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ABSTRACT

A wireless acoustic sensor network is considered with spatially dis-

tributed microphones which observe a desired speech signal that has

been corrupted by noise. In order to reduce the noise the signals

are sent to a fusion center where they are processed with a cen-

tralized rank-1 multi-channel Wiener filter (R1-MWF). The goal of

this work is to efficiently compute an assessment of the contribution

of each individual microphone with respect to either signal-to-noise

ratio (SNR), signal-to-distortion ratio (SDR) or the minimized cost

function referred to as the utility. These performance measures are

derived by exploiting unique properties of the R1-MWF which can

be computed efficiently from values that are known from the cur-

rent signal estimation process. The performance measures may be

used in unison or individually to determine the contributions of each

microphone and help facilitate in selecting only a subset of the avail-

able signals in order to meet the bandwidth and power constraints of

the system.

Index Terms— Wireless Acoustic Sensor Networks, Multi-

Channel Wiener Filtering, Sensor Subset Selection

1. INTRODUCTION

Sensor networks are often deployed over large areas enabling greater

information about the spatial properties of the sensing environment

[1, 2]. Wireless sensor networks (WSN) take advantage of a col-

lection of wireless devices that can be used to relay information be-

tween one another with some predefined task as an ultimate goal. In

regards to audio applications these devices use available microphone

signals on the devices to enhance an audio signal and form a wireless

acoustic sensor network (WASN).

In WSNs there is often a desire to only use a fraction of the

available signals in order to conserve network lifetime and adhere to

bandwidth constraints while maintaining signal estimation accuracy.

Finding the optimal subset of signals is often an intractable task and

therefore a way to assess the signals in their order of the importance

from the current estimation is essential.
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In the WASN envisaged for this paper a desired speech signal

which has been corrupted by noise is captured by a set of spatially

distributed microphones. These microphone signals are sent to a fu-

sion center where all of the data from the WASN is aggregated and

processed. Using the available information an optimal filter in the

linear minimum mean squared error (MMSE) sense is derived which

in this paper takes the form of the rank-1 multi-channel Wiener fil-

ter (R1-MWF). The utility of each individual microphone is derived

using the R1-MWF formulation which differs when compared to the

derivation in [3, 4] which relied on the classical Speech Distortion

Weighted Multi-channel Wiener Filter (SDW-MWF) formulation.

The R1-MWF relies on the inversion of the noise correlation ma-

trix which has been shown to be numerically more robust than the

SDW-MWF [5], and due to its unique properties, allows for other

pertinent information to be extracted in a computationally efficient

manner.

In deriving the utility function from the R1-MWF other per-

formance measures can be computed to assess the contribution of

each microphone. In particular we show the contribution of each

microphone to the output Signal-to-Noise Ratio (SNR) and Signal-

to-Distortion Ratio (SDR) can be found concurrently with no ad-

dition to the computational complexity. These values may then be

used in conjunction with a combination of thresholds or weights to

determine an explicit trade-off between the full received signal and

the optimal subset that is application dependent. They may also be

applied in unison so that a psycho-acoustic model that mimics the

human hearing spectrum can be used to facilitate signal subset se-

lection but this is beyond the scope of this paper.

This paper is organized as follows. Section 2 introduces the

problem formulation and notation used throughout the text. Section

3 defines three microphone specific performance measures, utility,

SNR and SDR from the current known values of the R1-MWF. Sec-

tion 4 discusses how to accurately monitor the individual signal con-

tributions and their relationship to the performance measures. Sec-

tion 5 employs a toy room scenario which gives the time averaged

values of the performance measures in a simulated acoustic environ-

ment.

2. PROBLEM FORMULATION AND NOTATION

Consider a wireless acoustic sensor network with M spatially dis-

tributed microphones. The short-time Fourier transform (STFT) rep-

resentation of the received signal at microphone k is given by

yk[ω, t] = xk[ω, t] + vk[ω, t] (1)



where xk is the desired speech component of the received signal, vk

is the noise component, ω is the frequency bin, and t is the frame
index. We will omit the ω and t variables, unless otherwise stated,
bearing in mind that the following operations occur in the STFT do-

main.

All microphone signals are sent, un-processed, to a fusion cen-

ter. The fusion center collects the received signals and places them

in a stacked vector which takes the form

y = [y1 ... yM ]. (2)

The speech vector x and noise vector v are constructed in a similar

fashion.

If a single speech source is assumed the vector containing the

speech component of each microphone signal is

x = as (3)

where s is the speech source signal and a is a steering vector that

contains information pertaining to the room characteristics from the

speech source to the microphones. The goal of the MWF is to min-

imize the MMSE between the desired speech signal and a linearly

filtered version of the combined microphone signals. The linear

MMSE cost function at the fusion center is

J(w) = E{|x1 − w
H
y|2} (4)

where x1 is the desired speech component of the reference micro-

phone, wHy is the linearly filtered sensor signals and H denotes
the conjugate transpose. For the ease of exposition and without loss

of generality (w.l.o.g.) the first microphone signal x1 is used as the

reference microphone signal.

It is assumed that the source and the noise signals are statisti-

cally independent from one another so that the cost function may be

written as

J(w) = E{|x1 − w
H
x|2} + µE{|wH

v|2} (5)

where a trade-off parameter µ > 0 is added to place emphasis on
either the speech distortion or noise reduction [6]. For the case where

µ = 1 (4) and (5) are equivalent. The optimal filter minimizing the
cost function (5) is the SDW-MWF.

It has been shown in [7] that if only a single speech source is

present the SDW-MWF is given by

ŵ =
R−1

vvRxxe1

µ + Tr{R−1
vvRxx}

(6)

where Tr{A} is the trace of the matrixA, e1 is a vector containing

a one in the first entry (corresponding to the reference microphone)

and zero otherwise, R−1
vv is the inverse of the noise correlation ma-

trix Rvv = E{vvH} and Rxx = E{xxH} is the speech corre-
lation matrix. This is referred to as the Rank-1 SDW-MWF (R1-

MWF).

The so-called noise+speech correlation matrixRyy = E{yyH}
is often updated at discrete time intervals by means of a forgetting

factor 0 < λ < 1

Ryy[ω, t] = λRyy[ω, t− 1] + (1 − λ)y[ω, t]y[ω, t]H (7)

with the noise correlation matrix being updated in a similar fashion

where it is assumed a voice activity detector (VAD) is able to dis-

tinguish between the noise+speech and noise only frames. This type

of estimation allows for the combination of the current signal with

older time-averaged statistics.

If the speech and noise signals are assumed to be statistically in-

dependent, the speech correlation matrix is estimated by subtracting

the noise+speech correlation matrix by the noise correlation matrix

[6]

Rxx = Ryy − Rvv. (8)

Since it is assumed that there is only a single speech source

presentRxx may be represented as

Rxx = Psaa
H

(9)

where Ps = E{|s|2} is the power of the speech signal, Px1
=

Ps|a1|
2 is the speech power in the reference microphone and a1 is

the first element of the steering vector.

Using the optimal filter value (6) the cost function takes the form

J(ŵ) = Px1
−

eT
1 RxxR

−1

vvRxxe1

µ + Tr{R−1
vvRxx}

(10)

and using the fact that Rxx is rank 1, the numerator in (10) can be

reduced to Px1
(Tr{R−1

vvRxx}). This reduces the cost function to

J(ŵ) =
µPx1

µ + Tr{R−1
vvRxx}

. (11)

3. PERFORMANCE MEASURES

3.1. Utility

The signals in a WASN can be efficiently monitored to determine

their utility or impact on the current cost function. The utility func-

tion Uk for monitoring one signal for deletion, as introduced in [4],

is defined as the increase in the cost function by the removal of signal

k,

Uk = J−k(ŵ−k) − J(ŵ) (12)

where ŵ−k is the optimal filter value missing the kth microphone
signal.

By using the cost function given in (11) the utility for a given

signal k is

Uk = µPx1

»

1

µ + Tr{D−k}
−

1

µ + Tr{D}

–

(13)

where D = R−1

vvRxx and D−k = R−1

vv−k
Rxx−k. Note that the

value of D−k is not computed by simply removing the correspond-

ing row and column from D. The row and column must first be re-

moved from theRxx andRvv matrices to giveRxx−k andRvv−k

and then an inverse needs to be performed onRvv−k.

3.2. Signal-to-Noise Ratio based assessment

The output SNR at the fusion center is given by the ratio of power of

the speech and noise components in the output signal

SNR =
E{|ŵHx|2}

E{|ŵHv|2}

=
ŵHRxxŵ

ŵHRvvŵ
. (14)

It has been shown in [7] that (14) is equal to the Tr{D} using the
rank-1 assumption. The decrease in the SNR from the removal of



the kth microphone signal from the estimation can again be found
by the difference in the trace value,

∆SNR−k , SNR−k − SNR

= Tr{D−k} − Tr{D} (15)

which is independent of the speech distortion parameter µ and is
already known from the calculation of the R1-MWF. The reader

should note that the lack of dependence on µ only holds for the given
single frequency bin solution as the full band solution takes the form

SNR =

P

ω

E{|ŵHx|2}

P

ω

E{|ŵHv|2}
. (16)

3.3. Signal-to-Distortion Ratio based assessment

The SDR is another important metric of a speech enhancement algo-

rithm as it allows for the amount of speech-distortion to be measured.

It was shown in [6] that the speech-distortion and SNR are closely

related with one another. The SDR is given by

SDR =
E{x2

1}

E{|x1 − ŵHx|2}
(17)

and again using the rank-1 assumption, the SDR can be given as

SDR =
(µ + Tr{D})2

µ2
(18)

which is the inverse of the signal-to-distortion index described in [7].

Equation (18) also shows that there is a direct relationship be-

tween the SNR and SDR, i.e., an increase or decrease in SNR will

have a similar effect on the SDR. Using (18) the decrease in the SDR

due to the removal of a signal is then given by

∆SDR−k , SDR−k − SDR

= (µ + Tr{D−k})
2 − (µ + Tr{D})2 (19)

which again relies on the calculation of the trace value when a signal

is removed.

4. EFFICIENT COMPUTATION OF THE TRACEWHEN

REMOVING A SIGNAL

We first describe an efficient manner in which to derive the trace

value when a signal k is removed and then generalize this so that all
signals can be monitored simultaneously. Before deleting the kth
signal, the current value Tr{D} is known and therefore an efficient
way to calculate Tr{D−k} without taking a full matrix inverse of
Rvv−k, which has a computationally complexity of O(M − 1)3, is
desired.

For the ease of exposition we assume that the signal to be re-

moved is the last element, i.e., k = M . This leads to the block
partitioning of the inverse noise correlation matrix as

R
−1

vv =

»

Ak bk

bH

k Qk

–

(20)

the block partitioning of the speech correlation matrix as

Rxx =

»

Rxx−k dk

dH

k Vk

–

(21)

and the block partitioning of the steering vector as

a =

»

a−k

ak

–

. (22)

Based on (22) the vector quantity dk is defined as

dk = Ps|a−ka
∗

k| (23)

where ∗ represents the complex conjugate and the scalar quantity Vk

is defined as

Vk = Ps|ak|
2
. (24)

We define a diagonal matrix containing the current diagonal el-

ements ofD as

ΛD = IM ◦ D (25)

where A ◦ B is the Hadamard or element-wise product of two ma-
trices and IM is the identity matrix. The diagonal elements for

the correlation matrices can be constructed in a similar fashion as

ΛV = IM ◦ R−1

vv and ΛX = IM ◦ Rxx and the product of the two

diagonal matricesΛV andΛX is given asΛV X . Using the matrices

defined in (20) and (21) the current trace is given by

Tr{D} = Tr{AkRxx−k} + 2R{bH

k dk} + QkVk (26)

where R{.} extracts the real component of its argument. It was
shown in [4] that the inverse correlation matrix with the deletion of

row and column k can be found by

R
−1

vv−k
= Ak −

1

Qk

bkb
H

k . (27)

The trace with the removal of signal k can therefore be calculated as

Tr{D−k} = Tr{AkRxx−k} −
1

Qk

Tr{bkb
H

k Rxx−k}. (28)

Using (9) along with (22), (23), and (24) produces

Tr{bkb
H

k Rxx−k} =
|bH

k dk|
2

Vk

(29)

which leads to an alternative representation of (28) given by

Tr{D−k} = Tr{AkRxx−k} −
1

QkVk

|bH

k dk|
2
. (30)

The vector product bH

k dk in (30) may be represented as the kth
diagonal element ofΛD subtracted by the product of the kth diago-
nal elements ofR−1

vv andRxx, i.e.,ΛD(k)−QkVk. Using this fact

and rearranging (26), the trace with element k removed becomes

Tr{AkRxx−k} = Tr{D} − 2R{ΛD(k)} + QkVk. (31)

Finally plugging (31) into (28) gives the trace with the signal k re-
moved as

Tr{D−k}=Tr{D}−2R{ΛD(k)}+QkVk−
1

QkVk

|ΛD(k)−QkVk|
2

.

(32)

Suppose now we wish to monitor all M signals in the WASN. This

would entail taking an inverse at again an O((M − 1)3) computa-
tionally complexity for all M signals yielding an O(M4) operation.
Using the notation above, the trace with each element missing can

be given in vector form where v = [Tr{D−1} . . .Tr{D−M}]T is

v = Tr{D}1− (2R{ΛD}−ΛV X +Λ
−1

V X |ΛD −ΛV X |2)1 (33)
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and 1 is a vector with all entries equal to one. Expression (33) may
then be further reduced to

v = Tr{D}1− Λ
−1

V X |ΛD|21 (34)

which has terms that are only composed of diagonal matrices mak-

ing it an O(M) operation. The utility, SNR and SDR can now be
calculated simultaneously with the values from (34).

5. SIMULATIONS

Figure 1 depicts a simulated room environment (20x20x5m) where

there is a single speech source �, a babble noise source +, a white
noise source⋆, a reference microphone ⋄, and 5 other microphones
•. There is also white additive noise on each microphone equal to
10% of the speech source power representative of thermal noise. The

microphones, speech, and noise sources are positioned at a height of

1.5 m from the ground. A reflection coefficient of 0.4 was used for

the room and a sampling frequency of 8 kHz was used for the signals.

A weighted overlap-add technique, as introduced in [8], was

used with a DFT block size of 2048. The utility, SNR and SDR

values were averaged over the entire collection time so that the indi-

vidual microphones could be analyzed in regards to the performance

measures. In real-time applications, an updating similar to the one

used to update the correlation matrices in (7) could be used enabling

the performance measures to be analyzed in varying environments.

Figure 2 shows the corresponding utility, SNR and SDR. The

performance measures mimic one another due to the dependence on

the trace elements of the current estimation. The performance mea-

sures are highly effected by the input SNR, where the reference mi-

crophone has the largest impact due to having the largest input SNR.

Microphones with low input SNRs do not significantly contribute

to the output SNR and SDR which indicate that these signals could

be removed without severely impacting the noise reduction or signal

distortion.

6. CONCLUSION

The utility function derived shows the signal components that con-
tribute the most to the noise reduction. By using unique properties
of the R1-MWF formulation other information such as the output
SNR and SDR were extracted efficiently from the utility calculation
compared to previous utility formulations where only the difference
in the cost was observed. This allows for the direct impact of the re-
moval of signal components to be viewed in terms that can be custom
tailored to the specific application of the WASN.
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