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ABSTRACT
This paper presents a distributed adaptive node-specific MMSE sig-
nal estimation (DANSE) algorithm that operates in a wireless sensor
network with a tree topology. It is argued why a tree topology is the
natural choice for this algorithm. It is assumed that the signals that
are estimated in the nodes, are linear combinations of a common la-
tent low-dimensional random process. The DANSE algorithm then
significantly compresses the data to be transmitted by the nodes,
yet still provides the optimal node-specific MMSE estimator at ev-
ery node. Despite the multi-hop transmission, the amount of data
sent by each node remains roughly the same as in a fully-connected
network.

1. INTRODUCTION

A wireless sensor network (WSN) [1] consists of sensor nodes that
cooperate with each other to perform a certain task, such as the es-
timation of a certain parameter or signal. A general objective is
to utilize all available information throughout the network, possibly
through a fusion center that gathers all data and performs all compu-
tations. However, in many cases a distributed approach is preferred,
which is scalable with respect to both communication resources and
computational power. In this case, data diffuses through the network
and each node contributes in the processing.

In [2, 3], a distributed adaptive node-specific signal estimation
(DANSE) algorithm is presented, which operates in a fully con-
nected sensor network where each node has multiple sensors. It is
an iterative algorithm, in which the nodes only broadcast a few lin-
ear combinations of their sensor signals. The term ‘node-specific’
refers to the fact that each node estimates a different desired signal.
This happens to be the case in speech enhancement in binaural hear-
ing aids, where one of the aims is to preserve cues for directional
hearing [4]. If these node-specific signals are linear combinations
of a common low-dimensional random process, the algorithm sig-
nificantly reduces the required communication bandwidth, and yet
it converges to the minimum mean squared error (MMSE) estimator
at each node. Simulations in [5] illustrate the potential of this algo-
rithm for distributed speech enhancement applications in acoustic
sensor networks.

A major limitation of the DANSE algorithm in [2, 3] is the fact
that the network is assumed to be fully connected, which avoids
multi-hop transmission. In this paper, we relax this constraint by
modifying the DANSE algorithm, such that it can operate in a net-
work with a tree topology, and so that optimality of the resulting
estimators is retained. Since the network is not fully connected,
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nodes have to pass on information from one side of the network to
the other. However, the amount of data to be sent by each node
remains roughly the same as in the fully connected case.

We begin the paper with the problem statement for distributed
node-specific MMSE estimation in section 2. We shortly review
the DANSE algorithm for the fully connected case in section 3. In
section 4, we show that feedback through the communication link
harms the convergence and optimality of the DANSE algorithm. In
section 5, we show that these problems can be avoided in a network
with a tree topology. The main advantage of a tree is that it has
no cycles, which makes it easy to analyze and to control feedback.
Section 6 provides some simulation results. Conclusions are given
in section 7.

2. PROBLEM STATEMENT

Consider a network with J sensor nodes and ideal communica-
tion links. Each node k has access to observations of an Mk-
dimensional random complex measurement variable or signal yk.
We will use the term ‘single-channel/multi-channel signal’ to refer
to one-dimensional/multi-dimensional random processes. Let y de-
note the M-dimensional vector in which all yk are stacked, where
M = ∑

J
j=1 M j. The objective for each node k is to estimate a node-

specific K-channel complex desired signal dk that is correlated to
y. We assume that the node-specific desired signals dk are linear
combinations of a common Q-dimensional latent random process
d, i.e.

dk = Akd, ∀ k ∈ {1, . . . ,J} (1)

with Ak a full rank K×Q matrix with unknown coefficients. For
the remaining of this paper, and without loss of generality, we will
always assume that K = Q. In many practical cases, only a subset
of the channels of dk may be of actual interest, in which case the
other channels should be seen as auxiliary channels to capture the
entire K-dimensional signal space necessary to achieve the optimal
estimator for the signals of interest.

We use a linear estimator d̂k = WH
k y for node k with Wk a

complex M×K matrix and superscript H denoting the conjugate
transpose operator. We do not restrict ourselves to any data model
for y nor do we make any assumptions on the statistics of the de-
sired signals and the sensor measurements, except for an implicit
assumption on short-term stationarity. We use a minimum mean
squared error (MMSE) criterion for the node-specific estimator, i.e.

Ŵk = argmin
Wk

E{‖dk−WH
k y‖2} , (2)

where E{.} denotes the expected value operator. We define a parti-
tioning of the matrix Wk as Wk = [WT

k1 . . . WT
kJ ]

T where Wkq is
the part of Wk that corresponds to yq. The equivalent of (2) is then

Ŵk =


Ŵk1
Ŵk2

...
ŴkJ

 = argmin
{Wk1,...,WkJ}

E{‖dk−
J

∑
q=1

WH
kq yq‖2} . (3)
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The objective is to solve all J different MMSE problems (2),
i.e. one for each node. Assuming that the correlation matrix Ryy =
E{yyH} has full rank, the solution of (2) is

Ŵk = R−1
yy Rydk (4)

with Rydk = E{ydH
k }. Rydk can be estimated by using training

sequences, or by exploiting on-off behavior of the desired signal,
e.g. in a speech-plus-noise model, as in [5, 6].

3. THE DANSEK ALGORITHM IN A FULLY
CONNECTED NETWORK

To find the optimal MMSE solution (4) in each node, each Mk-
channel signal yk has to be communicated to all other nodes in the
network, which at first sight requires a large communication band-
width. One possibility to reduce the bandwidth is to broadcast only
a few linear combinations of the Mk signals in yk. In [2, 3], the
DANSEK algorithm is introduced, operating in a fully connected
network in which nodes broadcast only K linear combinations of
their sensor signals, and yet the algorithm converges to the optimal
estimators (4) when K = Q. The subscript K in DANSEK refers to
the maximum number of signals that are broadcast by each node.
The DANSEK algorithm then yields a compression with a factor of
Mk
K . Since the K broadcast signals will be highly correlated, further

joint compression is possible, but we will not take this into consid-
eration throughout this paper.

In this section, we briefly review the DANSEK algorithm for
fully connected networks. For the sake of an easy exposition, we
describe the algorithm for batch mode operation. The iterative char-
acteristic of the algorithm may therefore suggest that the same data
must be broadcast multiple times, i.e. once after every iteration.
However, in practical applications, iterations are spread over time,
which means that subsequent estimations of the correlation matri-
ces are performed on different signal segments. By exploiting the
implicit assumption on short-term stationarity of the signals, every
data segment only needs to be broadcast once, yet the convergence
of DANSEK and the optimality of the resulting estimators, as de-
scribed infra, are preserved.

3.1 The DANSEK algorithm
DANSEK is an iterative algorithm, in which each node k broadcasts
the K-channel signal zi

k = Wi H
kk yk with Wi

kk the current estimate
of Wkk at iteration i. A node k can transform the K-channel signal
zi

q that it receives from another node q by a K×K transformation
matrix Gi

kq. The parametrization of the Wk at node k in iteration i
is therefore

Wi
k =

 Wi
11G

i
k1

...
Wi

JJG
i
kJ

 . (5)

Here, node k can only optimize the parameters Wi
kk and Gi

k =
[Gi T

k1 . . . Gi T
kJ ]T . We assume that Gi

kk = IK for any i with IK de-
noting the K×K identity matrix. We will use Gi

k−q to denote the
matrix Gi

k without Gi
kq.

The DANSEK algorithm consists of the following iteration
steps:
1. Initialize

i← 0
k← 1
∀ q ∈ {1, . . . ,J} : Wqq ←W0

qq, Gq−q ←G0
q−q, where W0

qq

and G0
q−q are random matrices of appropriate dimension.

2. Node k updates its local parameters Wi
kk and Gi

k−k to mini-
mize the local MSE, based on its inputs consisting of the sensor
signals yk and the compressed signals zi

q = Wi H
qq yq that it re-

ceives from the other nodes q 6= k. This corresponds to solving

a smaller local MMSE problem:[
Wi+1

kk
Gi+1

k−k

]
= argmin

Wkk ,Gk−k

E
{
‖dk−

[
WH

kk |G
H
k−k

][
yk
zi
−k

]
‖2

}
(6)

with zi
−k =

[
zi T

1 . . .zi T
k−1z

i T
k+1 . . .zi T

J
]T . The parameters of the

other nodes do not change, i.e.

∀q ∈ {1, . . . ,J}\{k} : Wi+1
qq = Wi

qq, G
i+1
q−q = Gi

q−q . (7)

3. k← (k mod J)+1
i← i+1

4. Return to step 2

3.2 Convergence and optimality of DANSEK

Theorem 3.1. Consider a fully connected graph and assume that
(1) is satisfied with K = Q. Then the DANSEK algorithm converges
for any initialization of its parameters to the MMSE solution (4) for
all k.

Proof. See [2].

4. DANSEK WITH FEEDBACK

If the network is not fully connected, nodes will have to pass on
information from one side of the network to the other. One can
make the network virtually fully connected by letting nodes act as
relays to eventually provide every node with all signals yk. This
is however not scalable in terms of communication bandwidth, and
the routing of the data streams can become very complex for large
networks.

A more elegant approach is to let each node transmit linear
combinations of all its inputs, i.e. its own sensor signals as well
as the inputs provided by other nodes. For instance, one can apply
the same DANSEK algorithm as in the previous section, but now let
each node k transmit the K-channel signal zi

k = Wi H
k y to its neigh-

bors, i.e. its own node-specific estimated signal. The parametriza-
tion of the Wi

k at node k in iteration i then becomes

Wi
k =

 O
Wi

kk
O

+ ∑
q∈Nk

Wi
qG

i
kq , (8)

with O denoting an all-zero matrix of appropriate dimension, and
with Nk denoting the set of nodes that are connected to node k, node
k excluded. The matrices Gi

kq are constrained to all-zero matrices
if there is no connection between node k and node q. Notice that (8)
provides an implicit definition of the Wi

k’s.

4.1 Loss of optimality
In this section, we briefly explain why DANSEK cannot achieve the
optimal estimators when using parametrization (8). Since the con-
vergence analysis becomes very complex for non-trivial networks,
we explain this via a simple two-node network1

Theorem 4.1. Consider a two-node network. Let
{Ŵ11,Ŵ22,Ĝ12,Ĝ21} be an equilibrium setting of the DANSEK
algorithm using parametrization (5). Assuming Ĝ12Ĝ21 6= IK ,
then the setting {W11,W22,G12,G21} defined by

W11 = Ŵ11
(
IK −Ĝ12Ĝ21

)
W22 = Ŵ22

(
IK −Ĝ21Ĝ12

)
G12 = Ĝ12

G21 = Ĝ21

1Notice that a two-node network is automatically fully connected, so
that parametrization (8) is not needed. However, here we do use (8) for
illustrative purposes.
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is an equilibrium setting of the DANSEK algorithm using
parametrization (8). Both parametrizations produce the same es-
timators at both nodes.

Proof. Omitted.

The dual formulation of this theorem also holds. Notice that
this theorem does not make any claim on convergence of the algo-
rithm nor on the optimality of the equilibria. Simulations on a two-
node network show that convergence does not always occur when
parametrization (8) is used, even when an equilibrium setting exists
and when the condition Ĝ12Ĝ21 6= IK in theorem 4.1 is satisfied.

Theorem 4.1 reveals a fundamental problem of parametrization
(8) if the node-specific desired signals are linear combinations of a
latent K-dimensional random process, i.e. if (1) holds with K = Q.
In [2] it is proven that in this case, the fully connected DANSEK
algorithm with parametrization (5) has a unique equilibrium set-
ting, in which Ĝ12 = A−H

2 AH
1 and Ĝ21 = A−H

1 AH
2 , and therefore

Ĝ12Ĝ21 = IK . This case was excluded in theorem 4.1. It can be
shown that for any network with J nodes, the DANSEK algorithm
loses its optimality properties when parametrization (8) is used:

Theorem 4.2. Consider a network with J nodes. If (1) holds
with K = Q, then the optimal estimators Ŵk given in (4) can-
not be an equilibrium setting of the DANSEK algorithm that uses
parametrization (8).

Proof. Omitted.

Notice that it are exactly the assumptions that guarantee con-
vergence to (4) in the fully connected parametrization (5), that now
exclude the usage of parametrization (8).

4.2 Direct and indirect feedback
The fundamental problem with parametrization (8) may be referred
to as ‘feedback’. This term refers to the fact that the contribution
of the sensor signals yk provided by node k is also present in the
signals zi

q that node k receives from the neighboring nodes q ∈Nk.
This results in a solution space for the DANSEK algorithm that does
not contain the optimal estimators (4), which is pointed out by the-
orem 4.2.

Furthermore, the feedback that results from parametrization (8)
also has a negative influence on the dynamics of the DANSEK al-
gorithm. Indeed, a node optimizes its MMSE cost function with
respect to its current inputs, but is not aware of the fact that these
inputs immediately change after its own update. Intuitively, this ex-
plains why it is harder to obtain convergence. Also, feedback makes
the analysis of the system much more difficult, and the stability of
the equilibria are difficult to predict.

In the remaining of this paper, we distinguish between two
forms of feedback: direct and indirect feedback. Direct feedback
is caused by the feedback path from node k to a neighboring node q
and back to node k. In section 4.3, we show that this type of feed-
back can be easily controlled. Indirect feedback is more difficult
to deal with. It occurs when a signal transmitted by node k travels
through a path in the network, containing more than two different
nodes, and eventually arrives again at node k. In section 5, we will
avoid indirect feedback by using direct feedback cancellation and
by constraining the network to a tree topology.

4.3 Direct feedback cancellation
To avoid direct feedback, each node must send a different signal to
each of its neighbors. Let zkq denote the signal that node k transmits
to node q, then direct feedback is avoided by choosing

zi
kq = Wi H

kk yk + ∑
l∈Nk\{q}

Gi H
kl zi

lk , (9)

which can also be written as

zi
kq = Wi H

k y−Gi H
kq zi

qk . (10)

6
5

7

2

1

3

4

9

8

Figure 1: Example of a graph with tree topology with 9 sensor
nodes.

Notice that these expressions are implicit definitions of the zi
kq’s,

since it is difficult to obtain a general closed form expression due
to the remaining indirect feedback. Instead, the expressions (9) and
(10) should be viewed as a definition of the process to compute the
signal zi

kq, given the signals that node k receives from its neighbor-
ing nodes.

Letting each node send a different signal to all of its neigh-
bors causes a significant increase in bandwidth, especially for nodes
with many connections. An alternative to avoid direct feedback is
to let node k broadcast the same signal to all of its neighbors, i.e.
zi

kq = zi
k = Wi H

k y, ∀q 6= k, and let the neighbors cancel their own
feedback component. Indeed, node q has both the signals Wi H

k y

and zi
qk = zi

q at its disposal, and therefore node q itself can subtract
the second term in (10), instead of node k. Node q then of course
needs to know the coefficients of Gi

kq, which must be transmitted
by node k, and re-transmitted each time this variable is updated.
This will cause a minor increase in the necessary communication
bandwidth, assuming that the update rate is significantly lower than
the sampling rate of the sensors.

5. DANSEK IN A NETWORK WITH A TREE TOPOLOGY

As mentioned in section 4, direct feedback can be cancelled with
only a minor increase in bandwidth. Unfortunately, indirect feed-
back is more difficult to cancel. However, if direct feedback is can-
celled, the data diffuses through the graph in a one-way direction,
i.e. data sent by node k over an edge of the network graph cannot
return to node k through the same edge in opposite direction. A tree
topology with direct feedback cancellation thus automatically re-
moves indirect feedback, since it contains no cycles. In this section,
we will extend the DANSEK algorithm to operate in such networks.

5.1 Spanning tree

In the sequel, we assume that the network graph has been pruned to
a spanning tree of the initial graph. A non-tree graph has multiple
possible spanning trees, in which case it is desirable to choose the
optimal spanning tree, where optimality can be defined in differ-
ent ways. For example, the total transmit power can be minimized
by determining a minimum spanning tree with e.g. Kruskal’s al-
gorithm [7]. One could also minimize the maximum number of
hops between any pair of nodes to minimize the transmission de-
lay. This problem is known as the ‘minimum diameter spanning
tree problem’ (MDST). Hybrid approaches are possible, in which a
minimum spanning tree is calculated under a constraint that lim-
its the maximum number of hops. This is known as the ‘hop-
constrained minimum spanning tree problem’ (HC-MST). Another
relevant problem is the ‘optimal communication spanning tree prob-
lem’ (OCST). An overview of different spanning tree problems, in-
cluding the ones stated here, can be found in [8].
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Figure 2: The DANSEK scheme in a graph with a line topology.

5.2 The DANSEK algorithm in a tree
In a tree topology, (9) can be easily solved by substition, where
the leaf nodes act as starting points. Indeed, if k is a leaf node,
then zi

kq = Wi H
kk yk, which does not contain contributions of any

other node. For the sake of an easy exposition, we assume that a
node k transmits a different signal to each of its neighbors, i.e. the
signal zi

kq as in (10). Notice that this is equivalent to using a direct
feedback cancellation approach, as explained in section 4.3, which
is much more efficient in terms of communication bandwidth.

As in the fully-connected DANSEK algorithm, a node k trans-
mits a K-channel signal zi

kq to a node q ∈Nk, which can be trans-
formed by a K×K matrix Gi

qk in the receiving node q. Again, we
assume Gi

kk = IK for any i to minimize the degrees of freedom. We
also assume that Gi

kq = OK×K for any i if k /∈Nq, with OK×K de-
noting an all-zero K×K matrix. Fig.2 illustrates this scheme for
a graph with a line topology, which is a subgraph of the graph in
Fig.1.

We also make the following changes in notation with respect to
section 3: Matrix Gi

k−q now denotes the matrix containing all Gi
kn

matrices for which n ∈Nk\{q}. Vector zi
−k now denotes the vector

in which all K-channel signals zi
qk are stacked, for all q ∈Nk.

Let P denote an ordered set of nodes that contains all nodes in
the network, possibly with repetition of nodes. Let Pj denote the
j-th element in this set and let |P| denote the number of elements in
P. The DANSEK algorithm now consists of the following steps:
1. Initialize

i← 0
k← P1
∀ q ∈ {1, . . . ,J} : Wqq ←W0

qq, Gq−q ←G0
q−q, where W0

qq

and G0
q−q are random matrices of appropriate dimension.

2. Node k updates its local parameters Wi
kk and Gi

k−k to mini-
mize the local MSE, based on its inputs consisting of the sensor
signals yk and the compressed signals zi

qk, that it receives from
its neighboring nodes q ∈ Nk. This corresponds to solving a
smaller local MMSE problem:[

Wi+1
kk

Gi+1
k−k

]
= argmin

Wkk ,Gk−k

E
{
‖dk−

[
WH

kk |G
H
k−k

][
yk
zi
−k

]
‖2

}
.

(11)
The parameters of the other nodes do not change, i.e.

∀q ∈ {1, . . . ,J}\{k} : Wi+1
qq = Wi

qq, G
i+1
q−q = Gi

q−q . (12)

3. i← i+1
k← Pt with t = (i mod |P|)+1

4. Return to step 2

The reason for introducing the updating order defined by P will
become clear in the following section.

5.3 Convergence and optimality
Notice that a tree defines a unique path between any pair of nodes,
assuming that an edge can only be used once in a path. Let Pp1→pt =
(p1, p2, . . . , pt−1, pt) denote the ordered set of nodes defining the
unique path from node p1 to node pt . Define

Gi
p1←pt

= Gi
pt−1 pt

Gi
pt−2 pt−1

. . .Gi
p2 p3

Gi
p1 p2

(13)

with p j denoting the j-th node that is visited in the path Pp1→pt .
We define Gi

k←k = Gi
kk = Ik. The order of the G’s in (13) must

be the same as the order of the edges in the inverse path Pp1←pt .
For example, the matrix Gi

1←8 for the graph depicted in Fig.1 is
Gi

1←8 = Gi
48G

i
34G

i
13. This structure is clearly visible in the net-

work with line-topology of Fig.2, which is a subgraph of the graph
in Fig.1, defined by the path P1→8. Notice that Gi

8←1 = Gi
1→8 =

Gi
31G

i
43G

i
84.

The parametrization of the Wi
k at node k in iteration i is now

Wi
k =

 Wi
11G

i
k←1

...
Wi

JJG
i
k←J

 . (14)

Notice that (14) defines a solution space for Wi
k that depends on

the network topology.
In the beginning of this paper, we assumed that all desired sig-

nals dk are in the same K-dimensional signal subspace, as indicated
by (1) with K = Q. From (4), we know that in this case

∀ k,q ∈ {1, ...,J} : Ŵk = ŴqAkq (15)

with Akq = A−H
q AH

k . Formula (15) shows that all columns of Ŵk
for any k are in the same K-dimensional subspace. This means that
the set of Ŵk’s belongs to the solution space used by the DANSEK
algorithm as specified by (14). Indeed, by setting Wi

kk = Ŵkk for
any k, and by setting the non-zero Gi

kq matrices equal to Gi
kq =

Akq, we automatically have that Gi
k←l = Akl for any k and l, since

AnlAkn = Akl , for any k,l and n.
The following theorem provides a sufficient condition on the

updating order P for DANSEK to guarantee convergence to the op-
timal estimators.

Theorem 5.1. Consider a connected graph with a tree topology.
Let P denote an ordered set of nodes that defines a path through
the graph that starts in k and ends in any q ∈ Nk, such that
∀ t ∈ {1, . . . ,J} : t ∈ P. If (1) holds with K = Q, then the DANSEK
algorithm as described in section 5.2 converges for any initializa-
tion of its parameters to the MMSE solution (4) for all k.

Proof. Omitted.

The theorem states that the updating order of the nodes must
correspond to a cyclic path through the network. This means that
if node k updates in iteration i, then the node updating in iteration
i + 1 will be in Nk. For example, for the graph in Fig.1, a possible
choice for P is P = (1,3,2,3,4,9,4,8,4,6,5,6,7,6,4,3).

Extensive simulations show that the condition in theorem 5.1
on the updating order P is sufficient, but not necessary. In fact, the
algorithm always appears to converge, regardless of the updating
order of the nodes (see also section 6). This is stated here as an
observation since a proof is not yet available. However, choosing
an updating order satisfying the condition in theorem 5.1 usually
results in a faster convergence for the majority of the nodes.
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Figure 3: The least-squares cost of node 1 over 50 iterations for 3
different cases, computed in batch mode.

6. SIMULATIONS

In this section, we provide batch mode simulation results for the
DANSE3 algorithm in the network depicted in Fig.1. The network
contains 9 nodes (J = 9), each having 10 sensors (M = 90). The
dimension of the latent variable d is Q = K = 3. All three sig-
nals in d are uniformly distributed random processes on the interval
[−0.5,0.5] from which 10000 samples are generated. All sensor
measurements correspond to a random linear combination of the
three generated signals to which zero-mean white noise is added
with half the power of the signals in d. The Wkk variables are
initialized randomly, whereas the Gkq variables are initialized as
all-zero matrices. All evaluations of the cost functions of the differ-
ent nodes are performed on the equivalent least-squares (LS) cost
functions.

The results are shown in Fig.3 and Fig.4, showing the LS cost
of node 1 and node 9 respectively versus the iteration index i. No-
tice that one iteration corresponds to the time needed for a node to
estimate the statistics of its inputs and to calculate the new parame-
ter setting. Three different cases are simulated. In the first case, the
network is assumed to be fully connected, and the updating is done
in a round-robin fashion. In the second and third case, the network
has the tree topology shown in Fig.1. In case 2, the updating or-
der is P1 = (1,3,2,3,4,9,4,8,4,6,5,6,7,6,4,3), which satisfies the
condition of theorem 5.1, whereas in case 3 the updating order is
P2 = (1,2, . . . ,9), i.e. round-robin, and so the condition of theorem
5.1 is not satisfied.

In general, the convergence speed of the fully connected net-
work is faster than in the network with tree topology, which is best
visible here in Fig.4. Remarkably, the updating order P1 yields
faster convergence than P2 in both node 1 and node 9, despite the
fact that the update rate of these nodes is higher in the round-robin
case. As mentioned already in section 5.3, this holds for the major-
ity of the nodes.

7. CONCLUSIONS

In this paper, we have extended the DANSEK algorithm, introduced
in [2, 3] for a fully connected sensor network, to a multi-hop net-
work with a tree topology. The necessary communication band-
width remains roughly the same as in the fully connected case, as-
suming that the sampling rate of the sensors is significantly higher
than the update rate of the variables in the algorithm. It is argued
that feedback is to be avoided, since it harms the convergence and
optimality properties of the DANSEK scheme. Direct feedback can
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Figure 4: The least-squares cost of node 9 over 50 iterations for 3
different cases, computed in batch mode.

be cancelled easily, whereas indirect feedback is more difficult to
cancel. Therefore, a tree topology is the natural choice for this
scheme, since it has no cycles, which allows to control indirect feed-
back. A condition is given on the updating order of the nodes to
guarantee convergence to the optimal estimators. Simulations show
that this condition is sufficient but not necessary.
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