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ABSTRACT
In this paper, we propose an energy-based technique to track the
power of multiple simultaneous speakers using an ad hoc micro-
phone array with unknown microphone positions. By considering
the short-term power of the microphone signals, the problem can
be converted into a non-negative blind source separation (NBSS)
problem. By exploiting the prior knowledge that the source signals
are non-negative and well-grounded, very efficient algorithms can
be used to solve this NBSS problem, based only on second order
statistics. We provide simulation results that demonstrate the effec-
tiveness of the presented algorithm.

Index Terms— Signal detection, Random arrays, Voice activity
detection

1. INTRODUCTION

Many speech processing algorithms make use of a voice activity de-
tector (VAD), i.e. an algorithm that decides whether a speech source
is active or not. However, most VAD’s assume that there is a single
speech source, and are therefore unreliable in scenario’s with mul-
tiple speakers. Furthermore, it is sometimes desirable that the VAD
is able to distinguish between different speakers, e.g. in noise re-
duction algorithms where the noise signal is a speaker that interferes
with the target speaker.

Since different speakers have different positions, the design of a
multi-speaker VAD can rely on spatial information collected by mul-
tiple microphones. In [1], a far-field multi-speaker VAD is proposed
for a microphone array with known microphone positions. The al-
gorithm uses independent component analysis (ICA), K-means clus-
tering, and beam-pattern analysis, which makes it very complex.
In this paper, we use an energy-based approach that does not ex-
ploit any prior knowledge on the geometry of the array. It is suited
for applications that make use of an ad hoc microphone array with
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widely spaced microphones (e.g. [2,3]). This is for instance the case
in video conferencing applications where each participant brings a
device with built-in microphones, such as a laptop or PDA. Since
most of these devices have WiFi technology, they can be linked to
form an ad hoc network [2, 4]. The presented algorithm also does
not assume any accurate synchronization between the microphone
sampling clocks, which is very convenient, e.g. in the mentioned
scenario with different devices. The VAD algorithm provides an
estimate of the instantaneous power of each speech signal at each
microphone.

By using short-term power measurements at the different mi-
crophones, the multi-speaker VAD problem can be converted into a
blind source separation problem with non-negative sources, which
can be solved efficiently with second order statistics only. We pro-
vide simulation results to demonstrate the effectiveness of the pre-
sented algorithm.

2. PROBLEM STATEMENT AND DATA MODEL

Consider a scenario with N speakers and an ad hoc microphone ar-
ray with J microphones. It is assumed that the microphones are
spatially distributed such that the captured power from any speech
source varies over the different microphones. We assume that the
number of speakers N is known. If not, a prior step is needed to
estimate N from the microphone signals, e.g. with PCA.

The N speakers produce the speech signals s̃n[t], n = 1 . . . N ,
where t denotes the sample time index. LetL denote the block length
over which the instantaneous power of a signal is measured. We
define the signal sn[k] as

sn[k] =
1

L

L−1∑
l=0

s̃n[kL+ l]2 (1)

i.e. sn[k] contains the instantaneous power of the signal s̃n at sam-
ple time kL (k is a frame index). The sn[k] signals are stacked in an
N -dimensional vector s[k]. In the sequel, we will use the symbol s
without the index [k] to refer to the underlying random process that
generates the samples s[k]. Similarly to (1), we define the instanta-
neous power in the j-th microphone signal as

yj [k] =
1

L

L−1∑
l=0

ỹj [kL+ l]2 (2)

where ỹj [t] denotes the j-th microphone signal. The yj [k] signals
are stacked in a J-dimensional vector y[k].

If we assume that the signals s̃n, n = 1 . . . N , are mutually
independent, and if we neglect reverberation effects over the block



edges, we can model y[k] according to

y[k] ≈ As[k] , ∀ k ∈ N (3)

where A is a J × N mixing matrix, for which the element [A]jn
denotes the power attenuation between speaker n and microphone j.
It is assumed that the mixing matrix A has full column rank. Notice
that L yields a trade-off between time resolution and model mis-
match. The larger the value of L, the better the approximation (3)
holds, but the worse the time resolution becomes. Furthermore, if
there is significant reverberation, this will also affect the approxima-
tion (3) (especially when L is small). However, we will demonstrate
in section 4 that our VAD algorithm is still able to provide satisfying
results under limited reverberation.

Our goal is to find both A and s[k], which would allow us to
compute the instantaneous power of each speaker at each micro-
phone, and then to run a VAD for each speaker separately. Notice
that this is a blind source separation (BSS) problem in which the
source signals are non-negative. In [5], this is referred to as a non-
negative independent component analysis (NICA) problem. Expres-
sion (3) can also be described in the frequency domain to allow for a
multi-speaker VAD in separate frequency bins. However, as with all
frequency domain BSS problems, a post-processing stage must then
be added to resolve the permutation ambiguity between the different
frequency bins. We will not take this into consideration in this paper.

Notice that we did not incorporate any noise in the data model.
However, a localized noise source with non-stationary noise power,
can readily be included in s as an additional source signal. On the
other hand, diffuse noise with stationary power results in a constant
noise floor, which can be easily estimated and subtracted from y[k].
If required, noise estimation techniques, such as [6–8], can be used
to track the power of a non-stationary diffuse noise. In the sequel, we
assume that either noise power is subtracted from the signal y[k], or
that localized noise sources are included in s, so that (3) is satisfied.
In section 4, simulation results will demonstrate that the proposed
VAD algorithm can still provide satisfying results when some resid-
ual noise power remains in y[k]. The residual noise then results in a
non-zero noise floor on the unmixed signals.

3. SOLVING THE NON-NEGATIVE BSS PROBLEM

3.1. Well-grounded sources

The prior knowledge on the non-negativity of the source signals in s
can be exploited to design algorithms that are simpler compared to
traditional ICA algorithms. In this paper, we exploit an additional as-
sumption, i.e. the sources are assumed to be well-grounded [9]. This
means that all sources have a non-zero pdf in any positive neighbor-
hood of zero, i.e. ∀ δ > 0: Pr(sn < δ) > 0, for all source signals
sn, n = 1 . . . N . Because speech signals typically have an on-off
behavior, the signals sn, n = 1 . . . N , can be assumed to be well-
grounded.

In [5], the non-negative principal component analysis (NPCA)
algorithm is introduced, which solves NICA problems with well-
grounded source signals. NPCA is a gradient-based learning algo-
rithm, and its performance heavily depends on the chosen learning
rate, as we will demonstrate in section 4.

To avoid a step size search, we will use a multiplicative NICA
(M-NICA) algorithm instead, which also exploits the well-grounded
properties of the source signals [10]. M-NICA is a fixed-point type
algorithm that has the facilitating property that it does not depend on
a user-defined learning rate. In the next section, we will briefly de-
scribe M-NICA. Even though the simulation results of our speaker

dependent VAD are performed in a real-time context, we will de-
scribe the algorithm in batch-mode, for the sake of an easy exposi-
tion. For a detailed description of an adaptive sliding window imple-
mentation of M-NICA, we refer to [10].

3.2. The M-NICA algorithm

Assuming that the source signals s are non-negative and well-
grounded, it can be shown that it is sufficient to find an N × J
unmixing matrix K such that the entries in the unmixed signal
ŝ = Ky are mutually uncorrelated and non-negative [9, 10]. There-
fore, M-NICA is entirely based on second order statistics.

Assume we collect a J × M data matrix Y that contains M
samples y[k], k = 0 . . .M − 1, in its columns. The goal is to find
anN ×M matrix S = KY such that the rows of S are uncorrelated
and only contain non-negative numbers. The following fixed-point
type algorithm is used to generate such a matrix [10]:

1. Initialization:

(a) ∀ n = 1 . . . N,∀m = 1 . . .M : [S]nm ← [Y]nm

(b) Replace Y by its best rank N approximation by means
of the singular value decomposition (SVD), i.e.

{U,Σ,V} ← SVD (Y) (4)

Y ← U Σ V
T

(5)

where Σ is the N ×N diagonal matrix containing the
N largest singular values1 of Y on its diagonal, and
where the corresponding left and right singular vectors
are stored in the columns of U and V respectively.

2. Decorrelation step:

∀ n = 1 . . . N,∀m = 1 . . .M :

[S∗]nm ← [S]nm

[
SSTΛ−1

1 S + SSTΛ−1
1 S + Λ2S

]
nm[

SSTΛ−1
1 S + SSTΛ−1

1 S + Λ2S
]
nm

(6)

with

S =
1

M
S 1M1T

M (7)

Cs = (S− S)(S− S)T (8)
Λ1 = D {Cs} (9)

Λ2 = D
{(

Λ−1
1 Cs

)2}
(10)

where 1M denotes an M -dimensional column vector in
which each entry is 1, and where D{X} denotes the operator
that sets all off-diagonal elements of X to zero.

3. Signal subspace projection step:

∀ n = 1 . . . N,∀m = 1 . . .M :

[S]nm ← max
([

S∗ V V
T
]
nm

, 0
)
. (11)

4. Return to step 2.

In the decorrelation step (6), the elements of the matrix S are
updated to decrease the mutual correlation between the rows of S.

1Notice that, if noise were present, this step will remove some noise from
the observations. In the noise-free case, Y has exactly N non-zero singular
values.
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Fig. 1. The acoustic scenario, containing N = 3 speakers (♦) and
J = 6 microphones (�).

Since S is initialized with non-negative elements, the decorrelation
step (6) will preserve the non-negativity due to its multiplicative na-
ture. However, the rows of the resulting matrix S are no longer in
the signal subspace defined by the rows of Y. Therefore, the matrix
S is projected to the row space of Y in (11). For a more detailed
derivation of the updating formulas, we refer to [10].

When a fixed point of (6)-(11) is found, the elements in each row
of S correspond to samples of the unmixed signal ŝ[k]. The mixing
matrix Â that corresponds to ŝ, can then be computed as

Â = YST
(
SST

)−1

. (12)

Notice that there always remains a permutation and scaling ambi-
guity between the columns of Â and the signals in ŝ. However, in
the multi-speaker VAD application, we are interested in the speech
energy of each target speaker in each microphone signal. Let vjn[k]
denote the speech energy of speaker n in microphone j at time in-
stant k. Each value vjn[k], j = 1 . . . J , n = 1 . . . N , k = 1 . . .M
can then be estimated as

v̂jn[k] =
[
Â
]
jn
ŝn[k] . (13)

4. SIMULATIONS

In this section, we provide simulation results for the multi-speaker
VAD algorithm based on M-NICA. To compare, we also provide
simulation results for the case where (3) is solved with NPCA, with
different learning rates η (for a description of this algorithm, we refer
to [5]). We simulate a cubical room (5m × 5m × 5m) with N = 3
randomly placed speakers (♦), all of them talking simultaneously,
and J = 6 randomly placed microphones (�), as shown in Fig.
1. The microphone signals are generated by means of the image
method [11]. Unless stated otherwise, we compute the instantaneous
power of the source signals and the microphone signals over time
intervals of 30ms, which corresponds to L = 480 in (1)-(2), when
the sampling frequency is fs = 16kHz. This is the typical time
duration for which a speech segment is assumed to be stationary.
However, better performance can be obtained when a larger value is
chosen for L, at the cost of a lower time resolution.

To produce a real-time output, a sliding window version of
NPCA and M-NICA is implemented (see [10]). This means that the
different iterations of the batch-mode versions of both algorithms
are applied on a finite time window that shifts over the signals2.

2In our simulations, we perform one iteration for each sample shift of

Samples that enter the window are first unmixed with an unmixing
matrix that is computed from the previous samples in the window.
The choice of the window length K introduces a trade-off: if K is
chosen too small, then the independency assumption may be vio-
lated within one window length. On the other hand, a large value
for K will affect the convergence time and the tracking capabilities
of the VAD algorithm. In this experiment, the length of the sliding
window is chosen to be K = 200, which is observed to provide
satisfying results.

We use the mean of the signal-to-error ratios (SER) to assess the
performance of the multi-speaker VAD algorithm, i.e.

SER =
1

JN

∑
j,n

10 log10

∑
k v̂jn[k]

2∑
k(v̂jn[k]− [A]jn sn[k])

2
(14)

where v̂jn[k] is defined by (13). Since we consider a sliding window
implementation, the SER is computed over the K samples in the
sliding window, and thus updated for each window shift.

Fig. 2 shows the original source energy of source 1. Further-
more, it shows the variation of the mean SER in the output of the
VAD algorithm based on M-NICA and on NPCA for different values
of η. It is observed that the performance of NPCA heavily depends
on the choice of η. If η is chosen too small (e.g. η = 0.5), or too
large (e.g. η = 2), the performance degrades significantly. The best
overall performance is obtained for η = 1.5. M-NICA is observed
to converge slightly slower than NPCA, but after convergence, it out-
performs NPCA for any choice of η.

As mentioned in section 2, reverberation affects the performance
of the VAD algorithm, since approximation (3) then becomes less ac-
curate. Fig. 3(a) plots the mean SER as a function of the reflection
coefficient of the walls in the room (the SER is averaged over the
last 10 seconds of the signal). For significant reverberance, the algo-
rithm still manages to unmix the signals at a SER of approximately
8 dB, which is sufficient to make reliable VAD decisions. When L
is doubled, i.e. L = 960, it is observed that the SER increases (at a
cost of a lower time resolution).

As mentioned in section 2, it is assumed that any noise power
is removed from y[k]. If some residual noise remains in y[k], the
performance of the VAD algorithm decreases. We model residual
noise by adding a stationary white noise source to each microphone
signal ỹj [t], j = 1 . . . J , resulting in a constant noise floor in y[k].
Each microphone signal has an equal amount of residual noise, and
no noise power is substracted from y[k]. Fig. 3(b) shows the SER as
a function of the signal-to-noise ratio (SNR) at the microphone with
highest SNR. It is observed that the VAD algorithm still produces
an output with satisfactory SER, as long as the SNR due to residual
noise is sufficiently low. It should be noted that the decrease in SER
is mainly due to a constant noise floor in the unmixed signals. The
speech segments that have a higher power than this noise floor can
still be detected, and are observed to be properly separated.

5. CONCLUSIONS

In this paper, we have presented a technique to track the power
of multiple simultaneous speakers with an ad hoc microphone ar-
ray with unknown microphone positions. Since the technique is
energy-based, an accurate synchronization between the different
microphone signals is not required. By using short-term power

the window. However, to achieve faster convergence, multiple iterations can
be performed in between each sample shift of the window. This is possible,
since the window moves very slowly, i.e. every 30 ms.
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Fig. 3. SER as a function of (a) reflection coefficient of the walls
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measurements at the different microphones, the multi-speaker VAD
problem can be converted into a non-negative blind source sepa-
ration (NBSS) problem, which can be solved efficiently based on
second order statistics only. The effectiveness of the multi-speaker
VAD has been demonstrated with adaptive sliding window simula-
tions. The M-NICA algorithm presented here is observed to provide
better overall results compared to NPCA [5], and has the additional
advantage that it does not depend on a user-defined learning rate.
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