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Abstract—In multiple speaker scenarios, the so-called linearly
constrained minimum variance (LCMYV) beamformer is a pop-
ular microphone array-based speech enhancement technique, as
it allows minimizing the noise power while maintaining a set of
desired responses towards the different speakers. In this paper,
we address the algorithmic challenges arising in the application
of the LCMV beamformer in so-called wireless acoustic sensor
networks (WASNs), which are a next-generation technology
for audio acquisition and processing. We review three optimal
distributed LCMV-based algorithms, which compute a network-
wide LCMV beamformer output at each node without central-
izing the microphone signals. Optimality here refers to the fact
that the algorithms theoretically generate the same beamformer
outputs as in a centralized realization where a single processor
would have access to all the signals. We derive and motivate the
algorithms in an accessible top-down framework that reveals the
underlying relations between them, as well as their differences.
We explain how these differences result from their different
design criterion (node-specific versus common constraints sets),
as well as their different priorities with respect to communication
bandwidth, computational power, and adaptivity. Furthermore,
although the three algorithms were originally proposed for a
fully-connected WASN, we also explain how they can be extended
to the case of a partially-connected WASN, which is assumed to
be pruned to a tree topology. Finally, we discuss the advantages
and disadvantages of the various algorithms.
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I. INTRODUCTION

A general problem of interest in the field of speech pro-
cessing is to extract a set of desired speech signals from
microphone recordings that are contaminated by interfering
speakers or other noise sources in a reverberant enclosure. By
exploiting the spatial properties of the speech and noise sig-
nals, array-processing techniques can significantly outperform
single-channel techniques in terms of improved interference
suppression and reduced speech distortion, especially in sce-
narios with non-stationary noise sources (such as interfering
speakers).

A family of array-processing techniques, known as beam-
forming, typically performs a linear filter-and-sum operation
on the microphone signals, where the filters are optimized
according to certain design criteria [1]-[3]. In classical speech
beamformer (BF) setups, a microphone array is placed some-
where within the enclosure, preferably close to the desired
speakers (as in mobile phone or personal computer applica-
tions [4]). In this case, the received signal-to-noise ratio (SNR)
and direct-to-reverberant ratio (DRR) are often sufficiently
large, enabling the BF to obtain adequate performance. How-
ever, in applications where the desired sources are far away
from the array, or if the array contains too few microphones to
obtain the required speech enhancement performance, it may
be useful to add additional microphone arrays at other places
within the enclosure to collect more data over a wider area.

Recent technological advances in the design of miniature
and low-power electronic devices enable the deployment of
so-called wireless sensor networks (WSNs) [5]-[7]. A WSN
consists of autonomous self-powered devices or nodes, which
are equipped with sensing, processing, and communicating
facilities. The WSN concept is quite versatile and has ap-
plications in environmental monitoring, biomedicine, security
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and surveillance. In this paper we consider WSNs designed
for acoustic signal processing tasks, often referred to as
wireless acoustic sensor networks (WASNSs) [8], where each
node is equipped with one or more microphones. WASN
allows to deploy a large number of microphone arrays at
various positions, and can be exploited in hearing aids [9]-
[11], (hands-free) speech communication systems [12]-[14],
acoustic monitoring [15]-[20], ambient intelligence [21], etc.

Alongside their numerous advantages, WASNs introduce
several challenges, in particular related to the limited per-node
energy resources, since the finite battery life constrains the
communication and computational energy usage at each node.
These energy limitations, combined with the fact that each
node has access only to partial data, require special attention
when developing WASN algorithms. These algorithms can
be either distributed, to reduce the wireless data transfer
and to share the processing burden between multiple nodes,
or centralized, where all the data is transferred to a so-
called fusion center (FC) for further processing. A distributed
approach is typically preferred in terms of energy consumption
and scalability (or in absence of a powerful FC), although the
algorithm design is much more challenging, especially when
pursuing a similar performance as in a centralized procedure.

Distributed BF or speech enhancement algorithms typically
rely on compression techniques to minimize the data that is
exchanged between the nodes. However, applying straightfor-
ward signal compression methods on the microphone signals
(at each node independently) usually results in a subopti-
mal BF performance. Moreover, common speech or audio
compression methods introduce distortion that may destroy
important spatial information, and render the beamforming
process useless.

Several distributed BFs or speech enhancement algorithms
have been proposed in the literature, ranging from heuristic or
suboptimal methods [12], [22]-[24] to algorithms for which
optimality can be proven [9]-[11], [25]-[28]. In this context,
‘optimality’ refers to the fact that the algorithm obtains the
same BF outputs as its centralized counterpart algorithm, i.e.,
as if each node would have access to the full set of microphone
signals. In this paper, we confine ourselves to the review of
optimal distributed minimum-variance BF algorithms where
nodes share (compressed) signals and parameters, and where
the general aim is to achieve the same speech enhancement
performance as obtained with a centralized minimum-variance
BF. We mainly focus on the BF algorithm design chal-
lenges, and we disregard several other (but equally important)
challenges, such as synchronization [29]-[32], node subset
selection [33], [34], topology selection, distortion due to audio
compression [22], [35], [36], packet loss, input-output delay
management [37], etc.

We review three state-of-the-art distributed minimum-
variance BF algorithms, namely the distributed LCMV (D-
LCMV) BF [26], the linearly-constrained distributed adap-
tive node-specific signal estimation (LC-DANSE) algorithm
[38], and the distributed generalized sidelobe canceler (GSC)
(DGSC). Although these algorithms were originally proposed
independently from each other, they are implicitly related as
they are based on a similar LCMV optimization criterion.

However, despite this common underlying BF design criterion,
the actual relation between the algorithms is not immediately
apparent from the original publications [26], [27], [38], as they
start from different problem statements and algorithm design
principles. For example, while the GSC can be derived from
the LCMV BF in a centralized context, there is currently no
analogy in which the DGSC in [27] is derived from the D-
LCMV BF in [26]. In fact, the two algorithms even have
a slightly different communication cost (while theoretically
achieving the same BF solution), and it is unclear where and
why this discrepancy originates.

Therefore, a first goal of this review paper is to provide a
top-down description of these algorithms, in a way such that
they can be described within the same generic framework. This
generic framework allows to introduce the three algorithms
in an accessible way, while also revealing the important
similarities between them. The common framework in which
the three algorithms are described then also explains how they
are fundamentally different at certain crucial points, and we
compare the advantages and disadvantages that result from
these differences. Furthermore, we will explain why the DGSC
cannot be straightforwardly inferred from the D-LCMV BF
(as opposed to the centralized case), and why there is a
discrepancy between them in terms of communication cost.

Finally, it is noted that the algorithms were originally
proposed for a fully-connected WASN. However, the generic
framework in which we describe the three algorithms is very
similar to the framework in [25], which has been extended
in [28] to partially-connected networks with a tree topology.
Based on this insight, and the fact that all three algorithms fit
in this same framework, we also briefly explain how they can
be extended towards such a tree-topology network, relying on
similar techniques as in [28].

It is noted that, since this paper mainly focuses on theo-
retical insights and algorithm descriptions, it does not include
experimental or simulation results. However, extensive simu-
lation results for the three reviewed algorithms can be found
in [26], [39] (for D-LCMYV), [38] (for LC-DANSE), and [27]
(for DGSQO).

The outline of this paper is as follows. In Sec. II,
the closed-form and GSC-form of the centralized LCMV
BF are introduced. In Sec. III, three distributed minimum-
variance BF algorithms are presented for the case of a fully-
connected WASN. These algorithms are then extended towards
a partially-connected WASN in Sec. IV. In Sec. V, we
conclude the paper with a systematic comparison between the
various distributed minimum-variance BFs.

II. CENTRALIZED MINIMUM-VARIANCE BEAMFORMING

In this section we review the centralized LCMV BF as well
as the GSC, where it is assumed that all microphone signals
are available in a central processing unit or FC.

A. Problem Formulation

We consider a scenario where the sound-waves of S speak-
ers, some desired and some interfering, are propagating in a
reverberant enclosure and picked up by M microphones. The
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M x 1 vector y(I, k), containing the M microphone signals
observed in a certain time-frame [ and frequency-bin k, is
given in the short-time Fourier transform (STFT) domain by:

y(l,k) =H(k)-s(l,k) + n(l, k) (1

where s(l, k) is the S x 1 vector of speech signals, H(k) de-
notes an M x .S mixing matrix, containing the acoustic transfer
functions (ATFs) from each speaker to each microphone, and
n(l, k) denotes the noise. In the sequel, all derivations refer to
a single frequency-bin, and are valid for all other frequency
bins, unless stated otherwise. For the sake of conciseness, we
remove the time-frame and frequency-bin indices [ and k, i.e.,
we write

y=H-s+n 2)

and treat y, s, and n as stochastic variables. The ATF matrix
is comprised of S columns

H= [ h hs | 3)
where h, denotes the M x 1 vector of ATFs relating the sth
speaker and the microphone array, for s =1,...,5.

The noise n corresponds to all noise sources in the enclosure
(which are not part of s). The noise components can be
classified as: 1) spatially white, thermal noise; 2) directional,
coherent noise; 3) diffuse noise. The covariance matrix of the
noise is denoted:

Rin £E [Il ’ nH} S

where E [e] denotes the expectation operator and (o)H denotes
the conjugate transpose operator. In the sequel, it is assumed
that R,,,, has full rank, which is usually satisfied in practice
due to the presence of mutually uncorrelated microphone
noise. In practice, R,,,, can be estimated by means of temporal
averaging over noise-only segments, thus requiring a detection
algorithm to identify the signal segments during which the
desired speakers are silent. It is noted that the design of a
voice activity detection mechanism is a research topic on its
own, and is outside the scope of this paper.

We assume that the frame length is much larger than
the room impulse response (RIR), such that the convolution
between a RIR and a source signal in the time domain is
(approximately) equivalent to the multiplication of the corre-
sponding transformations in the STFT domain. Furthermore,
we assume that the scenario is quasi-static, hence the noise
spectrum and the ATFs are quasi-time-invariant, i.e., they
change at a slow pace (or not at all).

B. Centralized LCMV BF

The problem at hand is to design a BF, w, such that the
output noise power E [|[w”n|?] = wR,,,w is minimized,
while adhering to linear constraints which maintain desired
responses for the speech signals. This is referred to as LCMV.
Formally, the optimization criterion is defined as:

W £ arg r%é,anR,,mw; st Hiw =f 5)

where f is an S x 1 vector of desired responses for the S
speech signals. Typically, this vector is binary, where values

of 1 and 0 are assigned to desired and interfering speakers,
respectively. A closed-form solution to (5) can be derived [1]
by using Lagrange multipliers and is given by:

nn

w=R.'H (HHR*H) e (6)

Let us consider the signal at the output of the LCMV BF,
denoted as

dawlly. (7

Substituting (2) into (7), and considering the constraints in (5),
yields

d=f"s+wn. (8)

From the first term in (8), we see that the response for
the speech signals is controlled by the response vector f,
which extracts desired speakers and suppresses interfering
speakers. Furthermore, if f is binary, the BF also performs
de-reverberation. The remaining degrees of freedom are then
used for the minimization of the output noise variance corre-
sponding to the second term in (8).

Note that the construction of a closed-form solution requires
knowledge of the speech signals’ ATFs. In practice, these
ATFs are unknown, and estimating them remains a cumber-
some task. However, if we remove the dereverberation require-
ment, and only focus on the first two problems, i.e., noise
reduction and interfering speakers suppression, it is possible to
use a different constraints matrix H that can be estimated on-
line without the need for an a-priori calibration phase. In [40]
(single speaker scenario) and [41] (multiple speakers scenario),
it has been shown that this can be accomplished by modifying
the constraints set in the following way. For each desired
speaker, one of the microphones is assigned as a reference
microphone, and its corresponding constraint is modified such
that its desired response equals the ATF corresponding to this
reference microphone. The modified constraints set is therefore

hT,7‘fl
[ by hy |"w=| )
Srfs
or, equivalently
H
(B e [wer 10

where h, , denotes the ATF from the sth speaker to its refer-

ence microphone and }Ei denotes the relative transfer function
(RTF) of the sth speaker. Various estimation procedures exist
for estimating the RTFs, see [42] for a survey on the topic.
Moreover, it can be shown that the estimation of the RTFs can
be relaxed to merely two subspace estimation problems (one
for the desired speakers and one for the interfering speakers)
[43].

For the sake of brevity and ease of notation, in the sequel,
we use the ATFs (assuming these are known, e.g., through
a prior calibration phase). However, they can be exchanged
with their respective RTFs, as described above, such that the
LCMYV BF can be computed without prior knowledge of the
ATFs [41], [43].
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Fig. 1. Block scheme of a GSC-form implementation of the LCMV BF.

Finally, it is noted that the LCMV BF for a single-speaker
scenario (S = 1), reduces to the so-called minimum variance
distortionless response (MVDR) BF, which is also a limit case
of the speech distortion weighted multi-channel Wiener filter
(SDW-MWF) [44].

C. Centralized GSC

An alternative to the closed-form solution in (6), is the
GSC form [45], depicted in Fig. 1. This structure separates the
BF, w, into two components: 1) the quiescent response BF,
denoted a, which is responsible for maintaining the constraints
set; 2) the blocking matrix (BM) and the noise canceler
(NCO), denoted B and p respectively, which are responsible for
minimizing the output noise power. Separating the treatment
for speech signals and noise components is advantageous for
several reasons: 1) in time-varying environments, variations in
the noise field affect only part of the BF; 2) the constrained
minimization of the output noise power is replaced by a
simpler unconstrained minimization, allowing for an efficient
implementation based on adaptive filtering techniques. The
GSC is given by:

w=a—B-p. (11
The quiescent response BF equals
e\ L
alH (H H) £ (12)

such that Ha = f, i.e., a satisfies the constraints set. The
BM is then constructed such that its columns are orthogonal
to the columns of H, i.e., HYB =o0. Indeed, this ensures that
w as defined in (11) satisfies the constraints H%w = f for
any choice of p.

Several methods exist for constructing the BM. For example,
it can be easily verified that H B = 0 when B is chosen as

1
B2 (IMW —H (HHH) HH> :
T
| Tm—syx(m—s) Omr—s)xs | (13)

where I, O are the identity matrix and a zeros matrix, respec-
tively, with noted dimensions. The output of the quiescent
response BF, denoted d,, and the so-called noise reference

signals at the output of the BM, denoted u, are given by
d, 2ally (14a)
u 2By (14b)

such that the GSC BF output is given by substituting (11),(14a)
and (14b) in (7):
d=d, — p"u (15)

The NC is designed to suppress the noise components in the
quiescent response BF output d,, by subtracting the optimal
linear estimator based on the noise-references u. A closed-
form solution for the NC can be found by substituting (11) in
(5) and minimizing over p, yielding

p= (BHR,mB) “'BAR,, A (16)

A more common approach is to update the NC recursively by
a least mean squares (LMS) algorithm [46]:

u(l)d*(1)
Au (1)
where p denotes the step size, A, is a recursively updated

normalization factor which approximates the variance of the
noise reference signals:

A(l+1)=p- X (D) + (1= p) [u@®)]? (18)

and 0 < p < 1 is a forgetting factor. Although applying
a normalized step-size as above is sub-optimal in terms of
convergence rate, it is a practical method for preventing
divergence of the filters [46]. It is noted that p is typically only
updated during noise-only segments, since the desired speech
component may leak through the BM, which may result in
desired signal cancellation.

p(l+1)=p()+pu (17

III. DISTRIBUTED MINIMUM VARIANCE BEAMFORMING
IN A FULLY-CONNECTED WASN

Let us now consider a WASN with J nodes where the set
of nodes is denoted by .7, and where node j € J is equipped
with M; microphones. The total number of microphones is
given as M = ijl M;. The vector of all microphone
signals, y, can be split into J sub-vectors corresponding to
the microphone signals of the individual nodes:

T

y=[yl -¥i] (19)

where (o)T denotes the transpose operator. Similarly to (2),
the microphone signals of node j are modeled as

(20)

where H; are the ATFs from the sources s to the microphones
of node j, and n; is the noise.

As mentioned in Sec. I, a straightforward procedure for
computing an M -channel BF, consists in all nodes transmitting
their microphone signals to a FC (assuming such a FC is avail-
able), followed by one of the centralized BF techniques from
Sec. II. However, this results in a large communication cost
and hence a fast battery depletion at the nodes. Furthermore,
the FC must have sufficient processing power to collect and
process M microphone signals'. If the resulting BF output

yj:Hj-s—Fnj

1t is noted that the computational complexity of LCMV BF and GSC is
O(M?3) (or O(M?) in a time-recursive implementation).
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Fig. 2. Generic block scheme of a distributed BF that is operated in a
fully-connected WASN.

signal should also be locally available at the nodes (as it
is the case in hearing aids [9]-[11]), there is an additional
communication cost to transmit this signal from the FC to the
nodes.

In this section, we discuss three distributed implementations
of the LCMV BF and/or GSC, in which the communication
cost is reduced and in which the computational cost is shared
between the different nodes (removing the need for a powerful
FC). For the sake of an easy exposition, we first consider
the case of a fully-connected WASN in which each node
broadcasts compressed signals to all other nodes.

Fig. 2 shows a generic block scheme of such a distributed
BF implementation. Each node j € J defines two important
local linear operators: a compression matrix V; and a local BF
W;. The compression matrix V; fuses the local microphone
signals into a signal with fewer channels, which is then
broadcast to the other nodes in the network. The local BF W
then takes the local microphone signals and the compressed
signals of all other nodes as an input, and constructs the
desired output signal for node j. We will explain how the
compression matrix V;; is updated from time to time, based
on the BF coefficients from W (indicated by the vertical
dashed arrow in Fig. 2).

This paper will describe the three distributed BF algorithms
in a way such that these two basic operations (and the
interaction between both) are visible in all three algorithms,
i.e., they all fit in the generic block scheme of Fig. 2. This
will reveal the similarities and the differences between the
three algorithms, which are not apparent from the original
publications, in particular between the DGSC and the D-
LCMV BF, despite the well-known equivalence between the
(centralized) GSC and the LCMV BF (see Subsection II-C).

Based on Fig. 2, we will now introduce some notation and
describe the main operations that are performed at a node
J. The Mj-channel sensor signal y; is compressed into an
L;-channel signal z; (with L; < Mj) using the M; x L;
compression matrix V; (to be defined), i.e.,

z; £ Vly, 1)

and the samples of z; are then broadcast to all the other
nodes. Since the network is assumed to be fully connected,

each node then has access to the stacked L-channel signal
T

z= [z] ... z]]", where L = ijl L;. We also define z_;

as the vector z with z; removed, i.e.,

a1, T T T ™7

Z_; = [zl CZG 1 Zjgq - z‘,} . (22)

Node j has access to the signals y; and z_;, which are stacked
in the signal

Vi~ { Z-j } '
It is noted that §j contains z_;, rather than z, as using

the latter would result in linearly dependent channels in y;.
Similarly to (20) and (2), y; is modeled as

(23)

y,=H; s+1, (24)
where (compare with (23))
g ool Hj
H, = { H,_, ] (25a)
n, 2| MW 25b
i, { o ] (25b)
and (compare with (21)-(22))
H, £V/H; (26a)
T
H, ;2[H], ... H] HL .. H]| (26b)
n,, £Vin; (26¢)
T
n, ;= [nfl nsz_1 n;Fj+1 nfj] . (26d)

A node j then applies a local BF Wj (to be defined)
the signals in y; and generates a local BF output signal d;

>3

VV;{ y;- In the general case, Wj and d; are a matrix and a
vector, respectively, to also allow for multi-channel BF output
signals. The arrow going from W to V; in Fig. 2 indicates
that V; depends on the choice of the local BF, as will be
clarified later.

The main questions that are addressed in the sequel are:

1) Is it possible to obtain the centralized BF output (7) at
each node, as if each node would have access to all M
microphone signals in y?

2) If so, how can each node j € {1,...,J} compute a
compression matrix V; and a local BF W that indeed
generates this BF output (7)?

We will answer both questions for two different cases:

1) The case where each node has a common constraints
set, i.e., each node is interested in the same BF output.

2) The case where each node has a node-specific con-
straints set, i.e., each node computes a different BF
output.

The node-specific constraints set (case 2) allows to, e.g., define
a different response vector f at each node to extract a node-
specific subset of the S speakers, or to use a different set of
reference microphones to compute the RTFs in (10). However,
if this node-specific problem statement is reduced to a scenario
in which the constraints sets are the same for all nodes (case 1),
a much stronger compression can be achieved, as we will show
in Subsection III-A (for the LCMV BF) and in Subsection
III-C (for the GSC).
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TABLE I
D-LCMYV BF IN A FULLY-CONNECTED WASN

Based on the block scheme in Fig. 2, perform the following sequential
updating procedure:
1) Initialization:
o Initialize v; and W, V j € J, with random entries.
e At each node j € J: set sz — vHHj (see (26a))
and broadcast the entries of H, ; to alf the other nodes.
o Initialize the updating node as q < 1.
2) At the updating node g:
e Collect N new noise-only observations of yq such that
a reliable estimate of Ry gfig Can be computed.

o Construct fIq according to (25a).
o Update the local LCMV BF w as in (28).

o Update vq «— [IquMq Oy x(J—1) | Wq-
e Update H, < vf H, and broadcast the entries of the
updated matrix H . O all other nodes.
3) ¢« (¢ mod J)+1.
4) Return to step 2.

Remark: 1t is noted that the above procedure only describes the
updating process for the compressors v; and local BFs w;, which
happens in a sequential fashion (one node at a time). On top of that,
the nodes continuously exchange signals and produce local BF outputs
(in parallel), according to the signal flow illustrated in Fig. 2.

A. Distributed LCMV with a Common Constraints Set

In this Subsection, we reduce V; and Wj in Fig. 2 to
vector variables v; and v~vj, respectively, i.e., they both have a
single-channel output signal z; and d;, respectively. We define
a partitioning of the centralized LCMV BF w, based on the
subsets of microphone signals corresponding to the different
nodes, i.e,

Wi
27

'“A’ =
W
such that viny = Z}]:1 wfvfyj. It is then easy to see from

T
Fig. 2 that, if we set v; = w; and w; = |W, |1 ... 1} ,
Vj € J, the local BF output signal d; = w;'y; will be equal
tod = wi y, i.e., the output of the centralized LCMV BF
defined by (7). Note that in this particular setting each node
broadcasts a single-channel signal, i.e., L; = 1 and L = J.
This results in a reduction of the communication cost at node
J with a factor M, or a reduction with a factor M /J in total.

The above shows that the centralized LCMV BF output can
be obtained in all nodes if the v;’s and w;’s are properly cho-
sen. This also indicates that the first M entries (corresponding
to the local microphone signals y; at node j) of the local BF
w;, should be copied into the compressors v;, which was
already suggested earlier (see also the dashed arrow in Fig.
2).

In practice, we usually do not have access to the parameters
in (27), since the LCMV BF (5) cannot be computed a priori
if the network-wide noise covariance matrix R,,,, is unknown
or if it changes over time. Remarkably, it turns out that the
optimal setting for v; and w; is automatically obtained by
iteratively computing w; at each node j € J as a local LCMV

BF based on y;, i.e.,

~ . H ~H
W =argminw Rin,wy st Hy w=1 (28)
where
~ ~H
Rs,n, 2 E |5, -0 (29)

The latter covariance matrix can be estimated from y; during
noise-only segments. The first M entries of the local BF w;
are then copied into v;, i.e., setting

Vi [IMj X M; OM_jX(Jfl)} W . (30)

In this way, a node j € J continuously adapts w; and v; to
the changes in the v,-s at the other nodes, for ¢ € J\{j}.
This results in the distributed-LCMV (D-LCMV) BF, which
is defined in Table I.

In [26], it has been proven that, under some technical condi-
tions (details omitted), this updating scheme indeed converges
to a stable operation point. In this stable operation point, the
local BF output d; = v~vf y; for each node j € J is then
indeed equal to WHy, i.e., the centralized LCMV BF output
(31) as if each node had access to all the microphone signals
in y. The technical conditions mentioned earlier are usually
satisfied in practice if the number of nodes is substantially
larger than the number of sources, i.e., J > S. As a rule of
thumb, we typically require that J > 2 - S.

Remark I: 1t is noted that the algorithm in Table I also
requires the updating node ¢ to broadcast the 1 x .S row vector
H,,. The other nodes need this information to know how the
constraints matrix H is compressed by the other nodes. How-
ever, this additional communication cost is usually negligible
compared to the transmission of (at least) N samples of z;,
vV j € J, in between two updates.

B. Distributed LCMV with a Node-specific Constraints Set

In this subsection, we assume that each node aims to
compute a node-specific LCMV BF, where the constraints set
is different for each node, i.e., for node j the (centralized)
LCMYV BF is defined by

w2 argmin w/ R, w; s.t. Hw = f; (31)
w

where f; is a node-specific desired response vector. The node
index j in the superscript of W’ refers to the node-specific
nature of the (centralized) LCMV BF, and we denote vAvfz as
the component of w’ that is to be applied to the microphones
of node ¢ (similar to (27)).

Note that, since f; in (31) is allowed to be different at
each node j € J, an interfering speaker for one node can be
a desired speaker for another node and vice versa. Further-
more, when considering (9), this node-specific definition of
f; also allows each node to choose its own set of reference
microphones. This can also be viewed as if each node uses a
different H defined by different RTFs, as in (10). This allows
to estimate the speech signals as they impinge on the node’s
local (reference) microphones, rather than on a reference
microphone in another node, which has two advantages:

1) In some applications, e.g., in binaural hearing aids [9]-

[11] or in localization tasks [47], it is important to
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preserve the microphone-specific localization cues of the
desired speakers in the local BF outputs.

2) It alleviates the requirement to transmit a (shared) refer-
ence microphone signal between nodes to compute (10)
at each node.

For the sake of an easy exposition, we will assume here that
H is the same for all nodes (as in (9)), i.e., it either contains
the actual ATFs, or the RTFs defined by one set of .S reference
microphones. For more details on the case where H is defined
by node-specific RTFs, we refer to [38].

We actually consider a generalization of (31), in which each
node j has K different BF outputs, such that w’ becomes
an M x K; matrix W7, and f; becomes an S x K desired
response matrix F;, where each column defines a different
LCMV BF. The problem (31) can then be generalized to

W/ £ arg min Tr{WHR,,W}; st HIW =F; (32)

where Tr{e} denotes the trace operator. An interesting case
occurs when we choose K; = S, Vj € J. Note that this
is without loss of generality (w.l.o.g.), i.e., if K; < S, node
j can define S — K additional (auxiliary) LCMV BFs, from
which the outputs are then merely discarded. From the closed-
form solution (6) with f replaced with F, it can be seen that
the solutions at all the nodes are then the same up to S x S
transformation matrices, i.e.,

ViqeJ: W =WIAj, (33)

with A, = (F,) "' F; (assuming F; is invertible, ¥ j € 7).
Similarly to (27), we partition the matrix W7 into J sub-
A A_s T g
WIT . WIT| such that W/ Hy =
Z'qul W{I " ¥4 From (33), it is then seen that the solution
space can be parameterized as

matrices, i.e, WJ =

WA
W3A jo

VieJ: Wi= (34)

WA,
Therefore, based on Fig. 2, if we set V; = VV? and Wj =

as T
(WIT AT AT AT ATV € T the
local BF output signal d; will be equal to d; = Wily je.,
the output of the centralized LCMV BF defined by (32). Note
that in this particular setting each node broadcasts a signal
with L; = S channels. If S < Mj, this results in a reduction
of the communication cost.

The above shows that the node-specific LCMV BF output
can be obtained in all nodes if the V;’s and W ’s are properly
chosen. Again, this also indicates that the first M, rows
(corresponding to the local microphone signals y,; at node
7) of the local BF Wj, should be copied into the compressors
V;.

Since the parameters in (34) are unknown in practice and
may vary over time, we have to design an updating procedure
to compute them. Similarly to the case of the D-LCMV
algorithm, it turns out that the optimal setting for V; and

W; is automatically obtained by iteratively computing Wj
at each node 7 € J as a local LCMV BF based on §j, ie.,
(compare to (28)-(30))

W, = arg mi H st.H, W=F
Wj =arg H\l}%IDTI‘{W RﬁjﬁjW}, S.t. 4 W = j 35)
and then setting

Vi — [Tag;x s, Onsy x(1—1)s) W, . (36)

This results in the so-called linearly constrained distributed
adaptive node-specific signal estimation algorithm (LC-
DANSE)? algorithm [38], which is essentially equivalent to
the algorithm in Table I, except for the fact that the vector
variables v; and W now become matrix variables V; and
W, and the fact that W; is computed according to (35)
instead of (28).

In [38], it has been proven that this updating scheme indeed
converges to a stable operation point. In this stable operation
point, the local BF output d; = WJH y; for each node j € J

H

is then indeed equal to (W] y, i.e., the node-specific
LCMV BF output (31) as if node j had access to all the
microphone signals in y. Despite the fact that the descriptions
of the D-LCMYV BF and LC-DANSE are almost identical, their
dynamics and convergence proofs are actually very different
(except if S = L; =1).

It is noted that the possibility to define node-specific BFs
in the LC-DANSE algorithm comes at a price, namely an
increased communication cost compared to the D-LCMV BF,
in particular in scenarios where the number of constraints S
is large. Yet, the increased communication cost also yields
several other advantages:

1) The local BF input signal y; has M; + S - (J — 1)
channels, compared to M; + J — 1 channels in the D-
LCMV BF. Although this increases the computational
complexity of the local BF, it significantly increases
the degrees of freedom per update at each node, which
typically results in a much faster overall convergence.

2) Convergence to the centralized LCMV BF is always
guaranteed, whereas the D-LCMV algorithm requires
some technical conditions to be satisfied.

3) If RTFs are used to define H in the D-LCMYV BEF, all
nodes should in principle use the same reference mi-
crophone, requiring an additional communication cost®.
This is not required in the LC-DANSE algorithm if
node-specific reference microphones are used.

Remark II: Similar to the D-LCMV algorithm, the LC-
DANSE algorithm requires the updating node g to broadcast
the S x S matrix qu, which yields an additional com-
munication cost that is usually negligible compared to the
transmission of the samples of the z; signals (see Remark
I). Furthermore, if RTFs are used in the constraints sets of the
LC-DANSE algorithm, H, can be (re-)estimated directly from

2The distributed adaptive node-specific signal estimation (DANSE) algo-
rithm was initially proposed as an unconstrained noise reduction algorithm
[25]. The LC-DANSE algorithm can be viewed as an extension of the DANSE
algorithm to also include linear constraints, resulting in an LCMV approach.

3For the sake of completeness, it is noted that this additional communication
cost can be circumvented by introducing virtual references [39].
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Fig. 3. High-level block scheme of the DGSC algorithm.

the signals in y @ without the need to broadcast qu after each
update (details omitted) [38].

Remark I11: The algorithm in Table I is adaptive in a block-
based fashion, i.e., a single time-recursive update is performed
for each new block of N samples. Due to the sequential
updating rule, only one node is allowed to update in each
block, i.e., a node can only update once after every J - N
samples collected at its microphones. This may result in a slow
tracking or adaptation speed if the WASN has many nodes. If
all the nodes were to update simultaneously (once after every
N samples), it is explained in [38] that some memory in the
update of V, has to be added, i.e.,

Vi, (1 =)V, +a [, <, O, xs-1)s) Wy 37)

with 0 < a < 1. If the relaxation parameter « is sufficiently
small (usually o« = 0.5 is a good choice), the LC-DANSE
algorithm also converges when nodes update simultaneously
[38]. This typically allows the WASN to adapt more swiftly
to changes in the acoustic environment. Another (complemen-
tary) way to improve the tracking performance at each node
is to let W, V5 € J, update on a per-sample basis, which
does not change the long-term dynamics of the algorithm as
long as 'V is still updated on a per-block basis [48].

C. Distributed GSC

In this Subsection, we derive a distributed GSC in which
each node can update its parameters on a per-sample basis to
swiftly adapt to changes in the scenario. In Subsection III-A
and III-B, we have described two block-adaptive distributed
LCMV BF algorithms, in which each iteration involves the
computation of a local LCMV BF W ;. This seems to imply
that a distributed GSC can be straightforwardly obtained by
replacing this local LCMV BF by a local GSC implementation,
and by updating both W; and V; on a per-sample basis.
However, after each update of V; in LC-DANSE or D-LCMV,
node j broadcasts an updated version of the compressed
constraints matrix H,, = Vf H; (see Remarks I and II), and
this leads to an extremely high communication cost if V is
updated on a per-sample basis.

To avoid this, we need to find a way to ensure that the
network-wide constraints are always satisfied in the local BF

Compression

Y; = z;
Transmit signal
(copied from Wj)

d

J

z Remove | ,
z. 7 BF output

Local beamformer

Fig. 4. Low-level block scheme of v; and VVJ- blocks in the DGSC algorithm
at the jth node.

of each node, without the need to transmit V ;-dependent
parameters between nodes. To this end, we again abandon the
node-specific preferences (each node uses the same constraints
set, as in Subsection III-A), and set L; = 1, i.e., v; and v~vj are
assumed to be vector variables and each node only broadcasts
a single-channel signal z; = vfyj.

First, it is observed that, if we ensure* HI'v; = 1/J - f,
Vj € J, then the sum of all the z;’s in Fig. 2 can be viewed
as the output of a BF that satisfies the constraints, i.e., if we
choose

1 (38)

wi=[vi 1 ... 1
then the local BF output d; = {fvf y; will always correspond to
the output of a network-wide BF that satisfies the constraints.
In this case, the nodes do not have to know each other’s
compressed H; matrix to locally satisfy the network-wide
constraints. Rather than using the D-LCMV update rule (28)

to update w;, a new update rule can then be defined according
to the above strategy:

~ mw R ~
W; —argmwlnw 77 W

1
S.t. e H;IV = jf

oW:[VT 1 ... 1]T

(39)
Note, that the optimization in (39) is actually performed over
the vector variable v. The solution of (39), can be implemented
as a local GSC structure in all nodes V j € J, without the

requirement to transmit H,, after each update, as will be
explained later.

However, when using v~vj and v; defined by (38)-(39) in
Fig. 2 (for all j € J), it follows from the first constraint in
(39) that the noise variance of the local BF output d; = \’fvf%

“For the sake of an easy exposition, we assume here that M. ;> S and H;
is full rank. In the derivation of the DGSC in the sequel, this is guaranteed
by introducing additional broadcast signals, referred to as ‘shared signals’.
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can never be smaller than

min w R, w 40)
w
HY o .- o0 £
H : 1 f
s.t 0 H, ’ W = 71 41)
: .0 :
o ... o HY f

Note that the constraints matrix has dimension (S - J) x M,
which means that w only has M — S - J degrees of freedom
left to minimize the objective function (40). This, of course, is
highly sub-optimal compared to the M —.S degrees of freedom
utilized in the centralized LCMV (5) or in the NC path of the
GSC form.

However, this loss of degrees of freedom can be compen-
sated for by providing each node with S additional input
signals, referred to as shared signals. Each node will use these
shared signals together with its local microphone signals to
compute a local GSC which are then combined to eventually
result in the so-called DGSC [27], as explained next.

1) DGSC Definition: The S shared signals will be provided
by one or more nodes in the WASN. Denote by r; the shared
signals broadcast by node j. This is an S;-channel signal,
where 0 < §; < S. Note that S; = 0 means that r; is an
empty vector such that node j does not broadcast any shared
signals. The channels of r; are linear combinations of the
microphone signals at node j, which can be formulated as

r; £ Dy, (42)
where D; is an M; x S; matrix (to be defined). We use a
similar notation as for the z;-signals (compare with (21)-(22)),
i.e.,

T ... ¢T ]T

r2 [ v, 43)

and the S —S; shared signals that are constructed by all nodes
other than j are denoted

TR I S T @
Define the extended input vector at node j by stacking y; and

r_;, resulting in an M; = M; + S — S; dimensional vector

(45)
where the (e) notation has a similar meaning as the (T)
notation in (23). Similar to (24), the extended input signals
are modeled as

y;=H;-s+n; (46)

where the extended input ATF matrix and noise at node j are
defined as (compare with (25a)-(25b))

4 o | Hj

0, 2 [ Hy } (472)
n, 2| M 47b
A, [ o } (47b)

respectively, with

Hy, £D;'H; (48a)
Hy ;2 {Hﬁ .. HE_ HE H{J (48b)
nr, 2D!'n; (48¢)

T
nr_; £ {na nfjfl ngjﬂ ngl} . (48d)

The DGSC block scheme is given in Fig. 3, which extends
the original block scheme in Fig. 2. When comparing both
figures, we see that the compression vector v; is now denoted
as v; since it operates on the extended input y ;, such that the
broadcast signal z; is

z 2vlly, (49)
and the input y; to the local BF w; is
~ _ T
IR )

Although the transmission of the shared signals results
in a higher communication cost, it can be shown (see [27]
for a complete proof) that this approach provides sufficient
additional degrees of freedom at each node such that the J
local GSC implementations of

o mw R ~
W; —argmwlnw 77 W

_ 1
S.t. ® Hfffj = jf
ew=[v" 1 .. 1] (51)
in nodes 5 = 1,...,J working in parallel achieve the same

output noise variance as a centralized GSC. The final output
of the DGSC is given by summing all the compressed output
signals, i.e.,

J
d2 Z zj (52)
j=1
=Wy, . (53)

Similar to (11), the v;-part of the local BF w; at node j
(see (51)) corresponds to a GSC, i.e.,

(54)

v; £a; — B;p,
where a;, Bj, and p, are the quiescent response BF, the BM
and the NC filter, respectively. The quiescent response BF and
the BM are computed from the extended constraints matrix H;
(compare with (12) and (13)):

_ _ _ -1
a 2 H; (H/H;) f (55)
and
BJ = (IM7><M, Hj (H] HJ) H] )
[ Lat,—s)x(i1,-5)  O(nt,-s)xs } (56)
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The output of the quiescent response BF, denoted z, ;, and
the noise reference signals at the output of the BM, denoted
u;, are given by:

(57a)
(57b)

20 28]y,
_ = H_
a; éBj Yj-
As in the centralized GSC (see (17)), the NC can be updated
recursively by an LMS algorithm:
u; (1) d* (1)
Aug (1)
where p is the step size, A, ; is a recursively updated normal-

ization factor which approximates the variance of the noise
reference signals by:

p; (I+1)=p; () +p (58)

M —
Moy (1) =y (0 + (1 0) 37—
and p is a forgetting factor. It is assumed that the variances
of the noise reference signals in 41; are equal in all nodes,
hence the total variance of the actual M — S noise reference
signals in u is approximated by the variance at the jth node
multiplied by the factor 1\17% :‘Z. It is important to note here that
the adaptive NC filters are controlled by d as defined in (52)-
(53), i.e., the output signal of the local BF w; defined in (38).
It is also shown in [27] that such J concurrent LMS updates
are equivalent to a single centralized LMS update, alleviating
the need for a coordinate-descent control mechanism and
improving convergence time. An intuitive explanation for
the latter is that the LMS update is inherently parallel, and
performed for different filter components independently, given
the error signal. A low-level block-diagram of the v; and
w; blocks in the DGSC is depicted in Fig. 4. It is noted
that the compressed signal z; can also be extracted from the
GSC inside the w; block, i.e., in principle the compression
vector v; does not have to be constructed explicitly (it is here
merely added for the sake of consistency with the generic
block scheme in Fig. 2).

2) Shared Signals Construction: Several approaches exist
for the construction of the shared signals r. The only limitation
is that the covariance matrix of the noise components in r has
full rank (i.e. rank S), and that the stacked S x S matrix
[H%ﬂ1 H;}]T has full rank. In [27] it is suggested to use
a subset of the microphone signals as shared signals. Note
that r will have a full rank noise covariance matrix if each
microphone is used at most once as a shared signal.

As mentioned in previous sections, ATFs are usually un-
known, and a common approach is to use RTFs instead. In this
case shared signals can also serve as a common set of reference
microphone signals to compute RTFs at each node. Therefore,
in order to make the estimation procedure of RTFs more
robust, microphone signals with highest SNRs are chosen.

3) Summary: The DGSC is a distributed version of the
GSC satisfying a common constraints set, where each node
implements a local GSC. The DGSC has several desirable
properties: 1) in time-varying environments, variations in the
noise field affect only part of the BF; 2) it has a reduced
computational cost when low-complexity LMS updating is

la;)* (59

Fig. 5. Example of a network with a tree topology.

used; 3) it satisfies the constraints set at each of the local
GSCs, which alleviates the need to broadcast compressed
constraints matrices (or to locally re-estimate the RTFs from
y ; during the convergence of the algorithm). However, in order
to maintain sufficient degrees of freedom for convergence to
the optimal BF, we require .S’ additional broadcast signals (the
shared signals). Therefore, a total of J + S single-channel
broadcast signals are required by the algorithm (compared to
J single-channel signals in the D-LCMV [26]).

IV. DISTRIBUTED MINIMUM VARIANCE BEAMFORMING
IN A WASN WITH A TREE TOPOLOGY

In this section, we explain how the distributed BF algo-
rithms of Sec. III can be extended to operate in a WASN
where each node can only communicate with a subset of
(nearby) nodes. An ad-hoc network topology defined by, e.g.,
a nearest-neighbor criterion, typically contains many cycles in
the network graph, i.e., paths through the network that start
and end in the same node. Although such cycles are usually
not a problem in (iterative) distributed parameter estimation
algorithms [49]—[51], they typically cause major problems in
distributed signal estimation or spatial filtering algorithms,
such as the distributed BF algorithms presented in Sec. IIL
The signal fusion process in a distributed BF consists of a
distributed linear filter-and-sum operation, which happens in a
non-iterative® fashion. Cycles in the network graph introduce
feedback paths and causality issues in this non-iterative signal
fusion process, and may change the dynamics of the algorithm
in an uncontrollable fashion [28].

One way to deal with this issue is to use an iterative signal
fusion procedure from the family of distributed parameter esti-
mation algorithms, such as gossip or consensus iterations [52],
[53]. However, such an approach inevitably transforms the in-
network signal fusion process into an iterative process, which
results in a large and non-scalable per-node communication
cost which grows with the network size. In order to avoid
the latter, we use the approach of [28] where the feedback
problem is managed by means of topology control. In this case,
it is assumed that the network has been pruned to a spanning
tree, i.e., we remove links in the network until there are no

SDespite the fact that the BF coefficients are estimated iteratively, the actual
fusion of the signal samples is indeed a non-iterative process since each sample
is only transmitted once. The latter is important to obtain a scalable per-node
communication cost.
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cyclic paths anymore (without disconnecting any nodes from
the network), which eventually results in a tree topology, as
the one depicted in Fig. 5. Although constructing an arbitrary
spanning tree in an ad-hoc network is not difficult, it becomes
a cumbersome problem if the spanning tree has to satisfy
a specific optimality criterion, e.g., to minimize the network
delay, the overall transmission energy, etc.

In this section, we will demonstrate that a tree topology
allows to extend the distributed BF algorithms of Sec. III to a
partially-connected network, in which the per-node communi-
cation and computation cost is fully scalable, i.e., independent
of the network size. We first explain in Subsec. IV-A how the
DGSC can be applied in a WASN with a tree topology, since
this is the easiest case. We then describe a similar extension for
the node-specific case (the LC-DANSE algorithm) in Subsec.
IV-B. Although the D-LCMV algorithm can also be extended
in a similar fashion, we will not include this in this paper,
except for a brief reflection in Subsection IV-C.

In the sequel, we denote N as the set of neighbors of node
7, 1.e., the nodes that are connected to node j. For example,
in Fig. 5, we have Ng = {4,5,7}. The nodes with a single
neighbor are referred to as leaf nodes (the light-colored nodes
in Fig. 5). The root of the tree is defined as the node for
which the distance (in number of hops) to the furthest leaf
node is minimal (node 4 in Fig. 5). Note that some trees may
have two root nodes, e.g., the sub-tree consisting of the nodes
{1,2,3,4,8,9} in Fig. 5 has both node 3 and 4 as roots. Each
non-root node j has a unique father node f;, i.e., the neighbor
in J\/j that is closest to the root node, and its other neighbors
in Noons,j = N;\{f;} are referred to as sons. In the tree of
Fig. 5, node 3 has two sons (Nsons,3 = {1,2}) and its father is
node 4, i.e., f3 = 4. The root node has no father (only sons),
except if there are two root nodes, in which case the two root
nodes are both each other’s father.

We use the notation z;_, ¢, to denote a dedicated signal that
is transmitted from node j to its father f;, and we use z;_.sons
to denote a signal that is broadcast by node j to all of its sons
in /\/;ons, YE

A. Distributed GSC

In the fully-connected DGSC (see Sec. III-C and Fig. 3 in
particular), the samples of two signal sets are broadcast: 1) the
shared signals in r, which are broadcast from their ‘owning’
nodes to all other nodes; 2) the compressing GSC output z;
of each node j € 7.

1) Shared signals exchange: In the DGSC, each node
should have access to all S shared signals. In a tree topology,
this dissemination process can be conveniently organized
without any central coordination:

e For all j € J: if r; is non-empty, node j forwards a
sample of r; to each of its neighboring nodes n € N
whenever a new sample is available from the local
microphone signals.

o If node j receives a sample of one of the shared signals
in r from a neighbor g € N, it forwards this sample to
the other neighbors in A;\{q¢}.

It can be easily seen that this will eventually result in a
communication cost of .S single-channel signals per node. The

only exception are the leaf nodes, since a leaf node j does not
have to forward any shared signals, except for the shared signal
r; that actually originates at node j (note that r; is empty at
most nodes).

2) In-network fusion of local BF outputs: If all nodes have
access to all S shared signals, then the only remaining problem
is to provide each node with the summed signal d = Z;‘le Zj
(see (52)). Indeed, the signal d is used to update the NC in
each node’s local GSC (see Fig. 4), and it also corresponds to
the network-wide BF output.

The tree topology actually defines a natural order in which
the nodes should fuse their local BF output signals z; such
that each node eventually obtains the summed signal d. This
results in an inwards (fusion) and outwards (diffusion) signal
flow [28]:

1) Fusion flow: The fusion flow begins at the leaf nodes,

which transmit a sample of their local GSC output signal
z; as defined in (49) to their father, i.e., leaf node j
transmits z; .y, = z; to node f;. When node f; has
received the samples from all of its sons it sums them
together with the corresponding samples of its own local
GSC output signal zy, and transmits the result to its
own father. This process continues until the aggregated
results reach the root node® (node 4 in Fig. 5), which
then finally computes the corresponding sample of d.
This fusion process can be formalized as

Zj—f; £ zj + Z Zg—sj- (60)
qe-/\/;onmj
The final fused output is given by the signal
d2 2+ ) 2 (61)

qEN;

where 7 is the root of the tree.

2) Diffusion flow: The diffusion flow is initiated at the root
node, which broadcasts z,_.sons = d to its sons, which
then also broadcast a copy 2j_sons £ ( to their sons,
etc., such that all nodes eventually have access to d.

From the above procedure, it is clear that the per-node
communication cost is doubled compared to a fully connected
scenario since a node j € J has to broadcast two signals: the
fusion signal z;_.r,, and the diffusion signal z;_sons. Again,
the leaf nodes form an exception, as they have no sons and
hence do not have to transmit z;_,gons.

An interesting observation is that the convergence speed
of the DGSC is the same in a tree topology and in a fully
connected topology. Indeed, the topology has no impact on
the local GSCs at the individual nodes, but only on the way
signals are exchanged between nodes.

B. Distributed Node-Specific LCMV
Similar to the DGSC, we can also modify LC-DANSE for

node-specific LCMV BF to operate in WASNs with a tree
topology. However, this is not as straightforward as in the

SFor the sake of an easy exposition, we assume in the sequel that the tree
has a unique root node. However, all results can be easily extrapolated to trees
with two root nodes.
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Fig. 6. LC-DANSE block scheme for a node of a WASN with a tree topology.

case of DGSC, and we will only briefly touch upon this
topic here. The main idea is identical to the extension of the
(unconstrained) DANSE algorithm for a tree topology, and
therefore we refer to [28] for a more detailed derivation and
analysis.

Although the algorithmic aspects at each node are almost
identical for a fully connected topology and a tree topology,
the main difficulty is the description of the signal flow through
the network. To explain this, we first have to introduce some
new notation, which is partly visualized in Fig. 6, showing a
generic block scheme for a single node of a WASN with a tree
topology. The details of this block scheme will be explained
in the sequel. Similarly to the LC-DANSE algorithm in a fully
connected WASN, we assume w.l.o.g. that L; = K; = S.

Similarly to the case of DGSC in Subsection IV-A, a node
J € J will broadcast a fusion signal z; . s, to its father f;, and
a diffusion signal z;_,sns to its sons (note that these signals
are now S-channel signals). The fusion signals are transmitted
first (starting at the leaf nodes). The fusion flow progresses
towards the root, until the latter has received the fusion signals
from all of its neighbors. Finally, the root node fuses these
received signals with its own microphone signals and initiates
the diffusion flow.

We denote Zgns,; as the vector stacking all the (fusion)
signals z,_.; that node j receives from its sons q € J\/S(,ns,j.
The fusion signal that node j then transmits to its father is
defined as (see Fig. 6 and compare with Fig. 2)

zjﬂfjévf[ Vi } (62)

Zsons,j
i.e., it consists of a compressed version of its M; microphone
signals and the fusion signals from its sons, where the com-
pression matrix V; is yet to be defined. Since the father node is
always excluded, the recursive definition (62) can be initiated
at the leaf nodes, where zgs,; is empty.

To create the diffusion signal z;_,ns, node j needs the
diffusion signal z f;—sons that is broadcast by its father f;.
However, since zy, .sons is a diffusion signal, it consists of
a linear combination of all the fusion signals throughout the
network, including the signal z;_. ;. that node j has injected in
the fusion flow. It can be shown that this feedback component
causes convergence issues in the LC-DANSE algorithm and
should therefore be removed from zy, sons before processing
this signal at node j [28]. Let Zgymer,; denote the signal that

node j obtains after removing this feedback component from
Zf;—sons (We will later explain how this can be done, i.e.,
ignore the ‘RFC’ block for now in Fig. 6).

Node j now has access to three different sets of signals that
it can use as an input for a local BF: its own M} microphone
signals Y the stacked signals in Zgps 5, and the signal Zeyper, 5,
where the latter is yet to be defined. We can then re-define the
multi-channel signal §j as (compare with (23))

~ A yj
y; = Zsons, j . (63)
Zfather, j
Similar to the fully connected case, we use all these locally
available signals in y; as the inputs for a local BF W, which
produces K; = S output channels d;.

As shown in Fig. 6, the diffusion signal that node j
broadcasts to its sons is obtained by compressing the signal
y; into an S-channel signal with a compression matrix Uj;,
ie.,

Zj—sons = Uy, . (64)

Let U,, ,, denote the sub-matrix from U, that node m applies
to the fusion signal z,_,,, from its son n € J\/Son&m, then it
can be shown that, if we define Zgyer, ;, as

Zfather, j £ Zf — U]I;Ij,j Zjf;, vViedJd, (65)

then Zgymer,; Will not contain any feedback component origi-
nating from the earlier transmitted fusion signal z;_., [28].
This is referred to as receiver feedback cancelation’ (RFC),
which requires a minor additional parameter exchange between
neighboring nodes (to share the values of Uy, ;).

Let us revisit (33), which highlights the fact that the
centralized LCMV BF of node j and ¢ are identical up to an
S'x S transformation matrix equal to A j, = (F,)~" F;, which
has lead to the parametrization (34). Consider the particular
choice

V= [WiT AT ) (66)
T T T

U, = [V] AT ] (67)

W, = U, (68)

with A ons denoting the stacked matrix containing all the
A j,-s with ¢ € Nions;. When using this particular choice,
Vj € J, and by carefully analyzing the signal flow in the tree
as defined above (and based on Fig. 6), it can be verified that
d; is equal to the output signal W7 'y of the network-wide
BF R

WiA,;._

W3A;. 5

(69)
WAy
where A, is the result of the multiplication of several A,,,-
s, i.e.,
AjgEALg Ay Ay, -

Ay (70)

7An equivalent alternative, referred to as transmitter feedback cancelation,
has also been proposed in [28], but it has the drawback that it does not support
broadcast transmission.
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with (q,t1,...,tn,7) being the ordered set of nodes that
defines the shortest path through the tree from node ¢ to
node j. For example, considering the tree in Fig. 5, then
Al 6= Ay - Ay - Ags. Since Aj, = (F,)" ' F;, we find
that Ay A, = Aj. Using this result in (70), it is seen that
A, = Ajg, such that (69) becomes equal to (34), and hence
the network-wide BF (69) becomes equal to the centralized
LCMV BF, ie., W/ = Wi,V j € 7.

Similarly to the fully connected case, we have now proved
that there exists a choice for the compression matrices Vj,
Uj, and the local BFs W}, V j € J, such that the output d;
at each node j € J is equal to the output of the corresponding
centralized BF W7, However, since this particular optimal
choice is unknown a priori, the LC-DANSE algorithm has
to iteratively compute the optimal parameter settings. This
happens in a very similar fashion as in the LC-DANSE
algorithm for a fully connected WASN:

o The local BFs {Nv/'j are again defined as the LCMV BFs
computed from y; (see (35)).

o The compression matrices V; and U; contain copies of
the local BF coefficients, i.e.,

V=W, _y
Uj — Wj

(71)
(72)

where Wj_,_ £ is equal to Wj, but where the coefficients
corresponding to the input signal Zfamer,; are removed.

This results in the LC-DANSE algorithm for a tree topology,
as described in Table II. It is noted that the compressed con-
straints matrices H; are defined slightly differently compared
to (25a) in the fully connected case. In a tree topology, the sub-
matrix of H; that corresponds to the received signal from node
q € Nj is defined by the same in-network signal fusion process
that generates the signal that node j receives from node ¢
(details omitted, see also [26]). Note that this modification
is irrelevant if the constraints matrices are defined by node-
specific RTFs, since they are then directly estimated from the
local inputs in §j, as in [38] (see also Remark II).

Using a similar convergence proof as in [28], it can be
shown that the local BF outputs d; converge to the output
signals of the centralized node-specific LCMV BF outputs
defined by (32), assuming that the node updating order is
defined by a path through the network (see also step 3 in
the algorithm). Note that the latter is a sufficient requirement
for convergence, but it is not necessary.

Remark IV: Similar to the DGSC, the in-network signal
flow of LC-DANSE can happen in a data-driven fashion
without any central coordination.AI/ndeed, the three blocks in
Fig. 6 denoted by V;, Uj;, and W; only generate an output
sample whenever they have a sample available at each of their
input channels. If each node uses this data-driven ‘firing’ rule,
then the fusion and diffusion flow will automatically emerge.

Remark V: In addition to the fact that a tree topology
allows for nearest-neighbor communication, which reduces the
per-node communication energy, there is a second advantage.
The tree topology reduces the number of input channels at
each node, and therefore also the per-node computational
complexity (which typically grows cubically with the number

TABLE 11
LC-DANSE IN A WASN WITH A TREE TOPOLOGY

Based on the block scheme in Fig. 6, perform the following sequential
updating procedure:
1) Initialization:
e Initialize V;, Uj; and VV]', vV j € J, with random entries.
e Setq«— 1.
2) At the updating node g:
o Collect N new noise-only observations of y o such that a reliable
estimate of Rﬁqﬁq can be computed.
o Generate ﬁq (details omitted).
o Update the local LCMV BF Wy as in (35).
e Update Vg «— qu,fq.
e Update Uy Wq.
3) q« jwithj € Ng.
4) Return to step 2.
Remark: For the sake of an easy exposition, this algorithm description
does not describe the process for updating the compressed constraints
matrices ﬁq. On top of this updating procedure for the per-node
coefficient updates, the nodes continuously exchange signals and produce

local BF outputs (in parallel), according to the signal flow illustrated in
Fig. 6.

of inputs). The algorithm actually becomes fully scalable,
since the per-node computational complexity only depends on
the number of neighbors, but not on the total number of nodes
J (unlike in the fully-connected case). However, this comes
at a cost: the reduction in degrees of freedom at each node
reduces the convergence speed and hence the adaptation speed
of the algorithm.

C. Distributed LCMV with a Common Constraints Set

Similar to the LC-DANSE algorithm, the D-LCMV algo-
rithm can be adapted to a tree topology, allowing to further
reduce the number of transmission signals by removing the
node-specific preferences (we refer to [26] for further details).
However, due to the substantial reduction in the number of
degrees of freedom at each node, in particular at the leaf
nodes, the D-LCMYV algorithm often gets stuck in sub-optimal
operation points (unless .S = 1). In [26], a number of possible
cures for this issue are proposed (for the case where S > 1
but small), but these are beyond the scope of this paper.

V. DISCUSSION

In this paper we have addressed the problem of extracting
a set of desired speech signals from microphone recordings
that are contaminated by interfering speakers or other noise
sources in a reverberant enclosure. We have focused on BF
methods based on the LCMV criterion, which is widely
used and well suited for both single and multiple speaker
scenarios. Rather than utilizing a single microphone array
configuration, we have considered a WASN consisting of J
microphone arrays or nodes, which are (arbitrarily) distributed
over a reverberant enclosure with S speakers. Such distributed
microphone array configurations may yield a significant per-
formance improvement, since they enable better coverage of
the enclosure. Consequently, it is more likely that each source
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TABLE III
COMPARISON OF THE NUMBER OF BROADCAST CHANNELS IN THE THREE SURVEYED BF ALGORITHMS

Fully connected topology

Tree topology

per node total non-leaf node  leaf node total
LC-DANSE S J-S 28 S <2J-8
D-LCMV 1 J 2 1 <2J
DGSC 1+5; J+S 248 1+ 855 <J-(24+5)

will be close to one node, allowing it to be recorded with
higher SNR and DRR, which is crucial for a better noise
reduction performance.

Starting from a generic formulation of distributed BFs in
a fully connected WASN, we have described three different
distributed LCMV BFs, namely D-LCMV, LC-DANSE and
DGSC. The generic formulation, depicted in Fig. 2, consists
of a compression matrix V; and a local BF W ;. The compres-
sion matrix fuses the local microphone signals into a signal
with fewer channels, which is then broadcast to the other nodes
in the network. The local BFs then take the local microphone
signals and the compressed signals of all other nodes as an
input, and construct the desired output signals.

Although based on a common design criterion, the presented
distributed BFs differ substantially in a number of aspects,
which are summarized next.

Node-specific vs. common constraints: LC-DANSE con-
siders a general case where the constraints set is different at
each node, i.e., each node can extract a node-specific set of
desired speakers, possibly based on node-specific reference
microphones to preserve the localization cues. Alternatively,
the D-LCMYV algorithm and the DGSC consider a special case
where all nodes share a common constraints set, resulting in
a reduced communication cost in a multi-speaker scenario. In
either case, all nodes collaborate to accomplish either node-
specific goals, or a common shared goal.

Adaptivity: The LC-DANSE and D-LCMV algorithms
are based on the closed-form LCMV solution with a time-
recursive block-based update rule, whereas DGSC utilizes the
GSC form with a time-recursive per-sample update rule (note
that a sample here corresponds to a single frame in the STFT
domain). The latter allows to adapt more swiftly to changes in
the scenario, but hampers the use of burst transmission over
the wireless link, which may result in a larger communication
overhead. However, it is noted that the NCs can also be
updated on a per-block basis if burst transmission is desired.

Communication cost: The communication cost of all three
algorithms is summarized in Table III. The LC-DANSE algo-
rithm requires L; = S channels to be broadcast per node, or
L = J - S channels in total. The DGSC and D-LCMV reduce
the communication cost significantly to L; = 1 channel per
node, or L = J channels in total (+S shared signals in the case
of DGSC), but they do not allow for node-specific constraints
sets.

The speech signal components in the compressed broadcast
signals (the z;’s) of the LC-DANSE and D-LCMYV algorithm
do not satisfy the desired responses defined by f. Conse-
quently, the actual responses vary between iterations (before
convergence), and require either re-estimating or transmitting

the H,_ matrices. Opposed to that approach, the speech signal
components in the compressed broadcast signals of the DGSC
are indeed constrained to satisfy the desired responses in
f. While alleviating the need to re-estimate or transmit the
varying responses, applying these additional constraints results
in a loss of degrees of freedom, which DGSC recovers by
broadcasting S additional shared signals (together with .J
compressed single-channel signals, this yields a total of J+ S
channels). Omitting these additional constraints, which exist
in the DGSC but not in the D-LCMV algorithm, allows the
D-LCMYV to achieve a substantial reduction in the communica-
tion cost (J channels versus J + S channels). Another benefit
stemming from the constrained responses in the transmitted
signals of the DGSC is the separate treatment of speech signals
and noise. Thus, changes in noise spectrum only affect the NC
filters of the GSC-form.

To give an idea about the required data-rate over the wireless
channels, assume a scenario with S = 2 target sources and
J = 4 nodes, each equipped with M; = 5 microphones which
are sampled at a rate of f; = 16kHz, and with 16 bit accuracy.
In this case, we find that the average bit rate (averaged over
all nodes) is equal to 1.28 Mbit/s per node when all the
signals were to be centralized in a fusion center. On the
other hand, based on Table III, the average bit rate is 512
kbit/s for LC-DANSE, 256 kbit/s for the D-LCMV BF, and
384 kbit/s for the DGSC (for the same speech enhancement
performance as in the centralized case). Although the LC-
DANSE algorithm is more expensive in communication cost,
it allows for node-specific BF outputs. It is noted that, for
the case of partially-connected networks, the difference in
communication cost between the centralized algorithm and
the distributed algorithms becomes even larger, as the former
requires to relay all the data through the network to a fusion
center, which is highly non-scalable.

Convergence speed: Although not treated in this paper,
it is noted that substantial differences exist in terms of the
convergence of the different algorithms. LC-DANSE typically
converges quite fast, often within 2 - J iterations, i.e., after
two updating rounds such that each node has updated twice.
When considering the closed-form implementation based on
estimates of the noise covariance matrix using sample-batches
of size N, the LC-DANSE convergence time increases linearly
with the batch size /N, which introduces a trade off between
convergence speed and estimation accuracy. Indeed, a smaller
N results in more frequent updates (and hence faster conver-
gence), but poorer estimation of the noise covariance matrix.
Roughly speaking, the LC-DANSE algorithm converges after
20=c)JNB seconds, where fs is the sampling rate, B is the
STFT block length, and ¢ € [0, 1) is the percentage of overlap
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between consecutive STFT blocks.

Further signal compression based on the D-LCMV algo-
rithm results in a slower convergence (depending on the
number of speakers) due to a reduction of the per-node
degrees of freedom [26], [39]. An exception to this rule is
the single-speaker case, for which LC-DANSE and D-LCMV
are equivalent (up to a node-specific scaling) and hence obtain
the same convergence time. The DGSC is updated on a per-
sample basis, and its convergence time is controlled by the
step-size 1 and the forgetting factor p. The DGSC obtains a
similar convergence time as the centralized GSC [27].

It is important to note that, for all three algorithms, the
convergence speed has no impact on the total communication
cost, since each iteration is performed on a different signal
segment, i.e., the same block of samples is never transmitted
more than once. Therefore, the convergence speed only has an
impact on the adaptation or tracking performance.

Extension to a tree topology: We have also briefly de-
scribed how the above algorithms can be extended to op-
erate in a partially-connected WASN, which requires that
the network be pruned to a tree topology to remove cycles
in the network. Such partial connectivity roughly increases
the per-node communication cost by a factor 2 (except for
leaf nodes). However, the nodes then only have to exchange
data with their neighbors, which may result in a reduced
transmission energy. Furthermore, the per-node computational
complexity in the LC-DANSE and D-LCMYV algorithm will
be significantly reduced (see Remark V), be it at the cost of
a reduced convergence speed due to the smaller number of
degrees of freedom per node. The computational complexity
and the convergence speed remain the same in the case of
DGSC, since each node in the tree topology requires access
to exactly the same signals as in a fully connected topology.
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