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ABSTRACT

We consider distributed linearly constrained minimum variance
(LCMV) beamforming in a wireless sensor network. Each node
computes an LCMV beamformer with node-specific constraints,
based on all sensor signals available in the network. A node has
a local sensor array, and compresses its sensor signals to a signal
with fewer channels, which is then shared with other nodes in the
network. The compression rate depends inversely on the total num-
ber of linear constraints. Even though a significant compression is
obtained, each node is able to generate the same outputs as a cen-
tralized LCMV beamformer, as if all sensor signals are available to
every node. Since the distributed LCMV algorithm exploits a similar
parametrization as previously developed distributed unconstrained
MMSE signal estimation algorithms, it has similar dynamics and
convergence properties. We provide simulation results to demon-
strate the optimality and convergence of the algorithm.

Index Terms— Wireless sensor networks, random arrays,
beamforming, distributed estimation

1. INTRODUCTION

Traditional sensor arrays for spatial filtering or beamforming con-
tain a limited number of wired sensors, where all sensor observa-
tions are gathered in a central processor. Due to the relatively small
size of the array, the spatial field is only sampled locally, and the
target source(s) are often at a relatively large distance from the array,
which yields sensor signals with low SNR. Recently, there has been
a growing interest in distributed beamforming or signal estimation in
wireless sensor networks (WSN’s), where multiple sensor nodes are
spread over the environment [1–3]. Each node consists of a small
sensor array, a signal processing unit, and a wireless link with other
nodes. The nodes then exchange compressed signal observations,
and they cooperate in a distributed fashion to estimate the desired
signal, based on all observations in the network. The advantages are
that more sensors can be used, that the sensors physically cover a
wider area, and that there is a higher probability that a node is close
to the target source, yielding higher SNR signals to start with.

In some particular cases, it may be required to let each node
estimate a different desired signal, or a locally observed version
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of a common signal, e.g. if it is followed by a localization task.
This makes the estimation problem node-specific. Distributed node-
specific signal enhancement was first considered in a 2-node net-
work, in the context of binaural hearing aids where it is important to
preserve the spatial cues of the desired signals at both ears [4]. This
technique relies on the speech-distortion-weighted multi-channel
Wiener filter (SDW-MWF), and was referred to as distributed MWF
(DB-MWF). In [5], distributed minimum variance distortionless
response (DB-MVDR) beamforming was introduced for a similar
binaural setting, which is a special case of the former1. Both tech-
niques assume a single target source. In [1], a distributed adaptive
node-specific signal estimation (DANSE) algorithm is described for
fully connected WSN’s, which generalizes DB-MWF to any number
of nodes and multiple target sources.

Since the 2-node DB-MVDR beamforming in [5] is a special
case of DB-MWF (for a single desired source), it is also implicitly
covered by the DANSE framework. Although this link between DB-
MVDR beamforming and DANSE is not obvious at first sight, it is an
important observation since it implies that all results and extensions
of DANSE also apply to DB-MVDR beamforming, i.e. procedures
for multiple nodes, multiple sources [1], simply connected topolo-
gies [2], and robust implementations [3]. Furthermore, by exploit-
ing the existing knowledge on the general DANSE framework, it is
possible to generalize DB-MVDR to distributed linearly constrained
minimum variance (LCMV) beamforming [7], allowing multiple lin-
ear constraints, which is the main contribution of this paper.

LCMV-beamforming is a well-known sensor array technique for
noise reduction [7] where the goal is to minimize the output power
of a multi-channel filter, under a set of linear constraints, e.g. to pre-
serve desired source signals and (fully or partially) cancel interfer-
ers. It is noted that MVDR beamforming is a special case of LCMV
beamforming [7]. In this paper, we will explain how LCMV beam-
forming can be performed in a distributed fashion in a WSN with
any number of nodes and any number of source signals. We con-
sider a blind approach that operates without knowledge on the array
geometry or positions of the sources. However, this means that our
approach is limited to scenarios that lend themselves to blind sub-
space estimation of desired sources and interferers. This is for ex-
ample possible in speech enhancement, where both subspaces can
be tracked based on non-stationarity and on-off behavior of the de-
sired source(s) [3, 5, 8]. We also allow that the nodes solve node-
specific LCMV problems, i.e. with different linear constraints. For
example, a desired source for one node may be an interfering source
for another node. We will refer to this algorithm as linearly con-

1It is in fact a limit case where the trade-off parameter µ→ 0. When using a rank-1
model (in the case of a single desired source), setting µ = 0 in SDW-MWF gives the
same formula as MVDR [6].



strained DANSE (LC-DANSE), to emphasize the close relation with
the DANSE algorithm in [1]. For the sake of an easy exposition, we
only consider the case of fully connected networks. However, since
LC-DANSE has similar dynamics and parametrizations as DANSE,
all aforementioned extensions of DANSE also hold for LC-DANSE.

2. CENTRALIZED BLIND LCMV BEAMFORMING

Consider a network with J sensor nodes and J = {1, ..., J}. Node
k collects observations from a complex-valued2 Mk-channel sen-
sor signal yk[t], where t is the time index which will be omitted
in the sequel. All yk’s are stacked in an M -channel signal y with
M =

∑
k∈J Mk. We assume that there are K relevant3 spatial

point sources, such that y is generated by the following linear model

y = Hs + n (1)

where s is a stacked signal vector containing K relevant source sig-
nals, H is an M ×K steering matrix, and n is a noise component.

First, we consider centralized LCMV beamforming, so we as-
sume that a node k has access to all channels of y. Let Id

k denote the
set of indices that correspond to the Nk desired sources from s that
node k wants to preserve in its node-specific estimation. The other
Pk = K − Nk sources from s are assumed to be interferers, and
their indices define the set Ii

k. Similar to [8], the goal for node k is
to estimate the mixture of the Nk desired signals from s as they im-
pinge on one of node k’s sensors, referred to as the reference sensor
(assume w.l.o.g. that this is the first sensor, i.e. yk1).

It is noted that we do not necessarily intend to demix these
sources, since this would require to blindly estimate the steering vec-
tor of each source separately, which is often difficult or impossible.
For example, in the case of speech enhancement, one needs a voice
activity detector (VAD) to estimate the speech subspace [1, 3, 8]. In
a multiple speaker scenario, to estimate the steering vectors of each
speaker separately, the VAD must be able to distinguish between
different speakers (e.g. as in [9]). However, common VAD’s are
triggered by any (nearby) speakers, and therefore only the joint sub-
space can be identified. Let Qd

k denote the M × Nk matrix with
its columns defining an orthogonal basis for the desired subspace
spanned by the columns of H with indices in Id

k . Similarly, let Qi
k

denote the M ×Pk matrix containing an orthogonal basis for the in-
terferer subspace corresponding to Ii

k. In the sequel, we assume that
both Qd

k and Qi
k can be blindly estimated from the sensor signals y

(e.g. with techniques from [8]).
Node k will apply a linear M -dimensional estimator wk to the

M -channel signal y to compute the signal dk = wH
k y where H

denotes the conjugate transpose operator. To this end, it will choose
the wk that minimizes the variance of dk, while preserving the de-
sired signals in Id

k . If required, other constraints can be added, e.g.
to (fully or partially) block the interferers in Ii

k. More specifically,
node k solves the following centralized LCMV problem:

min
wk

‖wH
k y‖2 (2)

s.t.
QH

k wk = fk (3)

2We assume that all signals are complex valued to incorporate frequency domain
description, e.g. in the short-time Fourier transform (STFT) domain.

3We consider a point source as relevant, if there is at least one node that uses this
source in the linear constraints of its estimation problem, as explained later.

with

Qk =
[

Qd
k Qi

k

]
(4)

fk =

[
qd

k(1)
εqi

k(1)

]
(5)

where qd
k(1) and qi

k(1) denote the first column of Qd H
k and Qi H

k

respectively (corresponding to the reference sensor of node k), and
where ε is a user-defined gain4. The solution of this problem is given
by [7]:

ŵk = R−1
yy Qk

(
QH

k R−1
yy Qk

)−1
fk (6)

with Ryy = E{yyH} where E{.} denotes the expected value op-
erator. It can be shown [8] that the signal components of s in the
output d̂k = ŵH

k y, are equal to the signals as they impinge on the
reference sensor (except for some scaling by ε for the interfererers),
i.e.

d̂k =
∑
l∈Id

h1lsl + ε
∑
l∈Ii

h1lsl + Vkn (7)

with hij denoting the entry in the i-th row and j-th column of H,
and with

Vk = fH
k

(
QH

k R−1
nnQk

)−1
QH

k (8)

where Rnn = E{nnH}. It is noted that this procedure yields a
distortionless response, which is not the case in SDW-MWF based
beamforming techniques [4]. However, the constraints that enforce
this distortionless response remove some degrees of freedom, yield-
ing less noise reduction in the residual Vkn.

3. LINEARLY CONSTRAINED DANSE (LC-DANSE)

In this section, we propose a distributed adaptive node-specific
LCMV beamforming algorithm that obtains the centralized esti-
mates (7), ∀ k ∈ J , and where nodes exchange linearly compressed
signal observations. We will refer to this algorithm as linearly
constrained DANSE (LC-DANSE), as it is based on the DANSE
algorithm that was originally proposed for linear MMSE signal
estimation [1]. For the sake of an easy exposition, we describe
the algorithm for a fully connected network, but all results can be
extended to simply connected networks, similar to [2].

The iterative nature of the algorithm may suggest that the same
data is re-estimated and transmitted multiple times. However, in
practice, iterations can be spread out over different data blocks (see
remark below). In the case where there are K relevant point sources,
the nodes will exchange K-channel signal observations, yielding a
compression with a factor of Mk/K at node k, where we assume5

that Mk > K.

3.1. The LC-DANSE algorithm

First, we define K − 1 auxiliary estimation problems at node k,
which are basically the same as (2)-(3) but with different choices
for fk. This means that node k computes K different beamformer
outputs dk = WH

k y, defined by an M × K linear estimator Wk

that solves
min
Wk

‖WH
k y‖2 (9)

4Usually ε = 0 to fully cancel the interferers. However in some cases it may be
important to retain some residual noise, e.g. for hearing aid users in traffic situations.

5In the fully connected case, LC-DANSE only has a benefit if Mk > K. In the
case of a simply connected topology (see [2]), there is still a benefit compared to the
scenario where all signals are relayed, even if Mk < K.



s.t.
QH

k Wk = Fk (10)

where Fk is chosen as a full rank K × K matrix. The last K − 1
columns of Fk may be filled with constraints that define other inter-
esting estimation problems for node k that use the same partitioning
of the two subspaces Qd

k and Qi
k. In the sequel, we assume that Fk

has the form

Fk =

[
α1q

d
k(m1) α2q

d
k(m2) . . . αKqd

k(mK)
ε1q

i
k(n1) ε2q

i
k(n2) . . . εKqi

k(nK)

]
(11)

where mj , nj ∈ {1, . . . , Mk} and where αj ,εj ∈ C are chosen
such that Fk is full rank. This incorporates all estimation problems
that use the same subspace partitioning6. The solution of (9)-(10) is

Ŵk = R−1
yy Qk

(
QH

k R−1
yy Qk

)−1
Fk . (12)

The reason for adding these auxiliary estimation problems, is to ob-
tain an estimator Wk that captures the full K-dimensional signal
subspace defined by the channels of s.

In the LC-DANSE algorithm, yk is linearly compressed to a
K-channel signal zk (the compression rule will be defined later),
which is then broadcast to the remaining J − 1 nodes. We define
the (K(J − 1))-channel signal z−k =

[
zT
1 . . . zT

k−1z
T
k+1 . . . zT

J

]T
.

Node k then collects observations of its own sensor signals in yk and
the channels of z−k obtained from the other nodes in the network.
Similar to the centralized LCMV approach, node k can then com-
pute the (Mk + K(J − 1))-channel LCMV beamformer Uk with
respect to these input signals, i.e. the solution of

min
Uk

‖UH
k ỹk‖2 (13)

s.t.
Q̃H

k Uk = F̃k (14)

where

ỹk =

[
yk

z−k

]
(15)

and with Q̃k denoting the equivalent to Qk, but now with respect
to the modified steering vectors corresponding to node k’s input sig-
nals, i.e. ỹk. These will be linearly compressed versions of the
steering vectors in H, due to the linear compression rules that gen-
erate the zk. Since we assumed that the subspaces spanned by the
steering vectors can be estimated blindly from the input signals, Q̃k

can be computed. F̃k is constructed similarly to (11), but now with
respect to the columns of Q̃H

k instead of QH
k .

The problem (13)-(14) is equivalent to the centralized LCMV
problem described in Section 2 (but with fewer signals), and its so-
lution can be computed in exactly the same way.

We now define the partitioning

Uk =
[
WT

kk|GT
k,−k

]T
(16)

=
[
WT

kk|GT
k1| . . . |GT

k,k−1|GT
k,k+1| . . . |GT

kJ

]T
(17)

where Wkk contains the first Mk rows of Uk (which are applied to
node k’s own sensor signals yk) and where Gkq is the part of Uk

6The last K − 1 columns of Fk may also be filled with random entries. This often
yields a better conditioned system, but then the equivalence of the solutions of LC-
DANSE and the centralized LCMV problems, as described in Theorem 3.2, only holds
for the first column of Wk . This is however not a problem, since the other estimator
columns are auxiliary.
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Fig. 1. The LC-DANSE scheme with 3 nodes (J = 3). Each node k
computes an LCMV beamformer using its own Mk-channel sensor signal
observations, and 2 K-channel signals broadcast by the other two nodes.

that is applied to the K-channel signal zq obtained from node q. We
can now also define the compression rule to generate the broadcast
signal zk as

zk = WH
kkyk . (18)

A schematic illustration of this scheme is shown in Fig. 1, for a
network with J = 3 nodes. It is noted that Wkk both acts as a
compressor and as a part of the estimator Wk. Based on Fig. 1,
it can be seen that the parametrization of Wk effectively applied at
node k, to generate dk = WH

k y, is then

Wk =

 W11Gk1

...
WJJGkJ

 (19)

where we assume that Gkk = IK with IK denoting the K × K
identity matrix. This is exactly the same parametrization as used
in the DANSE algorithm [1]. If we define the partitioning Wk =[
WT

k1 . . . WT
kJ

]T
, where Wkq is the part of Wk that is applied to

the sensor signals of node q, i.e. yq , then (19) is equivalent to

Wkq = WqqGkq, ∀ k, q ∈ J . (20)

Expression (19) defines a solution space for all Wk, k ∈ J ,
simultaneously, where node k can only control the parameters Wkk

and Gk,−k. The following theorem explains how this parametriza-
tion is still able to provide the optimal LCMV solution in each node.

Theorem 3.1. If Fk in (11) is full rank, ∀ k ∈ J , then the optimal
estimators Ŵk, ∀ k ∈ J , given in (12) are in the solution space
defined by parametrization (19).

Proof. Since the columns of Qk span the same subspace as the
columns of H, and since Fk is full rank, there exists a full rank
K ×K matrix Ak such that

Qk

(
QH

k R−1
yy Qk

)−1
Fk = HAk . (21)

Substituting (21) in (12) shows that

∀ k, q ∈ J : Ŵk = ŴqAkq (22)

with Akq = A−1
q Ak. The theorem is proven by comparing (22)

with (20), and by setting Gkq = Akq , ∀ q ∈ J .



The LC-DANSE algorithm iteratively updates the parameters in
(19), by letting each node k compute (13)-(14), ∀ k ∈ J , in a se-
quential round robin fashion:

1. Initialize i← 0, k ← 1, and initialize all U0
q , ∀ q ∈ J , with

random entries.

2. Update Q̃k and F̃k by estimating the (orthogonalized) de-
sired and interferer subspace with respect to the new inputs.

3. Update Ui
k to Ui+1

k according to the solution of (13)-
(14), while the other nodes do not perform any updates,
i.e. Ui+1

q = Ui
q , ∀ q ∈ J \{k}.

4. i← i + 1 and k ← (k mod J) + 1.

5. Return to step 2.

Remark: The iterative nature of the LC-DANSE algorithm may
suggest that the same sensor signal observations are compressed and
broadcast multiple times, i.e. once after every iteration. However,
as mentioned earlier, iterations can be spread over time in practice.
This means that there is no iterative estimation over the data blocks,
only over the local fusion rules. In other words, if Wi

kk is updated
to Wi+1

kk at time t0, this updated version is only used to produce
samples of zk[t] for which t > t0, while previous observations for
t ≤ t0, are neither recompressed nor retransmitted. Effectively, each
sensor signal observation is compressed and transmitted only once.

3.2. Convergence and optimality of LC-DANSE

The following theorem guarantees convergence and optimality of
LC-DANSE:

Theorem 3.2. If Fk in (11) is full rank, ∀k ∈ J , then all parameters
of the LC-DANSE algorithm converge. Furthermore, if i → ∞, the
output signal di

k is equal to the output signal of the centralized algo-
rithm defined in (7), ∀ k ∈ J , and the estimator Wi

k parametrized
by (19) is equal to Ŵk, ∀ k ∈ J .

We will not formally prove this theorem here due to space con-
straints, but we give a brief intuition instead. The algorithm exploits
the fact that an update of node k is also optimal for any other node q,
if the latter is allowed to perform an optimal K ×K transformation
on each input signal zql, ∀ l ∈ J . This follows from the fact that the
LCMV solutions (12) all share the same K-dimensional subspace,
∀ k ∈ J . Therefore, although the updates of each node are ‘selfish’
in the sense that they only take their own estimation problem into ac-
count, the nodes have an implicit cooperative behavior, which yields
convergence and optimality.

4. SIMULATION

We simulated a toy scenario with K = 3 relevant white Gaussian
point sources with unit variance, J = 10 nodes, each having Mk =
6 sensors (M = 60). The steering vectors to each sensor are chosen
randomly from a zero-mean uniform distribution in [−0.5, 0.5]. The
sensor noise power is 25% of the power of the relevant sources, and
spatially uncorrelated. Each node selects randomly which of the 3
relevant sources are assumed to be targets or interferers.

The upper plot in Fig. 2 shows the power of the distributed LC-
DANSE output for node 1, compared to the output power of the
centralized LCMV beamformer, over the different iterations of the
algorithm. In each iteration, a different node performs an update,
starting with node 1 (round robin). It is observed that, when each
node has updated twice, the LC-DANSE algorithm reaches the same
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Fig. 2. Output power of LC-DANSE at node 1 (above) and the squared error∑
k∈J ‖Wk − Ŵk‖2F (below) vs. the number of iterations.

performance as the centralized algorithm in every node. In some it-
erations, the variance is lower than in the centralized solution, which
is possible due to unsatisfied constraints at node 1 after updates at
other nodes. The lower plot shows

∑
k∈J ‖Wk − Ŵk‖2F (‖.‖F

is a Frobenius norm) over the different iterations, i.e. the squared
distance between the LC-DANSE estimators Wk, parametrized ac-
cording to (19) and the optimal solution Ŵk over all nodes.

5. CONCLUSIONS

In this paper, we have introduced a distributed adaptive node-specific
LCMV beamforming algorithm, referred to as LC-DANSE. The al-
gorithm significantly compresses the sensor signal observations that
are shared between nodes, but obtains the same node-specific LCMV
beamformers as the centralized algorithm at each node. The algo-
rithm is closely related to the DANSE algorithm for unconstrained
linear MMSE signal estimation, and we pointed out that previously
developed extensions for DANSE also hold for LC-DANSE. We pro-
vided a simulation result to show the effectiveness of our method.
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