ×M matrix requires
O(M3) operations

Algorithm LMMSE computational complexity at each iteration i

DANSE O((Mk +Q(K − 1))3)

T-DANSE O((Mk +Q|Tk|)3)
TI-DANSE O((Mk +Q)3)

C. Scalability of the TI-DANSE algorithm

We now look to compare the computational complexity of
calculating the solution to LMMSE for the TI-DANSE algo-
rithm (23) compared to the previous versions of the DANSE
algorithm, specifically fully connected and tree topologies.
While the algorithms will not be covered extensively, some
background must be given to understand the calculations. For
the DANSE algorithm, every node finds its LMMSE solution
in a similar manner to (23), which relies on the inverse of a
(Mk +Q(K − 1))× (Mk +Q(K − 1)) matrix. Likewise, for
the T-DANSE algorithm, every node finds its LMMSE solution
in a similar manner to (23), which relies on the inverse of a
(Mk +Q|Tk|)× (Mk +Q|Tk|) matrix, where Tk is the set of
neighbors of node k in the tree excluding node k itself.

Using these matrix dimensions and assuming a worst-case
calculation scenario where the matrix inverse of an M ×M
matrix is assumed to require O(M3) operations, the compu-
tation of the LMMSE for a node k at iteration i is given in
Table II.

We see that the computational complexity, and therefore
scalability, of the DANSE algorithm is impacted the greatest
when nodes are added to the WSN. The T-DANSE algorithm
is impacted to a lesser extent, as only the nodes who have an
added neighbor will have an increase in computational com-
plexity. Finally, since the nodes in the TI-DANSE algorithm
rely on the sum of the compressed signal observations of the
other nodes, there is no computational increase in the LMMSE
estimate of each node when nodes are added to the WSN
making it completely scalable.

In the centralized scenario, where no compression takes
place, the communication data rate of a node k can be given
as Mkfs samples per second, where fs is the sampling rate
of the sensors. This communication data rate is reduced with
the DANSE and TI-DANSE algorithms in place down to Qfs
samples per second per node. With the T-DANSE algorithm
in place, however, the communication data rate of a node is
dependent on its location in the tree. In fact, for the T-DANSE
algorithm, the main compression is not due to the reduction
in observations of Mk sensor signals to observations of a Q-
channel signal per node, but due to the fact that there is in-
network fusion of all the signals. In a tree without in-network
data fusion (i.e., with centralized data collection), multi-hop
data routing is in place, and hence the amount of data that
each node has to transfer will be at least Mkfs samples per
second for nodes with a single connection, and much higher
for the other nodes.



7

IV. TI-DANSE WITHOUT TOPOLOGY CONSTRAINTS

We now describe how the TI-DANSE algorithm presented
in Section III, can be implemented in a WSN without topology
constraints. This is accomplished with a slight modification to
the transmitted signal of a node (28), which now fuses its
compressed signal, zk, with the compressed signal from its
neighbors. This will allow for the transmitted signals of the
nodes to disperse through the WSN by means of an in-network
summation. However, the TI-DANSE in a fully connected
WSN as presented in Section III will be shown to be a special
case of the proposed modification.

In using the TI-DANSE algorithm we see that, to converge
to the optimal solution, each node needs to compute ηi−k,
which can be found from a summed version of all ziq’s as
defined in (29), i.e., (19) can instead be given as

ηi−k =
∑

∀q∈K
ziq − zik (42)

= ηi − zik (43)

where ηi =
∑
∀q∈K ziq .

We propose a method to perform this in-network summation
via a data-driven signal flow that takes place in a tree topology.
While, at first this may seem like a restriction on the topology,
it is merely presented as a method to aggregate information in
a data-driven way. It is not a requirement of the algorithm itself
and the tree can be formed in any manner and the designer is
free to choose how it is built, and how frequently it is built
(the algorithm is fully generic and requires no assumptions on
these aspects). The only true requirement that the TI-DANSE
algorithm has is that the nodes have access to ηi−k.

The node-specific estimation at each node can be performed
independent of the actual topology, i.e., equivalently to Table
I, such that the algorithm becomes robust to link failures or
dynamic topologies. If one of the branches of the tree would
get disconnected, a new tree can be grown without the need to
let the TI-DANSE algorithm reconverge (as would be the case
in the original T-DANSE algorithm [28]). Also the sequential
updating order does not need to follow a path though the
WSN as in the case of the T-DANSE algorithm. We note
that a similar approach to an in-network summation has been
presented in [37] to provide a summed output signal to all
nodes performing a distributed generalized sidelobe canceler
technique.

A. Data-driven signal flow

We assume that when new sensor signal observations be-
come available at the nodes, a tree is pruned from the ad-
hoc topology, using any tree formation algorithm2, in which
these signal observations are then fused and disseminated. We
denote Nk as the set of neighbors of node k in the ad-hoc
topology with node k excluded. We assume that after the tree
is formed, the nodes only communicate with their neighbors in
the tree again represented as Tk, which is a subset of the total

2There are several distributed algorithms for tree formation which are
dependent on the predefined constraints, e.g., a tree with minimum energy
cost [38]–[42]. However, this is not the main focus of this work.

number of neighbors of the ad-hoc topology, i.e., Tk ⊆ Nk.
Every time a tree is formed, one arbitrary node is assigned as
the root node, e.g., if the nodes update in the assumed round-
robin fashion as in the fully connected case, the updating node
can be chosen as the root node. The following data-driven
signal flow is executed for each new block of sensor signal
observations collected at the nodes:

1) Any leaf node, i.e., a non-root node k which has only
a single neighbor, can immediately fire and transmit a
block of compressed observations to its single neighbor
(toward the root node) based on (28) which is repeated
here for convenience,

zik = Pi H
k yk . (44)

Any non-root node k with more than a single neighbor
waits until it has received the compressed observations
of all its neighbors except for a single neighbor that has
yet to fire, say node q, and then computes the block of
compressed observations

zik = Pi H
k yk +

∑

l∈Tk\{q}
zil (45)

and transmits this to node q (toward the root node). This
process repeats at every node in the tree until the root
node of the tree is reached.

2) Once the data-driven signal flow has reached the root
node, say node r, it generates a block of observations
of, ηi, based on (45)

ηi = Pi H
r yr +

∑

q∈Tk
ziq (46)

which contains all of the compressed sensor signal
observations in the WSN. This signal is now flooded
through the WSN (away from the root node) so that it
reaches every node, where the nodes simply act as relays
to pass ηi further through the tree.

Based on the data-driven signal flow, we see that any
leaf node will transmit only a single block of compressed
observations based on (44) during an iteration. Any non-leaf
node will transmit a maximum of two blocks of compressed
observations during an iteration, first toward the root node
based on (45) and away from the root node based on (46).

B. Equivalence to fully connected topology and topology
independence

Now that the nodes have access to (46), they subtract out
their own compressed Pi H

k yk signal, i.e.,

ηi −Pi H
k yk =

∑

∀q∈K\{k}
ziq (47)

= ηi−k (48)

which is equivalent to (19). This equivalence means that even
though the signal flow took place in a tree topology, it can be
viewed from the same perspective as in the fully connected
scenario. This shows that at each iteration of the algorithm,
since the nodes have access to the same signals as in the
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Fig. 2: The signal flow of the TI-DANSE algorithm for a non-
root node k. Note that for a leaf node, Tk\{q} = ∅ and the
transmitted signal, zik, is equivalent to that of (28).

fully connected case, the same node updating procedure can
be applied as given in Table I. The TI-DANSE in an ad-hoc
topology is therefore equivalent at every iteration and hence
the same convergence and optimality holds3 as in Section III.

A depiction of the node-specific estimation procedure and
proposed signal flow for a non-root node is given in Figure 2.
We can see that the TI-DANSE in a fully connected topology
can be considered a special case of the TI-DANSE in a tree
topology which is explained as follows. Essentially, in the fully
connected topology, the updating node can be chosen as the
root node and the tree can then be thought of as a star topology
where each non-root node is a leaf node and transmits its zik
based on (44). Once it has received all of the leaf node signals,
the root node now transmits ηi back to the leaf nodes which
use (47) to subtract their own compressed Pi H

k yk signal.
However, it is noted that this can be made more efficient by
using the fully connected operations described in Section III
as the explained process accrues an additional communication
hop.

Due to the proposed in-network summation the neighbors
between nodes in the tree do not have to remain the same
during the estimation procedure. The tree for the signal flow
can be randomized at every iteration such that a new root node
can be chosen and a different set of neighbors can be chosen,
T ik ⊆ Nk. In fact, the signal flow does not need to occur on
the same tree toward and away from the root node.

V. SIMULATIONS

Numerical simulations are first performed in a single sens-
ing environment comparing the convergence of the 1) DANSE,
2) T-DANSE, 3) TI-DANSE in a fully connected topology
(TI-DANSE (FC)) and 4) TI-DANSE in a tree topology
(TI-DANSE (T)). The T-DANSE algorithm is then compared
to the TI-DANSE (T) algorithm when the links between nodes

3We note that this is not the case when comparing the DANSE algorithm
in a fully connected topology to the T-DANSE algorithm.

are chosen randomly during every iteration. Finally, Monte-
Carlo simulations are performed on 1000 sensing environ-
ments that are generated in the same fashion as in the single
sensing environment, to show a broader comparison between
the convergence properties of the algorithms.

The simulations are implemented in batch mode indicating
that the estimation is performed on the entire length of data.
For a signal of length T , the necessary statistics for (12) are
estimated as

Ryy ≈
T−1∑

t=0

y[t]y[t]H , Rnn ≈
T−1∑

t=0

n[t]n[t]H (49)

and the distributed statistics are found in a similar fashion
at each node k. In real-time scenarios, the data could be
partitioned into frames and updated as in (17).

A. Single sensing environment

The randomly generated sensing environment contains 15
nodes each with 5 sensors, i.e., Mk = 5, ∀k ∈ K. There
are two desired source signals (Q = 2) of 10000 samples,
which are independently and identically distributed uniformly
on an interval of [−0.5 0.5] and four localized additive
white noise sources which are generated by a similar process
and correspond to spatially correlated noise. Additionally, a
spatially uncorrelated zero-mean white noise signal that is
equal to 10% of the average noise power is also added to the
sensor signals to model sensor and quantization noise. This
results in a compression of the sensor signal observations of
each node by a factor of Mk

Q = 5
2 .

The Wkk variables are all initialized randomly. The DANSE
and T-DANSE algorithms apply different estimator coeffi-
cients, Gkq , to the received signals from their neighbors (see
[27] and [28] for further explanation) which are initialized
to all-zero matrices. Likewise, for the TI-DANSE algorithm,
the Gk coefficients are initialized to all-zero matrices. The
compressor matrices, Pk, are initially set to Pk = Wkk, but
later updated according to (34). The nodes in the DANSE
and TI-DANSE algorithm update their node-specific local
parameters in a round-robin fashion, whereas the T-DANSE
algorithm must follow a path based updating scheme to ensure
convergence [29], i.e., after a node k updates its node-specific
local parameters the next node q must be in Nk.

The optimal centralized solution is first found at each node,
assuming that each node transmits observations of its Mk

sensor signals to the other nodes in the WSN. The DANSE
and TI-DANSE algorithms are then performed where it is
assumed that the WSN is fully connected. Next, an ad-hoc
WSN is generated by first setting the communication radius
of each node to 0 and then expanding the communication
radius of each node until the WSN is connected, i.e., every
node is reachable by some set of links to every other node
in the WSN. This ad-hoc WSN is then pruned to a minimum
spanning tree (MST) using Prim’s algorithm where the edge
weights are equal to the Euclidean distance between nodes.
The T-DANSE algorithm and the TI-DANSE algorithm are
then performed on the resulting MST. A depiction of the WSN
with the ad-hoc and MST links is given in Figure 3. The total
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Fig. 3: A simulated environment with 2 desired sources ( ),
4 uncorrelated noise sources ( ), and 15 nodes (K = 15 )
each with 5 sensors. The dashed red lines indicate the ad-hoc
connections and the black lines represent the MST formed
using the Euclidean distance between nodes as edge weights.

mean square error (MSE) cost at every iteration, J iTot, is found
as the sum of individual costs of the nodes using their current
node-specific filters, Jk(Wi

k),

J iTot =

K∑

k=1

Jk(Wi
k) . (50)

The total MSE cost at every iteration for the various algorithms
is shown in Figure 4. We see that DANSE in the fully
connected WSN converges to the optimal solution in the
fewest number of iterations. The TI-DANSE algorithm in the
fully connected (FC) and in the MST topology (T) converge
identically due to the independence of the algorithm to the
actual topology albeit slower than the other implementations
of the DANSE algorithm.

The slower convergence of the TI-DANSE algorithm can be
attributed to the number of available degrees of freedom that
a node has when finding its LMMSE estimator. In the fully
connected case the DANSE algorithm has Mk + (K − 1)Q
degrees of freedom per update and in a tree topology the T-
DANSE algorithm has Mk + |Tk|Q degrees of freedom when
performing an update at node k. The TI-DANSE algorithm has
only Mk + Q degrees of freedom when finding its LMMSE
estimator in (21). However, this is a trade-off to allow the
algorithm to run in a topology-independent fashion yielding
more robustness to topology changes such as link failures.

B. Comparison of T-DANSE and TI-DANSE with dynamic
connections

Simulations are now performed comparing the T-DANSE
and TI-DANSE algorithm when the links in Figure 3 are
chosen randomly at every iteration, i.e., T ik ⊆ Nk. This
randomization is accomplished by assigning random link
weights, which are uniformly distributed over the unit interval
(0, 1], to the original ad-hoc links at every iteration. Prim’s
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Fig. 4: Cost of the DANSE, T-DANSE, TI-DANSE (FC) and
(T) algorithms versus the number of iterations.
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Fig. 5: Cost of the T-DANSE and TI-DANSE (T) algorithms
with randomized links in the tree.

algorithm is then used to find the MST based on these new
randomized link weights. In order to apply the T-DANSE
algorithm to the ad-hoc WSN, a different Gkq (see [28] for
its definition) is initialized for every possible connection of a
node k where q ∈ Nk. The Gkq’s are then updated depending
on the current active links of a node during the corresponding
iteration q ∈ T ik and they are kept fixed if the corresponding
link disappears (until it appears again in a future tree).

We observe that the TI-DANSE algorithm converges iden-
tically as in the static tree given in Figure 4. However, the T-
DANSE algorithm fluctuates which is due to the fact that the
updates are topology-dependent, and hence cannot converge if
the topology changes in between each iteration.

C. Monte-Carlo Simulations

Monte-Carlo simulations are performed on 1000 simulated
environments that are initialized similarly to the single sce-
nario presented in Subsection V-A. For every environment the



10

100 101 102 103
100

101

Iteration

N
or

m
al

iz
ed

co
st

DANSE
T-DANSE
TI-DANSE

Fig. 6: Normalized cost of the DANSE, T-DANSE and
TI-DANSE algorithms versus the number of iterations aver-
aged over 1000 Monte-Carlo runs.

desired and noise sources, as well as 15 nodes, are randomly
placed. A MST is found using the Euclidean distances be-
tween nodes and kept constant for each Monte-Carlo run.
The TI-DANSE (FC) algorithm is not implemented as the
convergence properties are identical to that of the TI-DANSE
(T) algorithm.

Due to the random nature of the generated signals, the
optimal value of the summed cost is different for each Monte-
Carlo run. To account for this, the summed cost was normal-
ized by the optimal value for every Monte-Carlo run, i.e.,

J̃ iTot =

∑K
k=1 Jk(Wi

k)
∑K
k=1 Jk(Ŵk)

. (51)

The normalized sum of the cost for all nodes is then averaged
for the 1000 Monte-Carlo runs and shown in Figure 6. We see
on average that the convergence of the algorithms is similar
to that in the single sensing environment.

VI. CONCLUSIONS

In this paper the TI-DANSE algorithm was introduced
where nodes in a WSN estimate a node-specific desired signal
in a distributed fashion, and independent from the per-iteration
topology of the WSN. In using the TI-DANSE, the nodes
were shown to be able to converge to their optimal node-
specific signal estimates, as if every node had transmitted
all of its sensor signals observations to all other nodes. As
opposed to the original T-DANSE algorithm, the TI-DANSE
algorithm achieves these solutions using any of the available
links in the WSN. While the TI-DANSE algorithm typically
converges slower when compared to other variations of the
DANSE algorithm, it offers the flexibility in being able to be
implemented in any topology as long as an in-network signal
summation is performed.

PROOF OF THEOREM 2

This proof first considers the centralized case and shows the
relationship between two nodes that share the same desired
signal up to a sequence of arbitrary linear transforms. An

alternating optimization (AO) sequence is then introduced
that shows the equivalence between the optimization problems
between the two nodes. This result is then extended to show
the equivalence between an arbitrary linear transform in the
centralized case and a node that has the TI-DANSE algorithm
in place. Finally it is shown that the optimization problem of
the node with the TI-DANSE algorithm in place convergences
to the same estimate as the centralized case.

We first consider the centralized case where it is assumed
that all sensor signals are available at each node. We define,
for any arbitrary node ν, the centralized cost function as

Jν(Wν) = E
{∣∣∣∣dν −WH

ν y
∣∣∣∣2
2

}
(52)

where the filter Wν is given in the same form as (9), i.e.,

Wν =
[

WT
ν1 , . . . , WT

νK

]T
. (53)

We also introduce a cost function that is similar to (52)
where now the desired signal dν is transformed by an arbitrary
Q×Q matrix, Zi, which yields

J iz(Wz) = E
{∣∣∣∣Zi Hdν −WH

z y
∣∣∣∣2
2

}
(54)

where Wz is partitioned in that same manner as (53) and
where the subscript z does not refer to a node. The iteration
index i used here does not explicitly refer to the TI-DANSE
iterations, but can refer to any generic iterative algorithm.

We define a sequence of transformation matrices that are
used to transform the node-specific desired signal in (54) at
every iteration i as

(Zi)i∈N = (Z0,Z1, . . .) (55)

which implies that at every iteration a different Zi is applied
to dν .

We now consider a sequence of alternating optimizations
(AO) where at each iteration i the LMMSE optimization
corresponding to (52) is performed but with constraints added
to all partitions of (53) except one, say Wνk where k changes
in each iteration. The constraints ensure that the columns of
Wν,−k remain in the current column space of Wi

ν,−k, where
we use the notation X−k to denote a node-by-node stacked
matrix as in (53), but where the partition Xk corresponding to
node k is removed. The formal description of this AO process
is defined as AO1 in the left column of Table III.

A similar AO procedure AO2 can be described for the
more general cost function in (54) where the same partitioning
is applied to the optimization variable Wz , but where the
sequence of transformations (55) is used to define a new
cost function (54) in each iteration of the AO procedure,
as formalized in the right column of Table III. Note that, if
Zi = I, ∀i, where I is an identity matrix of appropriate size,
we see that AO1 and AO2 become equivalent.

AO1 will generate the AO sequence

(Wi
ν)i∈N = (W0

ν ,W
1
ν , . . .) . (56)

It is then clear from the definition of the AO procedure that
Jν will monotonically decrease at each step, i.e.,

Jν(Wi+1
ν ) ≤ Jν(Wi

ν) . (57)
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TABLE III: Alternating Optimization Procedure

AO1, using (52)

1) k ← 1, i← 0
2) initialize W0

ν randomly
3) (X̂ν , Âν) = arg min

Xν ,Aν

Jν(Xν)

s.t. Xν,−k = Wi
ν,−kAν

4) Wi+1
ν ← X̂ν

5) k ← k mod K + 1, i← i+ 1
6) goto 3

AO2, using (54)
We assume a pre-defined se-
quence of Q × Q matrices
(Zi)i∈N as given in (55).

1) k ← 1, i← 0
2) initialize W0

z randomly
3) (X̂z , Âz) = arg min

Xz ,Az

Ji+1
z (Xz)

s.t. Xz,−k = Wi
z,−kAz

4) Wi+1
z ← X̂z

5) k ← k mod K + 1, i← i+ 1
6) goto 3

This is because the current estimate Wi
ν itself is always in the

constraint set of the optimization problem in step 3, and hence
the updated estimate, Wi+1

ν , should yield an MSE that is at
least as small. In fact, AO1 is actually a relaxed version of
a Gauss-Seidel block-coordinate descent (GSBCD) method,
where the latter puts an additional constraint that Aν = I,
i.e., all entries in Wi

ν,−k remain fixed. It is known that such a
GSBCD method (and hence also its relaxed version) converges
to a stationary point of the objective function if this objective
function is convex [43]. Therefore, it follows that

lim
i→∞

Wi
ν = Ŵν (58)

where Ŵν is the global minimum of Jν .
Before we continue the proof, we need the following result:

Lemma 3. Consider the two AO procedures AO1 and AO2
as given in Table III, and assume that AO1 and AO2 are
initialized in step 2 such that W0

z = W0
νZ

0 . Then AO2 will
produce the AO sequence

(Wi
z)i∈N = (Wi

νZ
i)i∈N = (W0

νZ
0,W1

νZ
1, . . .) (59)

i.e., the sequences (Wi
ν)i∈N and (Wi

z)i∈N are equivalent up
to a Q×Q transformation for every iteration i.

Proof. The constrained optimization problems in AO1 and
AO2 in Table III can be transformed into unconstrained
optimization problems by using the substitutions

Xν,−k = Wi
ν,−kAν (60)

Xz,−k = Wi
z,−kAz (61)

inside the objective function Jν(Xν) and J i+1
z (Xz), yielding:[

X̂ν,k

Âν

]
= arg min

Xν,k,Aν

E

{∣∣∣∣∣∣∣∣dν − [XH
ν,k AH

ν

] [ yk
Wi H

ν,−k y−k

]∣∣∣∣∣∣∣∣2
2

}
(62)

[
X̂z,k

Âz

]
= arg min

Xz,k,Az

E

{∣∣∣∣∣∣∣∣Zi+1Hdν −
[
XH
z,k AH

z

] [ yk
Wi H

z,−k y−k

]∣∣∣∣∣∣∣∣2
2

}
(63)

with y−k denoting the vector y with yk removed. The full
matrix X̂i+1

ν is eventually found by including X̂ν,k into
X̂ν,−k = Wi

ν,−kÂν again at the correct place (corresponding
to node k), and similarly for X̂i+1

z .
We will prove the lemma using an inductive argument. To

this end, we first assume that the lemma holds up to iteration
i, i.e., Wi

z = Wi
νZ

i, from which we will show that also
Wi+1

z = Wi+1
ν Zi+1. If we indeed assume that Wi

z = Wi
νZ

i,
then (63) can be rewritten as[

X̂z,k

Âz

]
= arg min

Xz,k,Az

E

{∣∣∣∣∣∣∣∣Zi+1Hdν −
[
XH
z,k AH

z Zi H
] [ yk

Wi H
ν,−k y−k

]∣∣∣∣∣∣∣∣2
2

}
(64)

and using the substitution B = ZiAz , we obtain[
X̂z,k

B̂

]
= arg min

Xz,k,B

E

{∣∣∣∣∣∣∣∣Zi+1Hdν −
[
XH
z,k BH

] [ yk
Wi H

ν,−k y−k

]∣∣∣∣∣∣∣∣2
2

}
(65)

where X̂z,−k is found as

X̂z,−k = Wi
ν,−kB̂ . (66)

which can be derived from the fact that

X̂z,−k = Wi
z,−kÂz (67)

= Wi
ν,−kZ

iÂz (68)

= Wi
ν,−kZ

i
(
Zi
)−1

B̂ (69)

= Wi
ν,−kB̂ . (70)

Let us now compare (62) and (65), and observe that they
both define a LMMSE problem with a similar form as (21),
and hence their solution will have a similar form as (23).
Furthermore, (62) and (65) are identical optimization problems
except for a multiplication of the desired signal dν with
Zi+1H . Considering (23), their solutions will therefore only
differ up to a right multiplication with Zi+1, i.e.,

[
X̂z,k

B̂

]
=

[
X̂ν,k

Âν

]
Zi+1 . (71)

Plugging the lower part of (71) in (66) yields

X̂z,−k = Wi
ν,−kÂνZ

i+1 (72)

and since
X̂ν,−k = Wi

ν,−kÂν (73)

we obtain
X̂z,−k = X̂ν,−kZ

i+1 . (74)

Combining this with the upper part in (71), we eventually
obtain that the combined matrices X̂z and X̂ν are related as

X̂z = X̂νZ
i+1 (75)

and hence, from Table III, also

Wi+1
z = Wi+1

ν Zi+1 . (76)
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We have thus shown that, if Wi
z = Wi

νZ
i, then also

Wi+1
z = Wi+1

ν Zi+1. Since the former holds for i = 0 due to
the particular initialization of both AOs, the lemma is proven
for any iteration i by an induction argument.

An important corollary from this lemma is that, since the
AO sequence (Wi

ν)i∈N converges, (see 58) then it immediately
follows from Lemma 3 that (Wi

z)i∈N will also converge up
to a Q×Q transformation of its columns, i.e.,

lim
i→∞

min
U

∣∣∣
∣∣∣Ŵν −Wi

zU
∣∣∣
∣∣∣
F

= 0 (77)

for any given sequence (Zi)i∈N = (Z0,Z1, . . .). Note that,
in Lemma 3, Z0 merely defines the initialization of AO2
with respect to the initialization of AO1. However, since both
initializations are arbitrary, we will assume that Z0 = I for
any choice of the Z-sequence (55) in the sequel.

Let us now consider a new AO procedure, referred to
as AO3, which is defined as AO1, but where the objective
function Jν is replaced with the objective function Jk(i), where
the node-index k(i) now increments in each iteration, looping
over all nodes of K in a round-robin fashion. Similar as AO1
being a special case of AO2 (where Zi = I, ∀ i ∈ N), also
AO3 can be shown to be a special case of AO2. Indeed, we
obtain AO3 by choosing

Zi+1 =
(
Ψν

)−H
Ψ
H

k(i) (78)

in AO2. This means that the sequence of AO3 will also
converge up to a Q×Q transformation similar to (77).

The changing node index in the objective function Jk(i)
used in AO3 allows to implement AO3 in a distributed
fashion in a fully connected WSN, which is explained next.
We will refer to this distributed algorithm as the D-AO3
algorithm. Similar to the TI-DANSE algorithm, we also define
a specific compression at node k, which we denote as Vi

k

(having a similar function as Pi
k in the TI-DANSE algorithm),

and its corresponding broadcast signal is again denoted as
zik = Vi H

k yk. Using this notation, the D-AO3 algorithm is
described in Table IV (with the introduction of some auxiliary
variables Gk and Wkk). In the description of D-AO3, we use
an incremental node-index k instead of the notation k(i).

If we now stack all the Vi
k’s defined in the D-AO3 algorithm

into a larger matrix

Vi =




Vi
1

...
Vi
K


 (79)

then the sequence (Vi)i∈N of the D-AO3 algorithm will be
identical to the sequence produced by the AO3 algorithm4,
i.e.,

(Vi)i∈N = (Wi
z)i∈N = (Wi

νZ
i)i∈N (80)

4This follows from the fact that (82) is essentially the same as (63) where
Vi
−k replaces Wi

z,−k , such that ηi−k = Vi H
−k y−k = Wi H

z,−ky−k . The
transmission of Gi+1

k to the other nodes, which then multiply their Vi
q

with Gi+1
k , corresponds to the resubstitution defined in (61). Therefore, each

iteration of D-AO3 corresponds to an iteration of AO3, i.e., steps 3+4 in AO2
where Vi replaces Wi

z .

TABLE IV: Description of the D-AO3 algorithm in a fully
connected WSN.

1) Initialize i← 0, k ← 1 (or k(i) = k(0) = 1)
2) Initialize W0

qq ,G0
q , and V0

q randomly, ∀q ∈ K
3) Node k updates Wkk and Gk by minimizing its LMMSE

criterion based on its own sensor signals and the summed
broadcast signals from the other K − 1 nodes[

Wi+1
kk

Gi+1
k

]
= arg min

Wkk,Gk

E
{∣∣∣∣∣∣dk − [ Wkk Gk

]H
ỹik

∣∣∣∣∣∣2
2

}
(82)

for which the solution is given by (23), and updates its
compression matrix as

Vi+1
k = Wi+1

kk . (83)

Furthermore, node k broadcasts Gi+1
k to the other nodes, who

perform the following update on their local compression

∀q ∈ K\{k} : Vi+1
q = Vi

qG
i+1
k . (84)

The other node-specific parameters are not updated:

∀q ∈ K\{k} : Wi+1
qq = Wi

qq and Gi+1
q = Gi

q (85)

4) k ← (i mod K) + 1 (or k(i) = (i mod K) + 1)
5) i← i+1
6) return to 3

where (Zi)i∈N is defined in (78). Therefore, using the result
(77), we find that

lim
i→∞

min
U

∣∣∣
∣∣∣Ŵν −ViU

∣∣∣
∣∣∣
F

= 0 . (81)

Assume that, in the beginning of step 3 of iteration i in the
D-AO3 algorithm, we replace all of the compression Vi

q as
follows

∀ q ∈ K : Vi
q ← Vi

qT (86)

with an arbitrary full rank Q × Q matrix T. Then it can be
shown that this will not have any influence on the D-AO3
algorithm in the sense that Vi+1 will be the same for any
choice of T. This can be proven as follows. First, recall that an
iteration of D-AO3 is equivalent to an iteration of AO3, which
at its turn is equivalent to an iteration of AO2, for the specific
choice of (Zi)i∈N defined in (78), and where Vi corresponds
to Wi

z . Therefore, step 3 in the D-AO3 algorithm is equivalent
to solving the constrained optimization problem in step 3 of
AO2. Since (86) does not change the constraint set, i.e., the
column space of Vi, it will not influence the outcome of this
constrained optimization problem, and hence will not influence
the resulting Wi+1

z , or equivalently Vi+1.
We will now investigate the case where T is chosen as

T =
(
Gi
k(i−1)

)−1
, ∀ i ∈ N. This is equivalent5 to replacing

(83) and (84) in Table IV with

Pi+1
k = Wi+1

kk

(
Gi+1
k

)−1
(87)

and
∀q ∈ K\{k} : Pi+1

q = Pi
q , (88)

5Note that applying Vi
q ← Vi

q

(
Gi
k(i−1)

)−1
in the beginning of step 3

is equivalent to applying Vi+1
q ← Vi+1

q

(
Gi+1
k(i)

)−1
at the end of step 3.
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respectively, where we have also replaced the symbol Vi

with Pi to distinguish between the transformed and the non-
transformed case. A key observation is that, after performing
the above replacements in Table IV, we actually obtain the
TI-DANSE algorithm described in Table I.

Therefore, to prove convergence of the TI-DANSE algo-
rithm, we have to analyze the sequence

(
Pi
)
i∈N ,

(
Vi
(
Gi
k(i)

)−1)

i∈N
. (89)

From (81) and (89) it follows that (Pi)i∈N will again
converge up to a Q×Q transformation of its columns, i.e.,

lim
i→∞

min
U

∣∣∣
∣∣∣Ŵν −PiU

∣∣∣
∣∣∣
F

= 0 . (90)

We now let

Qi , arg min
U

∣∣∣
∣∣∣Ŵν −PiU

∣∣∣
∣∣∣
F

(91)

for any iteration i (note that Qi cannot be computed in
practice, since Ŵν is unknown). From (90) and (91), it follows
that

i→∞⇒ Pi
k = Ŵνk

(
Qi
)−1 ∀k ∈ K . (92)

If node k performs an update at iteration i, its estimate of
its node-specific desired signal dk in TI-DANSE is given as
(see (31)):

ďi+1
k =

(
Wi+1

kk

)H
yk +

(
Gi+1
k

)H
ηi−k (93)

where

ηi−k ,
∑

∀q∈K\{k}
ziq (see (19)) (94)

=
∑

∀q∈K\{k}
Pi H
q yq (95)

= Pi H
−ky−k (96)

where y−k is defined as in (7), but with yk removed.
Using (96) and (92), and for i→∞, (93) becomes

i→∞ : ďi+1
k =

(
Wi+1

kk

)H
yk +

(
Gi+1
k

)H (
Qi
)−H (

Ŵν,−k
)H

y−k . (97)

If node k would choose the following values

i→∞ : Wi+1
kk = Ŵνk

(
Ψν

)−H
Ψ
H

k (98)

Gi+1
k = Qi

(
Ψν

)−H
Ψ
H

k (99)

then it is easy to see that, when using (18), (97) becomes

i→∞ : ďi+1
k =

(
Ψk

)
Ψ
−1
ν ŴH

ν y = ŴH
k y (100)

i.e., node k converges to the solution of the network-wide
LMMSE estimation problem by making a proper choice for its
local parameters, which proves convergence and optimality of
the node-specific signal estimates. This concludes the proof.
We can, however, elaborate a bit more on the convergence
of the internal parameters Wkk and Gk. Due to the strict
convexity of the local LMMSE estimation problem at node k,
the optimality of (100) can only be achieved if node k indeed

exactly performs the update given in (98) and (99). The right-
hand side of (98) is not dependent on the iteration index i, and
hence this implies convergence for Wkk, ∀k ∈ K. However,
this does not hold for the right-hand side of (99). To prove
convergence of the Gk’s, Qi must also converge to ensure
that the right-hand side of (99) also becomes independent of
the iteration index.

Using (98) and (99) when i→∞ yields

i→∞ : Pi+1
k , Wi+1

kk

(
Gi+1
k

)−1
(101)

= ŴνkΨ
−H
ν Ψ

H

k Ψ
−H
k Ψ

H

ν

(
Qi
)−1

(102)

= Ŵνk

(
Qi
)−1

(103)

which with (92), yields

i→∞ : Pi+1
k = Pi

k . (104)

This together with (91), shows that

i→∞ : Qi+1 = Qi (105)

and with (99)
i→∞ : Gi+1

k = Gi
k (106)

which proves that subsequent values of Gi
k, ∀k become

identical when i→∞.

Remark 2. It is noted that there is a slight abuse of the ‘=’
notation in (105) and (106), as well as the expressions that
were used to derive these. A correct way would be:

lim
i→∞

‖∆i‖ = 0 (107)

∆i+1 , Gi+1
k −Gi

k . (108)

Note that (107) does not truly imply convergence of Gi
k in the

strict mathematical sense, since
∑∞
i=0 ∆i can still be infinitely

large. Nevertheless, the optimality and convergence of the
signal estimates, as stated in (100), will still hold, even without
Gi
k converging.
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