
 

 

 

 

 
 

 

 

Citation/Reference Alexander Bertrand (2017), 

Comments on “Distributed Identification of the Most Critical Node 

for Average Consensus” 
IEEE Trans. Signal Processing, vol. 65, no. 5, pp. 1265 - 1267, 2017 
 

Archived version Author manuscript: the content is identical to the content of the 

published paper, but without the final typesetting by the publisher 

Published version http://ieeexplore.ieee.org/abstract/document/7786932/ 

 

Journal homepage http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=78 

Author contact alexander.bertrand@esat.kuleuven.be 

+ 32 (0)16 321899 

IR https://lirias.kuleuven.be/handle/123456789/520817 

 

 

(article begins on next page) 



1

Comments on “Distributed identification of the most critical
node for average consensus”

Alexander Bertrand, Senior Member, IEEE

Abstract—In a previous paper, Liu et al. have presented a distributed
method to rank the nodes of a network according to their importance
for maintaining a fast average consensus within the network. Their
method essentially estimates the decrease in algebraic connectivity for
each possible node removal, based on a distributed estimation of the
Fiedler vector. In this comment correspondence, we argue that their
approach is limited to certain parameter ranges in the average consensus
algorithm, and we briefly comment on how the framework can be
extended accordingly. We also point out that their proposed algorithm
for distributed Fiedler vector computation is essentially a special case of
an earlier proposed algorithm, and in fact a numerically unstable version
thereof. Finally, we correct some statements in their paper.

Index Terms—Fiedler vector, distributed estimation, consensus

I. INTRODUCTION

In [1], Liu et al. propose an algorithm to rank the nodes of a
network based on the decrease in the convergence speed of the
average consensus algorithm (ACA) for each possible node removal.
They claim that this decrease is proportional to the change in the
algebraic connectivity (AlCo) of the network, and they explain how
the latter can be estimated using the Fiedler vector. In Section II,
we explain that their method is only valid for specific parameter
settings in the ACA, and may lead to incorrect node ranking for
other parameter ranges. We argue that the largest eigenvalue of the
graph Laplacian often also plays an important role, and we briefly
explain how this can be included in the framework of [1]. In Section
III, we point out that the algorithm proposed by Liu et al. for the
distributed computation of the Fiedler vector, is in fact a special case
of the algorithm in [2]. Moreover, we show that their algorithm is a
numerically unstable version of the latter, which makes it eventually
diverge away from the Fiedler vector in finite-precision arithmetic.
Finally, in Section IV, we correct three statements in [1].

Notation: We mainly adopt the same notation as in [1]. Equation
numbers followed by an asterisk ’*’, e.g., (4*), refer to equations in
[1], rather than equations in this comment correspondence.

II. COMMENTS ON NODE IMPORTANCE EVALUATION

A. Convergence speed of the ACA

In [1], Liu et al. assume an ACA with a Laplacian-based combina-
tion rule, i.e., the n×n combination matrix is chosen as I−ρL, where
L is the so-called graph Laplacian, and where ρ is a (well-chosen)
positive number. Their aim is to identify the most critical node whose

Copyright (c) 2017 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribu-
tion to servers or lists, or reuse of any copyrighted component of this work
in other works.

The author acknowledges the financial support of the KU Leuven Research
Council BOF/STG-14-005, C14/16/057, and CoE PFV/10/002 (OPTEC),
Research Project FWO G.0931.14 & G0D7516N, and HANDiCAMS. The
project HANDiCAMS acknowledges the financial support of the Future and
Emerging Technologies (FET) programme within the Seventh Framework
Programme for Research of the European Commission, under FET-Open grant
number: 323944. The scientific responsibility is assumed by the author.

The author is with KU Leuven, Department of Electrical Engineering
(ESAT), Stadius Center for Dynamical Systems, Signal Processing and Data
Analytics, Kasteelpark Arenberg 10, box 2446, 3001 Leuven, Belgium (e-
mail: alexander.bertrand@esat.kuleuven.be).

removal would cause the largest decrease in convergence speed of the
ACA. For each possible node removal, they estimate the change in
the AlCo to quantify the change in convergence speed of the ACA.
However, in [3], it has been shown that the asymptotic convergence
factor for Laplacian-based ACA is equal to

γ = max {1− ρλ2, ρλn − 1} (1)

where λn and λ2 denote the largest and one-but-smallest eigenvalue
of L (λ2 is referred to as the AlCo). This demonstrates that,
depending on the value of ρ, the convergence speed of the ACA is not
always directly proportional to the AlCo, and hence the framework
in [1] does not always apply. This observation was not made in [1],
and unawareness of this fact may lead to wrong conclusions or node
rankings, in particular when ρ is optimized for fast convergence.
Indeed, in Section VI.A* in [1], the authors themselves set ρ to

ρ̂ =
2

λn + λ2
, (2)

to maximize (1). In this case, γ = (λn − λ2)/(λn + λ2), and hence
both λn and λ2 can have an impact on the convergence speed of the
ACA [4]. Furthermore, if ρ > ρ̂, the AlCo has no impact whatsoever.

B. Proposed modification

The framework proposed in [1] can be extended to also include the
effect of λn. Indeed, the derivation based on λ2 and its corresponding
eigenvector µ (a.k.a. the Fiedler vector), can be easily modified for
λn and its corresponding eigenvector v. Furthermore, as shown in
[4], both λn and v can also be computed in a distributed fashion.
In fact, [4] aims to maximize γ by updating the edge weights in L
based on a distributed computation of λn, λ2, v, and µ. The same
ingredients are indeed needed to identify the critical nodes in [1].

Based on the derivation in [1] the counterpart of (4*) to quantify
the change of λn (instead of λ2) after removing node i is found as

βi =
vT0 ∆ivi

vT0 vi
(3)

where the subscript i indicates a parameter after removal of node
i, subscript 0 indicates a parameter before removing any node, and
∆i refers to the perturbation matrix on L0 corresponding to removal
of node i, i.e., Li = L0 −∆i (see [1]). We can then define three
estimators of (3), similar to those proposed in [1], but now based
on the eigenvector v instead of the Fiedler vector µ: the myopic
estimator1 (compare to (6*))

β̂ME
i =

vT0 ∆iv0

vT0 v0
, (4)

the zero-entry estimator (compare to (11*))

β̂ZEi =
vT0 ∆i(v0 − v0,i ei)

vT0 (v0 − v0,i ei)
, (5)

and the spectrum-based estimator (compare to (17*))

β̂SEi =
vT0 ∆iLi(v0 − v0,i ei)

vT0 (v0 − v0,i ei)
(6)

1The myopic estimator (6*) derived in [1] can be shown to coincide with
the derivative of the AlCo with respect to a change of L0 in the direction
−∆i [4], [5]. It has also been referred to as Fiedler-vector centrality in [6].



2

where ei is the i-th column of the identity matrix. The matrix Ci

in (17*) is replaced with the matrix Li in (6), as vi is the principal
eigenvector of Li (we refer to [1] for more details).

We now assume that λn and λ2 are known (they are obtained as
a by-product in the distributed computation of µ and v [4]).
Based on (1), we propose the following modification to [1]:

1) If ρλn − 1 � 1 − ρλ2, use the λ2-estimators (6*), (11*), or
(17*) as in [1].

2) If ρλn − 1 � 1 − ρλ2, replace (6*), (11*), and (17*) in [1]
with the λn-estimators (4), (5), and (6), respectively.

3) If ρ ≈ ρ̂, i.e., if a node removal could reverse the inequality in
any of the above cases, then score that node according to the
change in (1), using both the λ2- and λn-estimator.

It is noted that the third case always yields the fastest convergence
of the ACA, i.e., the first two cases are typically avoided in practice.

Remark: In [1], it was proposed to discard the denominators in
the three estimators, as these are (almost) the same for all nodes, and
will therefore not influence the node ranking. This still holds in case
1 or case 2, but not if ρ ≈ ρ̂ (case 3), since the absolute difference
between the λ2- and λn-estimators will determine the node ranking.
In this case, a normalized estimate of v0 and µ0 will have to be
computed, e.g., using the distributed algorithm in [4].

III. COMMENTS ON DISTRIBUTED FIEDLER VECTOR ESTIMATION

In this section, we explain that the distributed algorithm proposed
by Liu et al. in [1] to compute the Fiedler vector is actually a special
case of the algorithm in [2], up to some heuristic differences, and
except for a crucial numerical instability in the version of [1]. Liu et
al. discuss [2], but apparently did not observe this equivalence.

To estimate the Fiedler vector, Liu et al. propose to use a power
iteration (PI) z(k + 1) = Cz(k) with

C = I− δL− 1

n
11T (7)

where 1 denotes the all-ones vector and δ is a small positive number.
Since L always has a zero eigenvalue (λ1 = 0) with eigenvector equal
to 1, the last term in (7) deflates the matrix C such that the maximal
eigenvalue of C becomes 1−δλ2 (for sufficiently small δ), and hence
the PI would converge to the Fiedler vector, instead of the 1 vector.
Since the last term in (7) hampers a distributed implementation of
the PI, the authors propose to initialize the PI with a vector that is
orthogonal to 1, i.e., a zero-mean vector. Since 1 is in the nullspace
of L, such a vector can be obtained by multiplying any random vector
with L. One can then apply the PI with the matrix C = I−δL, since
1T z(k) will remain zero over all iterations k.

The distributed algorithm in [2] to compute the Fiedler vector also
performs a PI with C = I − δL, but in addition it applies a single
multiplication with L after every N PI steps, where N is set by the
user. This interleaved multiplication with L is referred to as the ‘mean
subtraction step’ in [2], and its purpose is indeed also to orthogonalize
the most recent estimate with respect to 1, to guide the estimate away
from the principal eigenvector of C, towards the Fiedler vector.

The algorithm proposed in [1] is therefore a special case, where
N =∞, since the mean subtraction step is only performed once, i.e.,
during the initialization of the algorithm. However, in [2], it is stated
that N should not be chosen too large, as the estimate will slowly but
surely loose its initial zero-mean property due to inevitable rounding
errors. Due to this critical numerical issue, the estimate in the version
of Liu et al. will eventually diverge away from the Fiedler vector,
and converge towards the dominant eigenvector of C, i.e., 1. This
instability will always occur in practice after some time (depending on
the size of these rounding errors), even in Matlab machine precision.
This is demonstrated with a Monte-Carlo simulation shown in Fig. 1

iteration
0 100 200 300 400 500 600 700 800 900 1000

es
tim

at
io

n 
er

ro
r

10-5

10-4

10-3

10-2

10-1

100

101

Median
25% quantile
75% quantile
result for single run

Fig. 1. Fiedler vector mean-squared estimation errors over 300 Monte Carlo
runs of the algorithm in [1] + result of a single run.

for random toy networks of 10 to 20 nodes (the vector is normalized
in every iteration for the sake of visualization).

In addition to the particular choice of N , the algorithm in [1] also
slightly differs in the heuristic protocol to avoid the vector norm
to shrink to 0 during the PI. The protocol used in [1] makes the
estimate only converge up to a time-varying scaling (which may be
sufficient in some applications). The protocol used in [2] lets the
algorithm converge to a stable Fiedler vector estimate with a static
norm, allowing to, e.g., apply normalization algorithms [4]. However,
this stabilization requires a parallel diffusion algorithm, which adds
some additional complexity and communication overhead.

IV. ADDITIONAL CORRECTIONS

Correction 1: Liu et al. claim that the algorithm in [2] converges
exponentially at a rate 1 − δλ2, whereas their own algorithm has a
rate of 1−δλ2

1−δλ3
, which for certain values of δ could then outperform

the former. This claim is factually incorrect: in Remark III in [2], it
is explained that the rate of the algorithm in [2] is not 1− δλ2, but(

λ2

λ3

) 1
N

(
1− δλ2

1− δλ3

) N
N−1

(8)

and that this is equal to 1−δλ2
1−δλ3

when N → ∞. This is indeed the
same rate as in [1], as the latter is a special case of [2] with N →∞.

Correction 2: In Section V.C* in [1], Liu et al. state that their
method “involves algebraic connectivity estimation and Fiedler vector
computation, while [2] only focus on the latter”. This is an incorrect
statement: in [2], each node also obtains an estimate of the algebraic
connectivity, as mentioned in Remark V in [2].

Correction 3: In [1], Liu et al. state that the algorithm in [2] is
“centralized because of the need to designate a global beacon node”.
This is incorrect, as this beacon node does not affect the distributed
nature of the algorithm. Its role is to disseminate a network-wide
rescaling factor, using a simple flooding protocol. Any arbitrary node
can act as a beacon node, and this can be negotiated using simple
distributed protocols, e.g., based on a random number generator and
a minimum-consensus algorithm. This selection only happens once
during initialization, and a (neighboring) node can immediately take
over its role in case of a node failure. In fact, the triggering event in
[1] can also be viewed as a particular way to select a beacon node.

REFERENCES

[1] H. Liu, X. Cao, J. He, P. Cheng, C. Li, J. Chen, and Y. Sun, “Distributed
identification of the most critical node for average consensus,” IEEE
Trans. Signal Processing, vol. 63, no. 16, pp. 4315–4328, Aug 2015.

[2] A. Bertrand and M. Moonen, “Distributed computation of the Fiedler
vector with application to topology inference in ad hoc networks,” Signal
Processing, vol. 93, no. 5, pp. 1106–1117, May 2013.

[3] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems and Control Letters, vol. 53, no. 1, pp. 65 – 78, 2004.



3

[4] A. Bertrand and M. Moonen, “Topology-aware distributed adaptation of
Laplacian weights for in-network averaging,” in Proc. European signal
processing conference (EUSIPCO), Marrakech, Morocco, Sep. 2013.

[5] A. Ghosh and S. Boyd, “Growing well-connected graphs,” in Proc. IEEE
Conference on Decision and Control, Dec. 2006, pp. 6605–6611.

[6] P.-Y. Chen and A. Hero, “Local Fiedler vector centrality for detection of
deep and overlapping communities in networks,” in Proc. IEEE Int. Conf.
Acoustics, Speech and Signal Processing, May 2014, pp. 1120–1124.


