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Abstract—Wireless microphone networks or so-called wireless acoustic
sensor networks (WASNs) are a next-generation technology for audio
acquisition and processing. As opposed to traditional microphone arrays
that sample a sound field only locally, often at large distances from the
relevant sound sources, WASNs allow to use many more microphones
to cover a large area of interest. However, the design of such WASNs
is very challenging, especially for real-time audio acquisition and signal
enhancement due to the significant data traffic in the network. There
is a need for scalable solutions, both on the signal processing level and
on the network-communication level. In this paper, we give an overview
of applications and trends in the field of WASNs, and we address the
core challenges that need to be tackled. We mainly focus on the signal
processing level, and we explain how advances in the area of signal
processing can relax the high-demanding constraints on the network layer
design. Furthermore, we address the interaction between the application
layer and the network layer, and we explain why cross-layer design can
be important to improve the performance of WASN applications.

I. INTRODUCTION

Microphone arrays (see Fig. 1) become more and more popular
for audio acquisition, since multi-microphone recordings enable to
exploit spatial diversity, allowing to localize target sound sources
and/or to cancel out interfering sound sources coming from certain
directions [1]–[4]. Microphone arrays are used in several applications,
e.g., hearing aids, teleconferencing systems, hands-free telephony,
automatic speech recognition, computer games, etc. [1].

Despite the obvious advantages over single-microphone systems,
traditional microphone arrays still have their limitations and are often
not sufficiently performant. Since a microphone array only samples
the sound field locally, often at a relatively large distance from the
target source(s), the recorded signals often have a low signal-to-
noise ratio (SNR). Furthermore, due to obvious space and power
constraints, especially in portable devices, the array is limited in
physical size and in processing power. For example, only two or
three microphones fit in a hearing aid, and the available power is
limited due to the small batteries, which also limits the number of
audio channels that can be processed by the device. However, it
is common knowledge that the performance of microphone arrays
improves when using more microphones, preferably at large inter-
microphone distances.

To overcome these limitations, wireless microphone nodes, con-
taining a single microphone or a small microphone array, can be
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Fig. 1. Schematic example of a
localized regularly arranged micro-
phone array.

Fig. 2. Schematic example of a ran-
domly distributed microphone array
(WASN).

Fusion Center

Fig. 3. Schematic example of cen-
tralized processing by means of a
fusion center.

Fig. 4. Schematic example of dis-
tributed processing in a WASN with
an ad hoc topology.

distributed randomly over the environment (see Fig. 2). This results
in a wireless network of microphones or a so-called wireless acoustic
sensor network (WASN). Due to the wireless communication, the
array-size limitations disappear and the microphones can be placed
at positions where it is difficult to place wired microphones. Fur-
thermore, the microphone nodes physically cover a much larger area,
which increases the probability to have a subset of microphones close
to a sound source, yielding higher quality recordings. Because of
these advantages, and since small microphones can now be produced
at low cost, it is believed that WASNs will become very popular for
audio acquisition and audio processing in the near future.

In some applications, the nodes of a WASN can transmit their
recorded microphone signal(s) to a dedicated device (the fusion
center or FC) where all signals are processed, resulting in a network
with a centralized or star topology (see Fig. 3). However, in many
applications such an FC is either unavailable, too far away from



certain nodes, or the total number of microphone signals is too large
to process in a single device. In-network processing can then be a
solution, i.e., the nodes can locally process data and share the result
with their neighboring nodes, rather than with an FC (see Fig. 4).
Such a distributed approach is often preferred, especially so when it
is scalable in terms of communication bandwidth requirements and
computational complexity. However, the algorithm design for such
distributed settings is much more challenging, i.a., because each node
only has access to a subset of the available data.

In general, all WASN applications, problem statements or algo-
rithms can be classified into either signal estimation or parameter
estimation techniques [5]. In the case of signal estimation (also
referred to as signal enhancement), the goal is to estimate a desired
signal (e.g., a speech signal), while suppressing background noise
and/or removing reverberant components. This usually relies on
fusion of the recorded signals at different nodes (see Fig. 5), requiring
transmission of audio signals. In the case of parameter estimation, the
goal is to extract certain parameters from the recorded audio signal(s),
such as the location or identity of speakers, the acoustic properties of
a room, or speech features. In this case, the nodes may only exchange
parameter vectors or energy measurements at a slow time-scale
compared to the sampling rate of the microphones. In this paper, we
mainly focus on the former class (signal estimation), where the nodes
actually transmit audio signals, rather than parameters1. The real-time
processing and streaming of audio data imposes challenging demands
on the network layer with respect to data rate, synchronization, input-
output (IO) delay and quality of service (QoS). These are typical
requirements in the general class of so-called wireless multimedia
sensor networks [6] (which also covers WASNs).

This paper gives an overview of the state of the art, the current
trends, and future directions in digital signal processing (DSP)
algorithms for WASNs. We focus both on the applications and on
the enabling DSP techniques, without going into too much detail on
the algorithms. We will identify the core challenges with respect to
the algorithm design for such WASNs. Although we approach these
challenges from a signal processing perspective (i.e., the application
layer), most of them also apply to the network layer design. We
explain how advances in the area of signal processing can relax
the high-demanding specifications at the network layer. Furthermore,
we explain why cross-layer design can be important to improve the
performance of WASN applications.

II. EXAMPLE APPLICATIONS

In this section, we briefly address some example applications that
could benefit from using WASNs.

1) Hearing aids: Reduction of acoustic background noise is
crucial in hearing aids (HAs) to provide intelligible speech
signals in noisy environments [7]. This noise reduction is
usually obtained by using a local microphone arrays in the
HA itself [1]. If a HA is worn at both ears, these can be
connected with each other through a wireless link, yielding
a so-called binaural HA [8], [9], which is essentially a 2-node
WASN. By exchanging microphone signals between HAs, the
noise reduction can be greatly improved since more (and well-
separated) microphones can be used by each HA. Furthermore,
systems exist where a remote wireless microphone is connected
to a HA [7]. Since microphones become smaller and cheaper,

1It is noted that some parameter estimation algorithms also require exchange
of full-rate audio signals between nodes, e.g., for localization based on time
difference of arrival.
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Fig. 5. Schematic illustration of signal estimation in node k, based on
fusion of its microphone signal yk with the signals zl and zm obtained from
neighboring nodes l and m.

it is expected that this will evolve towards more complex
WASNs with many more microphones, e.g., incorporated in
clothing, furniture, or strategically placed by the user [5], [10].
Furthermore, since we are nowadays surrounded by wireless
devices that are equipped with microphones (e.g. smartphones,
laptops, hands-free kits, etc.), these can also be incorporated in
the network to improve noise reduction in HAs.

2) Hands-free telephony: Noise reduction with microphone ar-
rays is common in hands-free telephony, e.g., in cars or video
conferencing. The use of additional microphone nodes (e.g.
from tablets, smartphones, or dedicated devices) allows a signif-
icant improvement in the enhancement of the recorded speech
signals [5], [11]–[14]. Furthermore, WASNs are an enabling
technology for speech communication in noisy and dynamic
environments such as airports, factories, stock markets, etc.
The deployment of a WASN over the entire building allows
people to walk freely through the building while talking on the
phone, and benefit from the microphones in their neighborhood
to enhance the recorded speech signal.

3) Acoustic monitoring: Currently, most literature on WASNs
is in the context of acoustic monitoring of an environment,
e.g., for vehicle tracking or classification, surveillance, etc. (see
[2], [15], [16], and references therein). Compared to cameras,
microphones are cheaper, and have the important advantage that
they have no line-of-sight constraints. Video-based surveillance
can also be integrated with a WASN [15].

4) Ambient intelligence: The term ‘ambient intelligence’ [17]
refers to an intelligent environment that is aware of the presence
of a user and that is responsive to its needs. The sensors and
processors are wirelessly connected with each other and as-
sumed to be inconspicuously incorporated in the environment.
Active communication between the user and the environment
will likely be based on automatic speech recognition (ASR),
where signal enhancement is very important, since background
noise and reverberation are known to significantly affect the
recognition performance. A WASN with signal enhancement
technology is able to acquire intelligible speech, wherever
the speaker is positioned in the room. WASNs for ambient
intelligence also use acoustic monitoring techniques for event
detection, sound classification, localization, and speaker iden-
tification.

III. CORE CHALLENGES

In the design of signal processing algorithms for WASNs, we can
define some core challenges that are absent in traditional (wired) mi-
crophone arrays. It is noted that energy awareness is not incorporated



in this list, since it is perceived here as a general goal to which many
of the below challenges contribute.

1) Unknown Array geometry: In many cases, the positions of
the microphone nodes in a WASN are not known a priori, due
to the random deployment. For some tasks, such as localization
or speech enhancement based on spatial separation (beam-
forming), supporting algorithms may be required to estimate
node and/or source positions. In the context of WASNs, blind
algorithms that do not require this extra information are usually
preferred (see, e.g., [3], [4], [18]).

2) Distributed processing: In applications where an FC is absent,
or where a large number of microphones signals need to be pro-
cessed/transmitted simultaneously, it is desired to distribute the
computational burden over the nodes of the WASN. In-network
processing is often more energy efficient since the number of
signals to be processed is small in each node2. Furthermore, in-
network processing can rely on nearest-neighbor transmissions,
rather than long-distance transmissions to an FC.

3) Bandwidth usage: Because bandwidth is a scarce resource,
it is important to use it as efficient as possible. If nodes only
share data with their nearest neighbors (in a distributed setting),
less transmission power is required and spatial reuse of the
frequency spectrum is possible. Furthermore, to reduce the
required communication bandwidth, compression of the data to
be transmitted is of great importance to relax the requirements
for the network layer. Compression and estimation are often
jointly attacked in a WASN context, instead of treating them
as independent problems (see Subsection IV-C).

4) Scalability: In the design of distributed algorithms for WASNs
with many microphones, the goal is also to obtain a scalable
algorithm in terms of communication bandwidth and/or local
processing power. Basically, this means that adding an extra
microphone has no (or limited) impact on the computational
load or data traffic at the nodes that are not directly connected
to this extra node. Distributed algorithms that allow simply
connected networks are usually scalable [11], [14], [20], [21].

5) Microphone subset selection: In large-scale WASNs, sufficient
performance can often be obtained by only using a subset of
microphones (e.g., microphones that are close to a desired
sound source). The less useful microphone nodes can then
be put to sleep to save energy. The selection of a subset of
useful microphones is a difficult problem on its own, and it
is best tackled jointly with the estimation problem itself (see
Subsection IV-D).

6) Minimizing input-output delay: The minimization of IO delay
is an important challenge in real-time audio streaming WASNs,
e.g., in hearing aids or telephony. An IO delay is introduced
both at the DSP level [12] and at the network layer [22].

7) Synchronization aspects: Since each node of a WASN has
its own clock, and since each clock’s oscillator has imper-
fections, there is an inevitable clock skew3 and offset. Clock
synchronization protocols and algorithms [23] are crucial for
the data transmission in the communication layer, but also
for multi-microphone audio processing algorithms, since their

2For most multi-microphone signal enhancement algorithms, the required
computational power does not scale well with the number of microphone
signals processed at a single device (e.g., quadratically [10], [19]).

3As a reference: the value for the (worst-case) clock skew, based on a
32kHz oscillator commonly used for sensor networks (i.a. in the Tmote Sky),
is a difference of 40 ppm, i.e., approximately 40 µs per second or 0.144 s in
an hour [23], [24].

performance significantly degrades when the analog-to-digital
converters (ADCs) of the different microphones sample at
(slightly) different sampling rates [25]. In the case of signal
enhancement, only clock skew has a negative effect on the
performance, since this results in signal drift. A time-invariant
clock offset is usually not that harmful; it is either inherently
taken care of by the signal enhancement algorithm (e.g., in
blind beamforming [3], [4], [18]–[20]), or it can be roughly
estimated and compensated at start-up (e.g., based on cross-
correlation techniques). However, clock offset may be harmful
in other tasks, such as source localization.
In a WASN with dedicated and uniform hardware, synchro-
nization of the sampling rates of ADCs is usually manageable
[23] and sometimes even unnecessary if the oscillators are of
sufficient quality4. On the other hand, in non-uniform ad-hoc
WASNs with different devices from different manufacturers,
synchronization of the ADCs may be hard (or impossible), and
the resulting signal drift must then be taken into account by
the signal processing algorithms.
Finally, it is noted that audio algorithms, that are not based on
microphone signal coherence, can usually cope with significant
ADC mismatch (e.g., energy-based methods [13], [26]).

8) Routing and topology selection: Intelligent routing decisions
and topology selection are crucial in data-intensive WASNs.
This is because of the strict timing requirements and the many
different aspects that are involved in the decision making. The
topology may be optimized in terms of transmission power,
end-to-end delay, or QoS in general. Cross-layer interaction
between the application layer and the network layer should
ideally be incorporated in the decision making (more on this
in Section V).

IV. DISTRIBUTED SIGNAL ENHANCEMENT FOR REAL-TIME

AUDIO ACQUISITION WITH WASNS

One of the most difficult challenges for WASNs is real-time audio
acquisition, including signal enhancement, e.g., for intelligible voice
recording. By combining multiple microphone signals, an enhanced
output signal can be obtained, where background noise is significantly
reduced [1]. In these type of signal fusion applications lie the true
challenges for the network layer design, since they produce a lot
of data traffic, and they require reliable links with low packet loss,
accurate synchronization, topology selection, small IO delay, etc. At
the same time, there is a significant challenge on the signal processing
level too, i.e., how to design suitable algorithms that relax these high-
demanding requirements on the network layer design.

A. Suboptimal in-network fusion

There is a significant amount of literature on how to optimally
fuse multiple microphone signals to exploit temporal and spatial
correlation to reduce background noise, a.k.a. beamforming [1]. So-
called ‘blind’ beamformers [1], [3], [4], [18], where the microphone
and source positions are not assumed to be known, are particularly
interesting for the WASN case, and can directly be applied if an FC
is available (assuming that sufficient bandwidth is available, and that
the clocks of the different microphones are synchronized). However,
it is not obvious how these blind techniques can be applied to

4This only holds for adaptive audio processing algorithms. Furthermore,
even if the application layer can handle (limited) mismatch in the ADC
sampling frequencies, synchronization protocols are usually still required for
the communication layer.



z2

z1

z4

z3

y1 y2

(a) The relay case

z2

z1

z4

z3y2y1

λ1z1+λ2z2 + µ1y1 λ3z3+λ4z4 + µ2y2

(b) Local fusion

Fig. 6. Two different types of in-network data fusion.

Fig. 7. Example of a node hierarchy for signal fusion.

decentralized topologies without a dedicated device that acts as an
FC, i.e., where in-network processing is required.

A straightforward but naive approach to tackle this problem is to
relay all the microphone signals to an arbitrary node in the network
that then acts as an FC (see Fig. 6(a)). However, this does not scale
well in terms of communication bandwidth and processing power,
since the number of transmitted audio signals grows along the signal
path, and the entire computational burden is borne by a single node.
Furthermore, only in the node that was chosen as FC, an enhanced
signal is available. A better approach is to let each node fuse its
microphone signal(s) with the signal(s) obtained from neighboring
node(s) into a single audio signal, and only transmit this fused signal
to another node (see Fig. 5 and Fig. 6(b)). This approach obviously
scales much better in terms of data traffic, and the computational
burden is distributed over all the nodes in the network. Furthermore,
many nodes then have access to an (at least partially) enhanced signal.

There are many ways to organize this distributed in-network fusion
scheme. The most common approach is to construct a hierarchy of
(local) centralized beamformers [11], [14], [21], i.e., the network is
divided in clusters of nodes, and the nodes that form a cluster transmit
their microphone signal(s) to a higher-level node, referred to as the
cluster head (CH). The CH then basically has the role of a local FC
for the nodes in the cluster, i.e., it fuses the received signals into a
single enhanced audio signal. These locally enhanced signals at the
different CHs are then fused together at the highest-level node (the
data sink) to obtain the final output signal (see Fig. 7). This approach
can easily be extended to deeper levels of hierarchy, which naturally
leads to WASNs with a tree topology, where data flows from the
lowest-level nodes (leaf nodes) to the highest-level node (root node),

fusing all the intermediate microphone signals.
This hierarchical architecture is elegant and perfectly scalable, but

it has some major drawbacks. Even if every node is able to compute a
locally optimal signal estimate based on the locally available signals
(e.g., based on blind beamforming techniques [1], [3], [4], [18]), the
final estimate at the data sink will still be suboptimal. For a given
topology, computing the optimal set of fusion rules requires global
information on the cross-correlation between all microphone signal
pairs, which is usually not available5, especially in adaptive scenarios
where these statistics must be estimated on the fly.

Furthermore, even if we would be able to compute the optimal
set of fusion rules for a given topology, other topologies may exist
that provide a better signal estimate. This results in a combinatorial
problem, which is usually solved based on (suboptimal) heuristics
[11], [14], [21].

B. Optimal in-network fusion

It is clear that the hierarchical fusion method described in the pre-
vious subsection is suboptimal due to the lack of global information,
the many heuristics, and the dependence on the chosen topology. In
particular in adaptive scenarios, the nodes must update their fusion
rules based only on partial information, i.e. ,the local data to which
they have access. However, there exist distributed adaptive speech
enhancement techniques with in-network fusion that can generate
an optimal signal estimate, independent of the chosen tree topology
(assuming two-way data traffic between nodes) [20]. Furthermore,
each node can enhance its own local microphone signal in an optimal
way, as if all signals in the entire WASN were available to each
node. This seems impossible, since information is inevitably thrown
away after each fusion step. However, it can be shown that this
is indeed possible in certain scenarios, i.e.,where the number of
desired speakers that need to be retained at the output is small [10],
[12], [19], [20], [27], [28]. This class of algorithms is referred to
as ‘distributed adaptive node-specific signal estimation’ (DANSE)
algorithms. DANSE algorithms can operate in networks with a tree
topology [20] or in a 2-level hierarchical network where the CHs
(i.e., the grey nodes in Fig. 7) are fully connected with each other
[12], [19].

The node-specific aspect of DANSE refers to the fact that each
node may be interested in a different signal. For example, a binaural
HA user wants to hear the sound as it impinges on his/her ears,
and therefore the left HA will estimate a different signal than the
right HA [8]–[10], [29]. This is important for directional hearing.
Another example is sound source localization with a prior signal
enhancement step to reduce noise in the recordings. In this case, the
signal enhancement algorithm must preserve the node-specific target
signal(s) as they are locally observed by the different microphone
nodes.

The efficiency and optimality of DANSE relies on the assumption
that the total number of desired speakers is much smaller than the
number of available microphones. This is because the number of
audio signals that each node needs to transmit is directly proportional
to the number of desired source signals that need to be retained [10],
[12], [19], [20], [28] (otherwise, optimality cannot be guaranteed). It
is noted that, if the node-specific aspect of DANSE is relaxed, i.e.,
each node is interested in exactly the same signal, then the nodes only
need to transmit a single audio signal, independent of the number of
desired speakers.

5E.g., in Fig.6(b), the cross-correlation between the signals z1 and z4
cannot be computed since the nodes that generate them are not connected.
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C. Distributed compression

The techniques addressed in the previous subsections aimed to
estimate a signal in a distributed fashion, by fusing multiple audio
channels into a single audio channel that is transmitted to neighboring
nodes. To further reduce the bandwidth, and to match specific rate
constraints in the wireless links, the transmitted signals must be
encoded with efficient source coding techniques, and reconstructed
at the the receiving node. The goal is then to transmit a signal as
efficient as possible, without adding too much distortion between the
original and the decoded signal.

A typical distributed source coding scenario is depicted in Fig. 8.
The receiving node on the right collects encoded versions of three
different signals (z1, z2 and z3) from three different nodes. The
decoder at the receiving node needs to decode all three original
signals and provide the reconstructed signals (ẑ1, ẑ2 and ẑ3) to
the local fusion algorithm (e.g., DANSE). For node 1, the goal is
thus to transmit the signal z1 with the smallest possible distortion,
given a certain available bit rate in the wireless link. Here, signal
enhancement and coding can be viewed as cascaded techniques, but
there also exist approaches where both are jointly tackled in a WASN
context [30], [31]. It is obvious that such an integrated approach can
yield better performance, since (lossy) compression inevitably has a
negative effect on the signal enhancement algorithm (see, e.g., [32],
which analyzes the effect of compression on DANSE).

The encoders in the distributed source coding scenario in Fig.
8 can be designed in two different ways. The simplest way is to
merely encode the signal z1 by removing the inherent redundancy
in the signal z1 itself. This is often referred to as ‘side information
unaware’ (SIU) coding, since it ignores the mutual information in
the signals of other nodes. However, since the receiving node also
has access to encoded versions of z2 and z3, and since these signals
are usually highly correlated with z1, the latter can be transmitted
with significantly less bits while keeping the same level of distortion.
This is referred to as ‘side information aware’ (SIA) coding, i.e., the
encoders are designed to jointly remove the mutual redundancy in
all the signals z1, z2 and z3 [33], [34]. Obviously, SIA performs
better than SIU, but an SIA encoder cannot be designed without
prior knowledge on the mutual information in z1, z2 and z3, which
is often not available. However, in a WASN with 2-way data traffic
(e.g., in DANSE-like algorithms), some SIA coding is possible, since
a transmitting node then has access to (fused) data that is also
available in the receiving node. Since the received signal and the
signal to be transmitted will often have significant correlation, this
can be exploited to significantly compress the transmitted signal.
Furthermore, if a node transmits more than one audio signal to
another node (as in DANSE with multiple desired speakers), the

transmitted signals can be jointly encoded by exploiting the cross-
correlation between them.

D. Microphone subset selection

Another important aspect to facilitate the network layer design,
and to relax the communication bandwidth and power constraints,
is the selection of a subset of most useful microphone nodes. The
other (less useful) nodes can then be switched off to reduce power
consumption and data traffic in the WASN. An important question
is on what basis this subset is selected. For example, in [35], the
microphones with highest SNR are chosen, and in [36], a set of
microphones is chosen that have a strong cross-correlation with each
other, which is an important feature in the design of a beamformer.
Other possible utility measures may be the direct-to-reverberant ratio,
the microphone or speaker proximity, etc.

However, all these selection methods make abstraction of the
signal enhancement algorithm that is used, which may be suboptimal.
For example, a microphone that is close to an interfering source
(e.g., a radio) has low SNR but may indeed be very useful for
signal enhancement, i.e., as a noise reference to cancel this interferer
in another microphone signal. Therefore, it is often advantageous
to design the utility measure jointly with the signal enhancement
algorithm, as in [37], [38]. Furthermore, the utility measures in
[37], [38] can be computed efficiently from the available signal
enhancement fusion rules at hardly any additional computational cost.

V. CROSS-LAYER DESIGN IN WASNS

In most WASNs, there is an important interaction between the
application layer (DSP) and the network layer. Therefore, a joint
design may significantly improve the performance of the WASN. A
couple of the interactions between both layers are addressed below.

• The audio processing algorithm that is used often puts strict
constraints on the topology of the network [11], [14], [19]–[21].

• The selected microphone subset also affects the choice of the
topology since useless nodes (from a signal enhancement per-
spective) are removed from the network. Vice versa, the topology
selection may also influence the subset selection algorithm,
since certain nodes can be useful from a routing perspective.
Furthermore, the ‘usefulness’ of a node also depends on the
delay in the signal path from that node to other nodes (if the
end-to-end delay is too large, the microphone signal may become
useless in real-time applications).

• In large areas with long inter-microphone distances, many mi-
crophones will not be acoustically coupled due to the significant
attenuation of sound over long distances. Such acoustical cou-
pling can be easily detected by the audio processing algorithm
(e.g. using cross-correlation techniques [36], or microphone
utility [37], [38]). It is obvious that microphone nodes that are
not acoustically coupled should not share data.

• The establishment of a wireless link between certain node pairs
may require a large transmission power, e.g., due to shadow
effects. However, this link may be very important from a
signal enhancement perspective. This trade-off requires careful
consideration. Another example is the design of a node hierarchy
(see Subsection IV-A), which can be based on nearest neighbors
to reduce transmission power, but this may yield suboptimal
results in terms of signal enhancement performance.

• The network graph should depend on the quality of the mi-
crophone recordings at the different nodes. For example, a
high-SNR node should ideally be positioned in the center of
the network and/or close to data sinks, and it should have



many connections, such that this high-SNR signal can rapidly
propagate through the network or to the end user, with a
minimum number of hops.

VI. CONCLUSIONS

In this paper, we have addressed some possible applications that
can benefit significantly from using WASNs, and we have listed the
core challenges that need to be tackled in WASN design. We have
given a general overview of distributed signal processing techniques
for signal enhancement, and we have explained how these techniques
can relax the high-demanding constraints on the network layer
design. Finally, we have pointed out some interactions between the
application layer and the network layer, which is a motivation for
cross-layer design in WASN applications.
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Loève transform,” IEEE Transactions on Information Theory, vol. 52,
no. 12, pp. 5177 –5196, 2006.
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