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GEVD-Based Low-Rank Approximation for
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Estimation in Wireless Sensor Networks
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Abstract—In this paper, we address the problem of distributed
adaptive estimation of node-specific signals for signal enhance-
ment or noise reduction in wireless sensor networks with multi-
sensor nodes. The estimation is performed by a multi-channel
Wiener filter (MWF) in which a low-rank approximation based
on a generalized eigenvalue decomposition (GEVD) is incorpo-
rated. In non-stationary or low-SNR conditions, this GEVD-
based MWF has been demonstrated to be more robust than
the original MWF. In a centralized realization where a fusion
center has access to all the nodes’ sensor signal observations, the
network-wide sensor signal correlation matrices and the low-rank
approximation can be directly estimated and used to compute
the network-wide GEVD-based MWF. However, in this paper
we aim to avoid centralizing the sensor signal observations, in
which case the network-wide sensor signal correlation matrices
cannot be estimated. To this end, we start from the so-called
distributed adaptive node-specific signal estimation (DANSE)
algorithm, and include GEVD-based low-rank approximations
in the per-node local computations. Remarkably, the new algo-
rithm is able to significantly compress the signal observations
transmitted between the nodes, while still converging to the
network-wide GEVD-based MWF as if each node would have
access to all sensor signal observations, even though the low-
rank approximations are applied locally at each node. We
provide a theoretical convergence analysis, which shows that
the algorithm converges to the network-wide GEVD-based MWF
under conditions that are less strict than in the original DANSE
algorithm. The convergence and performance of the algorithm
are further investigated via numerical simulations.

I. INTRODUCTION

Spatial filtering or beamforming algorithms make use of a
sensor array to exploit spatial characteristics of the sensing
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environment. However, traditional sensor arrays usually have
a limited number of closely-spaced sensors, which then results
in a rather local sampling of the spatial field [2], [3]. To collect
more diverse information on the spatial field, wireless sensor
networks (WSNs) have been introduced [4], [5], which consist
of a multitude of sensor nodes which are distributed over the
sensing environment. Each node of the WSN is equipped with
a small sensor array, a digital signal processor (DSP) and with
a wireless transceiver to communicate with other nodes.

To process the sensor signal observations of a WSN, one
possibility is to gather them in a fusion center, which allows
to compute an optimal estimate of a parameter or signal
of interest. In the sequel, we refer to this as a centralized
approach where nodes transmit their uncompressed sensor
signal observations to either the fusion center or to all other
nodes. However, this centralized approach requires a large
communication bandwidth and computational power, which
is often not practical in applications operating at high sam-
pling rate and/or with many nodes. Moreover, in many WSN
applications, the assumption about the availability of such
a powerful fusion center cannot be made. Alternatively, a
WSN further allows us to distribute the whole processing
task between all nodes. This means that nodes pre-process
their raw sensor signal observations and only share part of
their sensor data with other nodes. The nodes then cooperate
in a distributed fashion to estimate the parameter or signal
of interest. In the sequel, we refer to this as a distributed
approach, which is the main focus of this paper. In general,
since distributed approaches are more scalable in terms of their
required communication bandwidth and computational power,
they are more preferable.

A large class of estimation problems in WSNs deals with
the estimation of a common network-wide parameter or signal
of interest [6]–[11]. Recently, also other distributed estima-
tion problems have been investigated in which each node is
interested in estimating a different node-specific parameter
or signal [12]–[24]. For example, in some applications the
parameters or signals of interest must be estimated as they are
observed at the local sensors of each node. This is important
in, e.g., localization [12], speech enhancement in binaural
hearing aids [16], [18], per-sensor signal enhancement as a
pre-processing [12], [25], or blind beamforming [15], [26]–
[28].

In this paper, we focus on distributed node-specific signal
estimation rather than parameter estimation. This means that
each node aims to estimate samples of a desired signal, of
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which only noisy observations are available. Distributed node-
specific signal estimation was first introduced in the context
of binaural hearing aids speech enhancement with the aim of
preserving the spatial characteristics of the speech signal at the
two ears, where the binaural system can indeed be considered
as a 2-node WSN [18]. This approach was referred to as the
distributed multichannel Wiener filter (DB-MWF) as it is a
distributed realization of the (centralized) multichannel Wiener
filter (MWF) [29]. The distributed adaptive node-specific
signal estimation (DANSE) algorithm was then designed in
[20] to estimate a node-specific desired signal at each node
of a fully-connected WSN in a distributed fashion, which
generalizes DB-MWF to any number of nodes and to multiple
desired signal sources. Other versions of DANSE have been
developed, e.g., in [21] for other topologies, in [22] for
asynchronous node-updating, in [15] for node-specific linear
constraints, and in [23], [17] for more robust realizations.
The DANSE algorithm provides a distributed realization of
the network-wide MWF and its design relies on the assump-
tion that the node-specific desired signals share a common
(unknown) latent signal subspace [20]. By exploiting this so-
called common interest of the nodes, DANSE significantly
compresses the sensor signal observations that are transmitted
between the nodes, while still converging to the network-wide
MWF solutions as if each node would have access to all sensor
signal observations in the WSN.

The MWF is implicitly based on a low-rank approxima-
tion of a signal correlation matrix with a so-called column
decomposition [30]. However, in low SNR conditions, and for
highly non-stationary noise in particular, this signal correlation
matrix approximation may become indefinite, possibly leading
to an unstable filter [30]. Alternatively, either an eigenvalue
decomposition (EVD)-based or a generalized EVD (GEVD)-
based low-rank approximation can be applied to improve the
estimation performance in such cases. MWF with GEVD-
based low-rank approximation has been shown to deliver
the best performance, as it effectively selects the ‘mode’
corresponding to the highest SNR [30]. The resulting spatial
filter is referred to as the GEVD-based MWF.

The objective of this paper is to develop a distributed
realization of this network-wide GEVD-based MWF for node-
specific signal estimation in a fully-connected WSN1. It turns
out that a surprisingly minor modification in the DANSE
algorithm [20], [22] achieves this goal, i.e., each node merely
has to locally apply a GEVD-based low-rank approximation
using local signal correlation matrices. However, the fact that
the inclusion of these GEVD-based low-rank approximations
in the per-node local computations results in the network-
wide GEVD-based MWF is remarkable and not intuitive.
Furthermore, this minor modification has a large impact on
the convergence analysis of the algorithm, which can no longer
rely on the strategy used to prove convergence in the original
DANSE algorithm [20], [22].

Similar to the DANSE algorithm, the GEVD-based DANSE

1This is mainly for the sake of an easy exposition, since all results can be
extended to, e.g., tree topologies using similar strategies as in [21]. In [21]
it has been proved that a DANSE-based approach will not converge if the
network contains cycles, due to feedback components.

algorithm compresses the sensor signal observations at each
node into a smaller number of signal observations which are
then broadcast to the other nodes. Under some technical con-
ditions, we show that even though the GEVD-based DANSE
algorithm is not able to compute the network-wide signal
correlation matrices (and their GEVD) from these compressed
sensor signal observations, the algorithm does converge to the
network-wide GEVD-based MWF as if each node would have
access to all (uncompressed) sensor signal observations. Fur-
thermore, the conditions under which the algorithm converges
to the network-wide solution are less strict than those of the
original DANSE algorithm.

The paper is organized as follows. The data model and the
problem statement are presented in Section II. Network-wide
GEVD-based MWF is explained in Section III. The GEVD-
based DANSE algorithm and its convergence analysis are
developed in Section IV. The convergence is illustrated with
numerical simulations in Section V. Finally conclusions are
drawn in Section VI.

II. DATA MODEL

We consider K multi-sensor nodes in a fully-connected
WSN where the data broadcast by a node can be received
by all other (K − 1) nodes in the network through an ideal
wireless link. Each node k ∈ K = {1, . . . ,K} is assumed to
collect observations of a complex-valued Mk-channel sensor
signal yk. Note that this also allows for a hierarchical WSN
where K master nodes collect sensor signal observations from
Mk slave nodes each with a single sensor. yk is modeled as

yk = sk + nk = Akš + nk (1)

where š is a latent S-channel signal defining S mutually
uncorrelated latent source signals of interest to the WSN, Ak

is an unknown Mk×S complex-valued steering matrix, and nk
is additive noise which is possibly correlated over the different
nodes. The sensor signal yk is assumed to satisfy short-term
stationarity and ergodicity conditions. By stacking all yk, nk
and sk, we obtain the network-wide M -channel signals y, s
and n, respectively, where M =

∑K
k=1Mk and

y = s + n = Aš + n (2)

where A is an M × S matrix which is the stacked version of
all Ak steering matrices.

The goal for each node k ∈ K is to estimate the L-channel
signal dk which is defined as L pre-selected channels of sk,
i.e., node k aims to denoise L channels of yk, where L
can be any number between 1 and Mk. This means that the
estimation procedure will preserve the node-specific spatial
information in sk while reducing the noise nk. Without loss
of generality (w.l.o.g.), we assume that dk corresponds to the
first L channels of sk, i.e.,

dk = ET
dk

sk ∀k ∈ K (3)

where Edk is an Mk × L matrix which selects the first L
channels of sk, i.e., Edk = [IL 0]T , where IL is the L × L
identity matrix and 0 is an all-zero matrix with matching
dimensions. Note that since š and Ak are both assumed
to be unknown, nodes do not know how their node-specific
desired signals dk relate to each other, even though they are
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in the same latent signal subspace. It should be mentioned
that since all signals in (1)-(3) are assumed to be complex-
valued, the model also includes, e.g., convolutive time-domain
mixtures, described as instantaneous per-frequency mixtures in
the (short-term) Fourier transform domain.

III. NETWORK-WIDE GEVD-BASED MWF
A. Network-wide MWF

We first consider the centralized estimation problem where
we assume that all nodes transmit all their sensor signal
observations of yk to all other nodes. Therefore the objective
for node k is to estimate its node-specific desired signal dk,
from all the sensor signals in y. Node k uses an M × L
linear estimator Ŵk, which can be viewed as a network-
wide spatial filter, to estimate dk as d̂k = ŴH

k y, where
superscript H denotes the conjugate transpose operator and
where the hat (̂.) refers to the centralized approach. The MWF
[29] computes Ŵk based on the linear minimum mean square
error (LMMSE) criterion, i.e.,

ŴLMMSE
k = argmin

Wk

E

{∥∥dk −WH
k y
∥∥2} (4)

where E{.} is the expected value operator. Assuming Ryy =
E{yyH} has full rank, the unique solution of (4) is [29]:

ŴLMMSE
k = R−1yy Rydk (5)

with Rydk = E{ydHk }. Note that (5) can be rewritten as

ŴLMMSE
k = R−1yy RssÊdk (6)

where Rss = E{ssH}, and where Êdk = [0 IL 0]T is an
M×L matrix that selects the L columns of Rss corresponding
to the channels of s that are included in dk.

The sensor signal correlation matrix Ryy is often not avail-
able in practice, but can be estimated via sample averaging.
Hence, we define the M×N observation matrix Y, where each
column corresponds to an observation of y at a particular time
instant, such that Ryy can be estimated as (overline indicates
the estimation)

R̄yy ≈
1

N
YYH (7)

and when having an infinitely long observation window we can
write Ryy = limN→∞

1
NYYH . We also define the network-

wide noise correlation matrix Rnn = E{nnH}, where it is
assumed that Rnn is either known a-priori or can be estimated
from noise-only segments in the sensor signal observations
(similar to (7)). The latter can be performed when the desired
signal source has an on-off behavior, such as in speech
enhancement where Ryy and Rnn can be estimated during
‘speech-and-noise’ and ‘noise-only’ segments, respectively,
using a voice activity detection [29], [18].

Assuming s and n are uncorrelated, the signal correlation
matrix Rss can then be estimated as R̄ss = R̄yy− R̄nn. This
R̄ss can then be used together with R̄yy to compute ŴLMMSE

k

as required in (6).

B. Network-wide GEVD-based MWF

In Theory Rss is a rank-S matrix, which can be verified by
considering

Rss = E{ssH} = AΦAH (8)

where Φ = diag{φ1, . . . , φS} is an S × S diagonal matrix,
where φs = E{|šs|2}, where šs denotes the s-th channel of
š. In practice, however, the estimated R̄ss generally has a
rank greater than S, and it may even not be positive semi-
definite due to the subtraction R̄yy − R̄nn. In this case, it
has been demonstrated in [30] that incorporating a low rank
approximation based on either the eigenvalue decomposition
(EVD) of R̄ss or the generalized eigenvalue decomposition
(GEVD) of R̄yy and R̄nn enhances the estimation perfor-
mance of the MWF, especially in low-SNR conditions. The
GEVD-based rank-R approximation has been shown to deliver
the best performance, as it effectively selects the R ‘modes’
corresponding to the highest SNR [30]. In the rest of this
section, the network-wide GEVD-based MWF is explained in
detail.

In order to perform a GEVD of the ordered matrix pair
(R̄yy, R̄nn), each generalized eigenvector (GEVC) and its
corresponding generalized eigenvalue (GEVL), x̂m and λ̂m
(m = 1 . . .M), respectively, must be computed such that
R̄yyx̂m = λ̂mR̄nnx̂m [31], or equivalently

R̄yyX̂ = R̄nnX̂L̂ (9)

where X̂ = [x̂1...x̂M ] and L̂ = diag{λ̂1 . . . λ̂M}. It can
be shown that the GEVD in (9) extracts the directions with
maximal SNR, similar to how principal component analysis
extracts the directions with maximal variance [31], [32]. Note
that when R̄nn is invertible, (9) can be written as a non-
symmetric EVD as

R̄−1nnR̄yy = X̂L̂X̂−1. (10)

In the sequel, we assume w.l.o.g. that the GEVLs in L̂ are
sorted in descending order, i.e., with λ̂1 the largest GEVL.
This GEVD is equivalent to a joint diagonalization of R̄yy

and R̄nn which can be generally written as

R̄yy = Q̂Σ̂Q̂H , R̄nn = Q̂Γ̂Q̂H (11)

where Q̂ is a full-rank M×M matrix (not necessarily orthog-
onal), and where Σ̂ and Γ̂ are diagonal matrices. Using (10) it
can then be verified that Q̂ = X̂−H , and that L̂ = Σ̂Γ̂−1 and
that Σ̂ = X̂HR̄yyX̂ and Γ̂ = X̂HR̄nnX̂. Since the GEVCs
are defined up to a scaling, we assume w.l.o.g. that all x̂m’s
are scaled such that

X̂HR̄nnX̂ = IM (12)

where IM denotes the M ×M identity matrix. It follows then
that Γ̂ = IM and Σ̂ = L̂, i.e., (11) becomes

R̄yy = Q̂L̂Q̂H , R̄nn = Q̂Q̂H . (13)

Reconsidering y = s + n and (13), it follows that

R̄ss = R̄yy − R̄nn = Q̂L̂Q̂H − Q̂Q̂H (14)

= Q̂
(
L̂− IM

)
Q̂H . (15)

The rank-R approximation of R̄ss becomes Q̂∆̂Q̂H with ∆̂
denoting the diagonal matrix (L̂−IM ) with the M−R smallest
diagonal entries set to zero, i.e.,

∆̂ = diag {(λ̂1 − 1), . . . , (λ̂R − 1), 0, . . . , 0︸ ︷︷ ︸
M−R

}. (16)
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By replacing R̄ss with its rank-R approximation in (6), and
from (13) the network-wide GEVD-based MWF is obtained
as

Ŵk = R̄−1yy Q̂∆̂Q̂HÊdk = (Q̂L̂Q̂H)−1Q̂∆̂Q̂HÊdk (17)

= Q̂−HL̂−1Q̂−1Q̂∆̂Q̂HÊdk = Q̂−HL̂−1∆̂Q̂HÊdk

where L̂−1∆̂ = diag{1 − 1
λ̂1
, . . . , 1 − 1

λ̂R
, 0, . . . , 0︸ ︷︷ ︸
M−R

}. The

solution (17) will be referred to as the network-wide GEVD-
based MWF.

Section IV will introduce the GEVD-based DANSE al-
gorithm, which obtains the signal estimates d̂k = ŴH

k y,
i.e., the output signals of the network-wide GEVD-based
MWF in a distributed fashion, where all nodes participate in
the overall processing and only broadcast compressed sensor
signal observations.

When S is known, an obvious choice of R is R = S, which
is motivated by (8). In this case the network-wide GEVD-
based MWF (17) is (asymptotically) equivalent to the LMMSE
solution (4). However, cases where R 6= S may occur, e.g.,
when S is either not known or wrongly estimated. In such
cases, if R ≥ S, still the solution (17) is (asymptotically)
equivalent to the LMMSE solution (4)2. On the other hand
if R < S, the rank-R approximation effectively redefines
(imposes) a common latent signal subspace of dimension R
for the underlying data model, while the actual data model (1)
indeed defines a common latent signal subspace of dimension
S (see (8)). Nevertheless, it can be shown that (17) still
provides a spatial filter which extracts the R-dimensional
signal subspace with highest SNR [30]. For the sake of an
easier exposition, in the sequel we assume that S is known
and hence we set R = S and replace S by R everywhere.
This is w.l.o.g. and only for notational convenience in the
sequel. It is noted that the convergence proof in Section IV-F
is independent of the parameter S.

IV. GEVD-BASED DANSE

So far we have assumed that at each node k ∈ K, the
estimation of dk is performed based on the the entire M -
dimensional sensor signal vector y. The objective now is to
design an algorithm that computes the network-wide GEVD-
based MWF in a distributed fashion in a fully-connected WSN,
i.e., obtaining d̂k = ŴH

k y, where ŴH
k is defined in (17), at

each node k ∈ K, without broadcasting observations of the
entire sensor signal vector y. The computational load is then
shared between the different nodes, and each node k ∈ K only
broadcasts observations of a R-channel compressed signal
to the other nodes, rather than observations of its full Mk-
dimensional signal vector yk (assuming R < Mk,∀k ∈
K)3. It will be shown in the sequel that the GEVD-based

2Note that as will be discussed in Section IV, the distributed implementation
of this case requires more communication bandwidth, comparing to the case
where R = S.

3For the sake of an easier exposition, we will assume from now on that
R < Mk,∀k ∈ K. If there exists a node k for which R ≥Mk , node k should
broadcast its uncompressed sensor signal observations of yk to other nodes
as no compression can be obtained by the GEVD-based DANSE algorithm
in this case, which will become clear later.

DANSE algorithm nevertheless converges to the network-wide
GEVD-based MWF (17). The proposed algorithm is based
on a modification of the original DANSE algorithm in [20].
The algorithm derivation below includes all the necessary
ingredients of DANSE to describe the GEVD-based DANSE
algorithm. However, for more details and intuition on the
DANSE algorithm, we refer to [20].

In the sequel, we will often use the letters k and q for node
indices. A notation with the node index (.)q is used to refer
to the updating node q at iteration i of the (GEVD-based)
DANSE algorithm, whereas a notation with the node index
(.)k is used to refer to general statements that apply to all
nodes k ∈ K concurrently.

A. Simplification L = R

In general, the parameter L, which describes the number
of desired channels in (3), can be chosen independently from
R. However, for the sake of an easier exposition, but w.l.o.g.,
we will assume that L = R in the sequel and replace L by
R, which allows for a more elegant description of the GEVD-
based DANSE algorithm. Nevertheless, we explain below what
measures should be taken in the case where L 6= R.

If L < R, node k can effectively increase L to R by
adding R − L auxiliary channels in (3). As a result, dk will
fully capture the latent R-dimensional signal subspace defined
by the rank-R approximation defined in (15)-(16). In cases
where L > R, only R channels of dk will be incorporated in
the GEVD-based DANSE algorithm, as the remaining L−R
channels will not have an influence on the computations in the
algorithm. It will be shown in Remark 6 in Section IV-F that
the network-wide estimates of the remaining L−R channels
of dk can be computed from the estimates of the R channels
that were included in the algorithm.

B. Algorithm Assumptions

The GEVD-based DANSE algorithm basically assumes that
1) Ryy is full rank 2) at each node k the steering matrix
Ak is either static or slowly varying (but unknown) 3) the
signals are assumed to satisfy short-term stationarity and
ergodicity conditions 4) ‘noise-only’ segments are available
to compute the local noise statistics 5) the network has
ideal communication links 6) the network is fully-connected
(although the results can be extended to tree topologies, similar
to the original DANSE algorithm in [21]) 7) R < Mk, ∀k ∈ K
and 8) the sampling rates between the nodes are synchronized.
Essentially, these are the same assumptions and conditions as
the original DANSE algorithm in [20]–[22]. However, a major
difference is the fact that here, there is no explicit assumption
that the desired signals of the different nodes span a low-
dimensional latent signal subspace. This is because the low-
rank structure is imposed by the algorithm itself, by means of
the GEVD.

C. Algorithm Description

In GEVD-based DANSE, each node k ∈ K first com-
presses its Mk-channel signal yk into an R-channel signal
zik = FiHk yk with an Mk×R compression matrix Fik, which
changes over time and which will be defined later (see (25)),
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and then broadcasts observations of zik to all other nodes
(i is the iteration index). Consequently and compared to the
network-wide GEVD-based MWF, the algorithm reduces the
required per-node communication bandwidth by a factor of
max{(Mk/R), 1}.

Considering the stacked signal zi = [zi T1 . . . zi TK ]T , zi−k
denotes the vector zi with zik omitted. Each node k in the
GEVD-based DANSE algorithm has access to a Pk-channel
signal ỹik which is defined as ỹik = [yTk zi T−k]T , with Pk =
Mk +R(K − 1). We use a similar notation for the signal and
the noise component of ỹik, i.e., s̃ik and ñik.

In the DANSE algorithm [20], the updating node q at
iteration i solves the following local LMMSE problem:

(W̃i+1
q )LMMSE = argmin

Wq

E

{∥∥∥∥dq −WH
q ỹiq

∥∥∥∥2
}

(18)

where the solution is

(W̃i+1
q )LMMSE = (R̄i

ỹq ỹq
)−1R̄i

s̃q s̃q
Ẽdq (19)

(compare with (4)-(6)) where R̄i
ỹq ỹq

, R̄i
ñqñq

and R̄i
s̃q s̃q

=

R̄i
ỹq ỹq

− R̄i
ñqñq

are the Pq-dimensional correlation matrix
corresponding respectively to ỹiq , ñiq and s̃iq , and where Ẽdq

is a Pq×R matrix which selects the first R columns of R̄i
s̃q s̃q

.
Similar to (9)-(15), we now perform a local GEVD at node

q on the matrix pair R̄i
ỹq ỹq

and R̄i
ñqñq

, i.e.,

(R̄i
ñqñq

)−1R̄i
ỹq ỹq = X̃i

qL̃
i
q(X̃

i
q)
−1 (20)

s.t. X̃iH
q R̄i

ñqñq
X̃i
q = IPq

(21)

and based on the joint diagonalization representation we have
(similar to (13))

R̄i
ỹq ỹq

= Q̃i
qL̃

i
qQ̃

iH
q , R̄i

ñqñq
= Q̃i

qQ̃
iH
q (22)

R̄i
s̃q s̃q

= Q̃i
q

(
L̃iq − IPq

)
Q̃iH
q (23)

where Q̃i
q = (X̃i

q)
−H . When replacing R̄i

s̃q s̃q
by its GEVD-

based rank-R approximation, solution (19) becomes (compare
with (17))

W̃i+1
q = (R̄i

ỹq ỹq )−1Q̃i
q∆̃

i
qQ̃

iH
q Ẽdq (24)

where ∆̃i
q is the Pq×Pq diagonal matrix (L̃iq− IPq ) with the

Pq−R smallest diagonal entries set to zero. The compression
matrix Fiq at node q is then chosen as

Fi+1
q =

[
IMq 0

]
W̃i+1

q (25)

, i.e., it extracts the part of W̃i+1
q that is applied to the local

sensor signals only (excluding the z-signals from other nodes).
This compression rule allows for a common parameterization
of all the network-wide estimators corresponding to each node,
as explained later (see (33)). Finally node q estimates its
node-specific R-channel desired signal as d̃iq = (W̃i+1

q )H ỹiq .
The resulting GEVD-based DANSE algorithm is described in
Table I. It is noted that this algorithm is exactly the same
as the original DANSE algorithm, except for the fact that
(28) now replaces (19) in the original formulation of DANSE.
Just as DANSE converges to the network-wide MWF (6), we
will show in Subsection IV-F that this GEVD-based DANSE

TABLE I
GEVD-BASED DANSE ALGORITHM

1) Set i ← 0, q ← 1, and initialize all F0
k and W̃0

k , ∀ k ∈ K,
with random entries.

2) Each node k ∈ K broadcasts N new observations of its R-
channel compressed signal zik:

zik[iN + j] = Fi H
k yi

k[iN + j], j = 1 . . . N (27)

where the notation [.] denotes a sample index.
3) At node q:

• Compute R̄i
ỹq ỹq

and R̄i
ñqñq

via sample averaging using
the samples at times iN + 1 up to (i + 1)N .

• Compute Q̃i
q and ∆̃i

q from the GEVD of
(R̄i

ỹq ỹq
, R̄i

ñqñq
) similar to (20)-(23).

• Compute the local MWF with rank-R approximation of
R̄i

s̃q s̃q
as in (24):

W̃i+1
q = (R̄i

ỹq ỹq
)−1Q̃i

q∆̃
i
qQ̃

iH
q Ẽdq (28)

• Update the compression matrix as in (25)

Fi+1
q =

[
IMq 0

]
W̃i+1

q (29)

4) Other nodes k ∈ K \ q update their parameters as W̃i+1
k =

W̃i
k and Fi+1

k = Fi
k .

5) Each node k ∈ K estimates the next N samples of its Mk-
channel signal dk , as

d̃i
k[iN + j] = (W̃i+1

k )H ỹi
k[iN + j] (30)

6) i← i + 1 and q ← (q mod K) + 1 and return to step 2.

algorithm indeed converges to the network-wide GEVD-based
MWF (17). Despite this remarkably elegant similarity, the
convergence of GEVD-based DANSE to (17) is far from
trivial, and can not rely on the convergence results in [20]
for the original DANSE algorithm.
Remark 1. In order to ensure that the updates of the GEVD-
based DANSE algorithm in Table I are well-defined in each
iteration, for the time being, we make these assumptions:
• ∀i ∈ N, the matrices R̄i

ỹq ỹq
and R̄i

ñqñq
are full rank.

• ∀i ∈ N, the (R + 1) largest GEVLs of (R̄i
ỹq ỹq

, R̄i
ñqñq

)
are distinct (with algebraic multiplicity 1), i.e.,

∃ε > 0,∀i ∈ N,∀n ∈ {1, . . . , R} : |λ̃in − λ̃in+1| > ε
(26)

where λ̃in is the n-th GEVL of (R̄i
ỹq ỹq

, R̄i
ñqñq

) (see 20).

This guarantees that W̃i
q is well defined in each iteration. It

is noted that the assumptions are merely made for the sake of
an easy exposition, and although they are mostly satisfied in
practice, we briefly describe in Appendix B how the algorithm
can be modified in the rare cases where the assumptions are
violated.

D. Parameterization of the solution space

Before proving convergence and optimality of the GEVD-
based DANSE algorithm, we provide some intuition on the
parameterization of its solution space.

We first define a partitioning of the network-wide GEVD-
based MWF in (17) as Ŵk = [Ŵk1 . . .ŴkK ]T with Ŵkn

denoting4 the Mn×R submatrix of Ŵk that is applied to the

4Note that in few instances where a notation with a node index (.)kn is
used, we merely refer to any two nodes k, n ∈ K.
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Fig. 1. GEVD-based DANSE block scheme for an updating node q in a
fully-connected WSN.

sensor signal observations yn of node n. With this we can
extract the Mk × R submatrix Wi+1

kk at each iteration of the
GEVD-based DANSE algorithm as

Wi+1
kk = [IMk

0] W̃i+1
k (31)

since this is the part of W̃i+1
k that is applied to the local sensor

signals yk. We also define an R(K − 1)×R matrix Gk−k as

Gi+1
k−k =

[
0 IR(K−1)

]
W̃i+1

k (32)

Gi+1
k−k , [(Gi+1

k1 )T . . . (Gi+1
k(k−1))

T (Gi+1
k(k+1))

T . . . (Gi+1
kK )T ]T

where submatrix Gkn is an R×R transformation matrix which
node k applies to the broadcast signal zin received from node
n ∈ K\k. Considering these notations, a block scheme of
the GEVD-based DANSE algorithm for an updating node q
is depicted in Fig. 1. When using the compression rules as
defined in (25), the network-wide filter at each node k ∈ K
can then be written as

Wi
k =


Fi1G

i
k1

...
Wi

kk
...

FiKGi
kK

 ,∀k ∈ K. (33)

It can be verified that the optimal estimators Ŵk are in
the solution space defined by the parameterization (33). This
follows from the fact that the columns of all Ŵk’s span the
same R-dimensional column space, and hence are the same
up to an R × R transformation matrix (see (17), (34)). This
R × R transformation is represented by the Gkn matrix in
(33).

If Wi
k is parameterized as (33), we have that d̃ik =

W̃iH
k ỹik = WiH

k y. The goal of the GEVD-based DANSE
algorithm is to iteratively update the parameters of (33) until
Wi

k = Ŵk, ∀k ∈ K, or equivalently d̃ik = d̂k, ∀k ∈ K.
In the rest of this section, we show the actual relationship

first between the network-wide GEVC matrix X̂ and the
network-wide GEVD-based MWF (17) and then between the

local GEVC matrix X̃i
k and the local GEVD-based MWF (24)

at node k ∈ K in GEVD-based DANSE.
We define X̂ = [x̂1 . . . x̂R] as an M × R matrix where

the columns are the principal GEVCs corresponding to the R
largest GEVLs of (R̄yy, R̄nn) in (9), i.e., the first R columns
of the network-wide matrix X̂ = Q̂−H . With this we can then
rewrite (17) as

Ŵk =
[
X̂|0M×(M−R)

]
(IM − L̂−1)Q̂HÊdk = X̂Ψ̂k (34)

where Ψ̂k is a node-specific R × R transformation matrix
defined as

Ψ̂k =
[
IR|0R×(M−R)

]
(IM − L̂−1)Q̂HÊdk . (35)

Since X̂ is independent of the node index k, (34) shows that
all Ŵk,∀k ∈ K share the same R-dimensional column space.
For future purposes, we here further introduce the partitioning

X̂ =

 X̂1

...
X̂K

 (36)

with X̂k denoting the Mk ×R submatrix of X̂ corresponding
to node k.

Similar to (17) and (34)-(35) the local GEVD-based MWF
that are computed at node k ∈ K can be written as

W̃i+1
k = (Q̃i

kL̃
i
kQ̃

iH
k )−1Q̃i

k∆̃
i
kQ̃

iH
k Ẽdk

= (Q̃i
k)−H(L̃ik)−1∆̃i

kQ̃
iH
k Ẽdk

=
[
X̃ik|0Pk×(Pk−R)

]
(̃IPk

− (L̃ik)−1)Q̃iH
k Ẽdk

= X̃ikΨ̃
i
k (37)

where X̃ik is a Pk × R matrix containing the R principal
GEVCs of (R̄i

ỹkỹk
, R̄i

ñkñk
), i.e., the first R columns of X̃i

k in
(20) and Ψ̃i

k is the R×R transformation matrix defined as

Ψ̃i
k =

[
IR|0R×(Pk−R)

]
(̃IPk

− (L̃ik)−1)Q̃iH
k Ẽdk . (38)

Note that (37) states that W̃i
k is a transformed version of the

principal GEVCs corresponding to the R largest GEVLs of
(R̄i

ỹkỹk
, R̄i

ñkñk
).

Moreover, based on (37), the compression matrix Fik (see
(25)) at each node k ∈ K can be written as

Fik = [IMk
0] X̃ikΨ̃

i
k = XikΨ̃

i
k (39)

where Xik is defined as the first Mk rows of X̃ik.

E. Communication cost and computational complexity

In each iteration i of the GEVD-based DANSE algorithm,
each node k transmits R.N and receives (K−1).R.N scalars,
where N is the number of collected samples between two
iterations. Assuming the same communication cost for the
transmitter and the receiver modules at each node, then the
total communication cost at node k at each iteration will be
K.R.N , leading to a network communication cost of K2.R.N .
In a centralized realization however, the communication cost
of each individual node and the communication cost of the
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whole network would be K.Mk.N and
∑K
k=1K.Mk.N , re-

spectively. If R < Mk, then obviously the GEVD-based
DANSE algorithm reduces the communication cost for node
k with a factor Mk/R compared to the centralized realization
(for each block of N samples). This dimensionality reduction
then also results in a reduced per-node computational complex-
ity compared to that of the centralized realization. Hence per
update, the network-wide GEVD-based MWF has a complex-
ity of O(M3), whereas the GEVD-based DANSE algorithm
has a complexity of O((Mq + R.(K − 1))3) at the updating
node q. When compared to the centralized realization, this
reductions comes at the cost of having a slower adaptation
speed or tracking performance due to the iterative nature of
the GEVD-based DANSE algorithm.

F. Convergence Analysis

First note that if we set Wi
kk = X̂kΨ̂k, Fin = X̂nΨ̂n

and Gi
kn = Ψ̂−1n Ψ̂k, ∀k, n ∈ K in (33), then we obtain

(34). This shows that the solution space of the GEVD-based
DANSE algorithm, as described by the parameterization (33),
indeed allows to obtain the network-wide GEVD-based MWF
(17) as a special case. In this section we show that under
some technical conditions, the proposed GEVD-based DANSE
algorithm converges to the network-wide GEVD-based MWF
(17), i.e., limi→∞Wi

k = Ŵk.

Remark 2. It is noted that, similar to [20]–[22], the con-
vergence analysis assumes that the correlation matrices can
be perfectly estimated using infinite observation windows,
i.e., we assume in the sequel that R̄(.) = R(.) to make
the theoretical analysis mathematically tractable. In practice,
finite observation windows are used to estimate correlations,
and therefore the convergence analysis should be viewed as
an asymptotic analysis for which the approximation accuracy
improves when larger observation windows N are used.

Theorem I. Assume that Ryy is full rank. The GEVD-
based DANSE algorithm converges for any initialization of
its parameters to the network-wide GEVD-based MWF (17),
i.e., when i → ∞ and ∀k ∈ K, d̃ik = d̂k and Wi

k = Ŵk,
where Wi

k is parameterized in (31)-(33).

Proof outline: In order to prove the theorem we first
postulate Lemma I, which describes an invariance-property
of the GEVD under a joint congruence transformation of
the defining matrix pair. Then, be it only for the sake of
an easier exposition, we introduce a new ‘virtual’ algorithm
(VA) for which the convergence analysis is more tractable.
We prove convergence of this VA to the GEVCs of Ryy and
Rnn. Finally we show that convergence of the GEVD-based
DANSE algorithm to the network-wide GEVD-based MWF
follows jointly from convergence of the VA and the invariance-
property of the GEVD proven in Lemma I.

Proof of Theorem I: We first consider the following Lemma:
Lemma I: Let V denote the matrix containing all the GEVCs
of the matrix pair (A,B) ∈ Cm×m and let Π denote the
diagonal matrix containing the corresponding GEVLs, with
the assumption that all the GEVLs in Π are distinct and the
columns of V are scaled such that VHBV = Im. Consider
an invertible matrix J ∈ Cm×m such that A = JAJH and

B = JBJH . If V and Π denotes the matrix containing all
the GEVCs and GEVLs of the transformed matrices (A,B),
where the columns of V is scaled such that V

H
B V = Im,

then V = J−HV and Π = Π.
Proof of Lemma I: From the definition of the GEVD for the

matrix pair (A,B) ∈ Cm×m, it follows that [31]

AV = BVΠ, s.t. VHBV = Im. (40)

Similarly, for the transformed matrices (A,B) we can write

A V = B V Π, s.t. V
H

B V = Im (41)

⇒JAJHV = JBJHV Π, s.t. V
H

JBJH V = Im. (42)

Left-multiplication of both sides of (42) with J−1 gives

A
(
JHV

)
= B

(
JHV

)
Π, s.t.

(
V
H

J
)
B
(
JH V

)
= Im. (43)

Since all the GEVLs of (A,B) are distinct and due to the
normalization constraints, the GEVC matrices V and V are
unique. Therefore when comparing (43) with (40) it follows
that Π = Π and that

V = JHV (44)
or alternatively, V = J−HV, which proves the Lemma.
�

Remark 3. Lemma I assumes that all the GEVLs of (A,B)
are distinct and hence the GEVCs are unique. However in
cases where this assumption is violated, e.g., when there
exists one or more GEVLs with a multiplicity greater than
one, we can only define a generalized eigenspace for each
degenerate GEVL, i.e., the GEVCs can only be defined up
to a transformation. Generally in this case we can write (44)
as V = JHVP, where P = diag{I,P1, . . . ,Pq, I}, with Pv

an unknown ρ× ρ transformation matrix corresponding to the
v-th degenerate GEVL with multiplicity ρ.

Now instead of directly considering the convergence of the
GEVD-based DANSE algorithm to the network-wide GEVD-
based MWF, for the sake of an easier explanation we first
define and analyze the simpler VA as described in Table II. In
order to make a distinction, in the case of the VA we introduce
the new notations Ri

ỹq ỹq
, Ri

ñqñq
, ỹi

q
, X̃

i

q , L̃
i

q , X
i
q , Fik and

zik, replacing Ri
ỹq ỹq

, Ri
ñqñq

, ỹiq , X̃i
q , L̃iq , X

i
q , Fik and zik,

respectively, in the GEVD-based DANSE algorithm. Basically,
the VA estimates5 X̂ in (34), instead of estimating the network-
wide GEVD-based MWF (17). It is noted that the definition
of this VA is merely to facilitate the convergence proof of the
GEVD-based DANSE algorithm.

Comparing Table I and Table II reveals that there exists
some similarities and differences between the GEVD-based
DANSE algorithm and the VA. For instance, in the VA the
compressed signals are

zik = FiHk yk = XiHk yk,∀k ∈ K (49)

5It is noted that the VA is actually equivalent to the distributed generalized
eigenvector estimation (DACGEE) algorithm, which was introduced in [32],
but without convergence proof. Here, we provide a theoretical convergence
proof of this algorithm (see Theorem II).
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TABLE II
THE VA TO ESTIMATE THE R PRINCIPAL NETWORK-WIDE GEVCS [32]

1) Set i ← 0, q ← 1, and initialize all F0
k and X0

k , ∀ k ∈ K,
with random entries.

2) Each node k ∈ K broadcasts N new R-channel compressed
observations

zi
k[iN + j] = Fi H

k yk[iN + j], j = 1 . . . N. (45)

3) At node q:
• Compute R̄

i
ỹq ỹq

and R̄
i
ñqñq

using the samples at times
iN + 1 up to (i + 1)N .

• Compute the columns of X̃
i+1

q as the R principal
GEVCs of (R̄

i
ỹq ỹq

, R̄
i
ñqñq

), normalized such that(
X̃

i+1

q

)H
R̄

i
ñqñq

X̃
i+1

q = IR.

• Partition X̃
i+1

q as

Xi+1
q =

[
IMk

O
]
X̃

i+1

q (46)

G−q =
[
O IR(K−1)

]
X̃

i+1

q (47)

and update the compression matrix as
Fi+1

q = Xi+1
q and broadcast G−q =[

GT
1 . . . GT

(q−1) GT
(q+1) . . . GT

K

]T
to all the

other nodes.
4) Each node k ∈ K\{q} updates

X
i+1
k = Xi

kGk. (48)

5) i← i + 1 and q ← (q mod K) + 1 and return to step 2.

whereas in GEVD-based DANSE we have (based on (27) and
(39))

zik = FiHk yk = Ψ̃iH
k X

iH
k yk,∀k ∈ K. (50)

Hence the collected observations at the updating node q are
different in both cases, i.e., ỹiq = [yTq zi T−q]

T in the GEVD-
based DANSE algorithm while ỹi

q
= [yTq zi T−q]

T in the
VA, leading to different correlation matrices (Ri

ỹq ỹq
,Ri

ñqñq
)

and (Ri
ỹq ỹq

,Ri
ñqñq

), respectively. However note that in both
algorithms at the updating node q the first Mq rows of ỹiq and
ỹi
q

are the same, i.e., they both contain node q’s own sensor
signals yq , whereas the other part is the same up to an R×R
transformation, if Xik would be the same as Xik in iteration i
(we will exploit this fact later). Furthermore there is another
major difference in the two algorithms that originates from the
additional broadcasting of G−q in the VA (Step 3 of Table II),
which is required to perform the updates that take place at the
other nodes k ∈ K\q (Step 4 of Table II), whereas this is
not required in the GEVD-based DANSE algorithm. Despite
all the aforementioned differences, we will later link both
algorithms to each other, such that the convergence properties
of the VA can be transferred to the GEVD-based DANSE
algorithm.

Let Xi be the concatenation of the estimation variables
Xik,∀k ∈ K in the VA, i.e.,

Xi ,

 Xi1
...
XiK

 . (51)

Moreover we introduce the notations L̃
i

q , L̃
i
q , L̂ as the R×R

submatrix that contains the R largest GEVLs of L̃
i

q , L̃iq and L̂,
respectively. We then state the following convergence theorem
for the VA

Theorem II. In the VA algorithm (Table II), the concatenated
matrix Xi converges to the matrix X̂ containing the R princi-
pal network-wide GEVCs of (Ryy,Rnn), i.e., limi→∞X

i =

X̂. Moreover limi→∞ L̃
i

k = L̂, ∀k ∈ K.
Proof: See Appendix A.

Theorem II states that the stacked matrix Xi defined in (51)
converges to the network-wide GEVCs in X̂ when using the
VA, i.e., limi→∞X

i = X̂.
In order to clarify the link between the VA and the GEVD-

based DANSE algorithm, we first study how a column trans-
formation of the compression matrix Fik (or equivalently of
the zik signals) at all nodes k ∈ K\q with an R × R node-
specific matrix Mi

k affects the dynamics of the VA, i.e., when
the compression matrix Fik = Xik at iteration i is replaced by

Fi,newk = XikM
i
k, ∀ k ∈ K\q. (52)

As a result, the new correlation matrices, namely Ri,new
ỹq ỹq

and
Ri,new
ỹq ỹq

, at the updating node q can be related to the VA case
in the form of a joint matrix congruence relation:

Ri,new
ỹq ỹq

= J̃
i

q Ri
ỹq ỹq

J̃
iH

q (53)

Ri,new
ñqñq

= J̃
i

q Ri
ñqñq

J̃
iH

q (54)

where

J̃
i

q =

 IMq
0 0

0 Mi
<q 0

0 0 Mi
>q

 (55)

with6 Mi
<q , Blkdiag(MiH

1 , . . . ,MiH
(q−1)) and Mi

>q ,
Blkdiag(MiH

(q+1), . . . ,M
iH
K ), where Blkdiag(.) is an operator

that generates a block diagonal matrix from the matrices in
its argument. Based on the result of Lemma I in (44), and
under a similar assumption as in (26), we conclude that at the
updating node q (where the GEVD is performed in Step 3 of
Table II)

X̃
i+1,new

q =
(
J̃
i

q

)−H
X̃
i+1

q ⇒ Xi+1,new
q = Xi+1

q (56)

i.e., the first Mq rows of X̃
i+1,new

q and X̃
i+1

q will be identical
and hence Xi+1

q will not be affected by the transformations
(52). In fact (56) shows the invariance property of the GEVD,
which is indeed of great importance and verifies that an R×R
node-specific transformation of the compression matrix Fik at
all nodes k ∈ K\q (at iteration i) has no impact on the first
Mq rows of X̃

i+1

q updated at node q from the GEVD for the
next iteration (Step 3 of Table II).

It is now again reiterated that the first Mq rows of ỹiq and ỹi
q

at the updating node q ∈ K are the same in both the GEVD-
based DANSE algorithm and the VA, while they only differ in
the part corresponding to the received compressed signals zi−q
and zi−q (compare Table I and Table II). Since in the GEVD-
based DANSE algorithm, the compression matrix at node k is
the same as Xik up to the R×R transformation Ψ̃i

k (see (39)),
it turns out from (56) that at iteration i, we have Xiq = Xiq .
Now using an induction argument and based on (56), when
the two algorithms are initialized with the same values, it

6It is noted that the diagonal blocks are not square here, i.e., in this case
Blkdiag(.) is not truly a block-diagonal matrix in the strict sense.
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can be concluded that the VA and the GEVD-based DANSE
algorithm will always use the same compression matrices
up to an R × R transformation on the columns, i.e., their
column space will always be the same over all iterations. More
formally, we will have that Xiq = Xiq , ∀i ∈ N, and from (39)
that Colspace(Fiq) = Colspace(Xiq), ∀i ∈ N. With this and
comparing (52) and (39), we can link the correlation matrices
in the VA and the GEVD-based DANSE algorithm as follows
(see also (53)-(55))

Ri
ỹq ỹq = J̃iq Ri

ỹq ỹq
J̃iHq (57)

Ri
ñqñq

= J̃iq Ri
ñqñq

J̃iHq (58)

where the transformation matrix J̃iq is defined as

J̃iq =

 IMq
0 0

0 Ψi
<q 0

0 0 Ψi
>q

 (59)

with Ψi
<q , Blkdiag((Ψ̃i

1)H , . . . , (Ψ̃i
(q−1))

H) and Ψi
>q ,

Blkdiag((Ψ̃i
(q+1))

H , . . . , (Ψ̃i
(K))

H). Now based on Lemma I
we can write

X̃i
q = (J̃iq)

−HX̃
i

q (60)

and hence X̃iq = (J̃iq)
−HX̃

i

q . This is indeed the key result
that links the VA in Table II with the GEVD-based DANSE
algorithm in Table I. The relationship (60) then allows to
rewrite (37) as

W̃i+1
q =

(
J̃iq
)−H

X̃
i

qΨ̃
i
q. (61)

In order to prove the convergence of (61), all ingredients of
it must converge as i→∞. So far, based on Theorem II, we
only know that X̃

i

q,∀q ∈ K converges. Hence the next step is
to verify that Ψ̃i

q,∀q ∈ K converges. Based on the definition
(38), this requires that the first R diagonal elements of L̃iq , i.e.,
L̃iq , as well as the first R rows of Q̃iH

q Ẽdq ,∀q ∈ K converge.
Similar to (36), we define Q̂ as the first R columns of the

network-wide matrix Q̂ = X̂−H with the partitioning

Q̂ , Q̂ [IR 0]
T ,

 Q̂1

...
Q̂K

 . (62)

Moreover we define a Mk ×R submatrix Qi
k as the first Mk

rows and the first R columns of Q̃i
k. The concatenation of all

Qi
k is defined as Qi, i.e.7,

Qi
k , [IMk

0] Q̃i
k [IR 0]

T
, Qi ,

 Qi
1

...
Qi
K

 . (63)

Since X̃i
q = (Q̃i

q)
−H and X̃

i

q = (Q̃
i

q
)−H , from (60) it follows

that

Q̃i
q = J̃iqQ̃

i

q
. (64)

This means that the first Mq rows of Q̃i
q are also independent

of the transformations that the matrix J̃iq in (59) applies in the

7Corresponding notations are also considered in the VA, e.g, Qi
k

and Qi.

GEVD-based DANSE algorithm, i.e, Qi
q = Qi

q
. Moreover, it

has been shown in [33] that the concatenation of the local
signal subspace estimates Qi

k
obtained based on the inversion

of X̃
i

k at each node k ∈ K, i.e, the matrix Qi, converges
to Q̂, or in particular limi→∞Q

i

k
= Q̂k,∀k ∈ K (see

(62)-(63)). Based on (64) this also holds in the GEVD-based
DANSE algorithm, i.e., limi→∞Q

i = Q̂,∀k ∈ K, or likewise
limi→∞Q

i
k = Q̂k. Finally since R < Mk,∀k ∈ K, it follows

that after convergence we have

lim
i→∞

Q̃iH
k Ẽdk = Q̂H

k Êdk , ∀k ∈ K. (65)

By relying on Theorem II (see also Theorem A.III in
Appendix A), we have that limi→∞ L̃

i

k = L̂, ∀k ∈ K.
Additionally based on (57)-(59) and the result of Lemma I,
it follows that we can further link the two algorithms in terms
of the local GEVLs such that L̃ik = L̃

i

k, ∀k ∈ K. With this
we can conclude that L̃ik, ∀k ∈ K also converges, i.e.,

lim
i→∞

L̃ik = L̂, ∀k ∈ K. (66)

Therefore considering the definitions of the R × R matrices
Ψ̂k and Ψ̃i

k in (35) and (38), we can readily conclude from
(65) and (66) that

Ψ̃∞k , lim
i→∞

Ψ̃i
k = Ψ̂k, ∀k ∈ K. (67)

Now plugging (67) and (59) into (61), and considering the fact
that after convergence of the VA, we have that limi→∞ X̃

i

k =[
X̂Tk IR . . . IR

]T
,∀k ∈ K (see also (82) in Appendix A),

gives

lim
i→∞

W̃i
k =



X̂k

(Ψ̃∞1 )−1

...
(Ψ̃∞(k−1))

−1

(Ψ̃∞(k+1))
−1

...
(Ψ̃∞K )−1


Ψ̂k, ∀k ∈ K. (68)

Comparing (68) with (32) we have that limi→∞Gi
kn =

(Ψ̃∞n )−1Ψ̂k,∀k ∈ K,∀n ∈ K\k. Hence the network-wide
parameterization (33) at each node k ∈ K can be written as

lim
i→∞

Wi
k =


Fi1G

i
k1

...
Wi

kk
...

FiKGi
kK

 =



X̂1Ψ̃
∞
1 (Ψ̃∞1 )−1Ψ̂k

...
X̂kΨ̂k

...
X̂KΨ̃∞K (Ψ̃∞K )−1Ψ̂k


= X̂Ψ̂k.

(69)
Since the righthand side of (69) is equal to the righthand side
of (34), it follows that, after the convergence of all nodes,
limi→∞Wi

k = Ŵk,∀k ∈ K and hence d̃ik = d̂k,∀k ∈ K,
which proves Theorem I.
�

Remark 4. It is noted that the original DANSE algorithm
in [20] requires strict conditions on the data model, i.e., the
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node-specific desired signals dk should share a common latent
signal subspace of dimension S, where then the compression
matrices are (Mk×S)-dimensional matrices. However, in the
GEVD-based DANSE algorithm, the rank-R approximation
effectively redefines (imposes) a common latent signal sub-
space of dimension R, where then the compression matrices
are (Mk×R)-dimensional matrices. This means that although
the existence of the common signal subspace that contains all
the dk’s motivates the low-rank approximation of Rss (see
(8)), there is no need to strictly assume this conditions on the
desired signals dk in the convergence Theorem I in order to let
the GEVD-based DANSE algorithm converge to the network-
wide GEVD-based MWF. This will be further verified in the
simulation section (see Fig. 2 and Fig. 5 in Section V), where
it is observed that, even under a data model mismatch (i.e.,
when R < S), the algorithm still converges to the network-
wide estimator, while a better noise reduction is still observed
compared to the original DANSE algorithm (see Fig. 4 and
Fig. 5).

Remark 5. The convergence analysis shows that there is a
fundamental link between the proposed GEVD-based DANSE
algorithm and the DACGEE algorithm proposed in [32] (see
Footnote 5), despite the fact that both algorithms are derived
in a different framework, i.e., distributed node-specific signal
estimation on the one hand, and distributed computation of
the network-wide GEVD on the other hand. In retrospect
however, this link between both algorithms may not be a
complete surprise, since the MWF with GEVD-based rank-
R approximation implicitly also computes a GEVD. Never-
theless, there are several differences between the algorithms
(e.g. the transmission of the G−q-coefficients), and the link
between them is due to the following three non-trivial key
properties which have been identified in Section IV-F:
• The invariance-property of the GEVD under a joint

congruence transformation of the defining matrix pair
(Lemma I).

• The fact that the compression matrices of the GEVD-
based DANSE algorithm at each node k based on W̃i

k

in (28) can be written as a node-specific R ×R column
transformation of Xik (see (39)).

• The fact that limi→∞Q
i = limi→∞Q

i = Q̂ holds,
which does not immediately follow from the conver-
gence proof of DACGEE, as the latter only shows that
limi→∞X

i = X̂.
If one of these properties would not hold, the link between
both algorithms would indeed be lost.

Remark 6. As discussed in Section IV-A cases where L > R
may happen. For such cases, the network-wide GEVD-based
MWF estimates the L-channel desired signal d̂k = ŴH

k y (see
(17)). This can be partitioned as

d̂k ,

[
d̂Rk
d̂
(L−R)
k

]
=
[
ŴR

k Ŵ
(L−R)
k

]H
y (70)

where d̂Rk is estimated by the GEVD-based DANSE algo-
rithm. Now based on (34), we can write ŴR

k = X̂Ψ̂R
k and

Ŵ
(L−R)
k = X̂Ψ̂

(L−R)
k , where Ψ̂R

k and Ψ̂
(L−R)
k are R×R and

R× (L−R) transformation matrices, respectively. It follows
then that Ŵ

(L−R)
k = ŴR

k L̂k, with L̂k = (Ψ̂R
k )−1Ψ̂

(L−R)
k

an R× (L−R) transformation matrix. This also implies that
d̂
(L−R)
k = L̂Hk d̂Rk , which means that at each node k ∈ K, the

signal d̂
(L−R)
k is merely a linear combination of the channels

of d̂Rk and hence, given the latter, the former can be computed
accordingly. This property in fact allows each node k ∈ K
in the GEVD-based DANSE algorithm to compute the extra
(L−R) channels of the desired signal based on the estimated
R-channel signal d̃ik in (30). The unknown R × (L − R)
transformation matrix can then be computed using, e.g., an
MWF, with d̃ik as the inputs. Note that in practice however,
one can alternatively select the (L−R) columns in (24) that
correspond to the (L − R) channels in d̂

(L−R)
k , by changing

Ẽdk accordingly. These columns can be used as an MWF with
ỹik as an input, and will indeed have d̂

(L−R)
k as an output (after

convergence of the algorithm). This can be easily proven from
(34)-(35).

V. SIMULATION RESULTS

In this section, we provide Monte-Carlo (MC) simulations,
which allow us to further demonstrate the convergence and
performance behavior of the GEVD-based DANSE algorithm
in different conditions. A setup with different positions of
nodes/sources and with different signals is created in each
independent MC run. Each node k then collects observations
of a different 15-channel stochastic signal yk, i.e., Mk = 15,
∀k ∈ K. It is noted that all plots in this section show the
median of the MSE measures over 200 MC runs and averaged
over all nodes.

Two different mean squared error (MSE-) based perfor-
mance measures are used to asses the bahavior of the GEVD-
based DANSE algorithm. The first measure evaluates the
algorithm from the convergence perspective, i.e., it considers
the MSE between the solutions of the network-wide GEVD-
based MWF and those of the GEVD-based DANSE algorithm.
This measure, namely MSE1, at each node k will be applied
both to the estimated filters as well as the desired signals, i.e.,

MSE1iWk
=

1

MR
‖Wi

k − Ŵk‖2F (71)

MSE1idk =
1

RN

N−1∑
n=0

‖d̃ik(n)− d̂k(n)‖2F (72)

with d̂k(n) the observation of d̂k at time n. Note that
when the GEVD-based DANSE algorithm converges to the
network-wide GEVD-based MWF, MSE1iWk

and MSE1idk will
theoretically decrease to 0, i.e., to the machine precision in
practice.

The second measure, namely MSE2, aims at evaluating the
output performance of the GEVD-based DANSE algorithm
from a noise reduction perspective. This will further allow to
compare the output performance of the GEVD-based DANSE
algorithm with that of the original DANSE algorithm. We
define the following MSE2s as the MSE between the estimated
and true values of the desired signals for both the network-
wide and GEVD-based DANSE output solutions:
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MSE2d̂k =
1

RN

N−1∑
n=0

‖d̂k(n)− dk(n)‖2F (73)

MSE2idk =
1

RN

N−1∑
n=0

‖d̃ik(n)− dk(n)‖2F . (74)

We first perform batch-mode simulations in Section V-A,
where the required statistics are computed over the full length
signals. Note that in the batch version of the GEVD-based
DANSE algorithm, we use the entire signal length to estimate
the correlation matrices used in the algorithm. In Section V-B,
a more practical scenario with finite-window sensor signal
observations is considered. Note that in this case each set
of sensor signal observations is only broadcast once, i.e.,
subsequent iterations are performed over different observation
sets.

A. Batch-mode simulations

In this section batch-mode simulations are performed, where
in each MC run six localized point sources are present with
equal powers (unless otherwise stated), from which S = 3 are
treated as desired sources, and the other 3 sources treated as
noise sources, leading to spatially correlated noise components
over all sensors. The number of observations in these scenarios
is set to N = 15000 samples. The S = 3 target sources
have an ON-OFF behavior which are active over the intervals
[1000 4000] and [6000 9000], while the noise sources are
continuously active. The observations of the latent 3-channel
signal š, and the entries of the 15×3 steering matrix Ak (see
(1)), ∀k ∈ K are both independently drawn from a uniform
distribution over the interval [−0.5; 0.5]. The network-wide
noise signal n is generated as n = Bv + q, where B is
the 15K × 3 steering matrix corresponding to noise sources,
v contains the 3 noise source signals, and q contains the
spatially uncorrelated white noise signals (sensor noise) where
the power at each node is equal to 10% of the power of the
mixed desired source signals as observed by the first sensor of
the node. The observations of v and the entries of B are also
drawn from a uniform distribution over the interval [−0.5; 0.5].
Note that in these experiments, in order to exclude the effects
of overlapping so-called ’noise-only’ and ’signal-plus-noise’
segments, noise correlation matrices are always estimated over
the perfect ’noise-only’ segments, i.e., from the samples over
the intervals [1 1000], [5000 6000] and [9000 15000].

We first consider the performance of the algorithm for
different values of the rank approximation order R, both when
R = S and when R < S (cases where S is either not known or
wrongly estimated). Here we assume K = 10, i.e., M = 150.
Fig.2 illustrates the convergence results for different values
of R, i.e. R = 3, R = 2 and R = 1 when S = 3. In the
upper part, the averaged MSE1idk over all nodes is shown as a
function of the different iterations of the GEVD-based DANSE
algorithm. Similarly, the bottom part illustrates the averaged
MSE1iWk

’s. First it is observed that for all three cases, the
GEVD-based DANSE algorithm converges (with a random
initialization of its parameters) to the network-wide GEVD-
based MWF with the same value of R. Note that it has been
observed that all these figures will eventually decrease to the
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Fig. 2. Convergence of the GEVD-based DANSE algorithm for different
low-rank approximations R.

0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

d
M

S
E
1i d

k

ov
er

al
l
n
o
d
es

10-10

100

K=5 (R=S=3)
K=10 (R=S=3)
K=30 (R=S=3)

iteration
0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

d
M

S
E
1i W

k

ov
er

al
l
n
o
d
es

10-10

100
K=5 (R=S=3)
K=10 (R=S=3)
K=30 (R=S=3)

Fig. 3. Convergence of the GEVD-based DANSE algorithm for different
network sizes K.

machine precision values. It is noted that in the same scenario,
the original DANSE algorithm would converge to the network-
wide LMMSE-based MWF only if R = S = 3. It is also
observed that among these cases, the case of R = 3 delivers
the fastest convergence rate, followed by cases of R = 2 and
R = 1. This can be explained by the larger number of degrees
of freedom in each update step in the former case.

Fig. 3 shows the convergence of the GEVD-based DANSE
algorithm in terms of both MSE1idk and MSE1iWk

, for different
network sizes, i.e., K = 5, K = 10 and K = 30. In this
scenario we have R = S = 3. Since the updating is done in
a sequential fashion, it is not surprising that the convergence
speed decreases as the number of nodes increases.

In the rest of this section we will compare the noise
reduction performance of the GEVD-based DANSE algorithm
with the performance of the original DANSE algorithm.

We first compare the output of the two algorithms in sce-
narios with different noise powers. To achieve this, we define
the overall input signal to noise ratio (iSNR) as the iSNR
with respect to each individual desired source as observed at
the first sensor of each node, averaged over all the desired
sources. Similarly the overall output SNR (oSNR) is defined
as the oSNR with respect to each individual desired source,
averaged over all desired sources. In order to manipulate the
overall iSNR, we will equally increase the power of the 3
noise sources in each of these scenarios. With this, we achieve
simulation scenarios with overall iSNR values of 4.35 dB and
−2.8 dB. Fig. 4 then compares the overall oSNR obtained
from the GEVD-based DANSE (R = 3) and the original
DANSE algorithms. Furthermore, the overall oSNRs of the
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Fig. 4. Comparison of overall oSNR between GEVD-based DANSE and
original DANSE in scenarios with different iSNRs.

network-wide GEVD-based MWF (R = 3) and the network-
wide LMMSE-based MWF are added as a reference. These
results demonstrate that, with the same network communica-
tion cost, the GEVD-based DANSE algorithm outperforms the
original DANSE algorithm in terms of the overall oSNR (see
also Fig. 6).

Although an overall oSNR as a measure provides insights
on the performance of the algorithms in terms of the amount
of noise which has been removed, it does not reflect the
amount of distortion or other imperfections on the desired
signal estimates. Hence in order to better evaluate the output
performance of the algorithms, we now consider the MSE2idk
measure defined in (74). Fig. 5 shows the averaged MSE2
over all K = 10 nodes (200 MC runs). Different values of
R are considered in the case of the GEVD-based DANSE
algorithm. Moreover the MSE2dk values of the corresponding
network-wide MWF solutions are shown by dashed lines as a
reference. This figure verifies again the significant difference
between the GEVD-based DANSE algorithm and the original
DANSE algorithm. Considering the same experiment setup,
Fig. 6 shows the averaged MSE2dk as a function of the
network communication cost (defined in Subsection IV-E) up
to iteration i of the distributed algorithm, i.e., K2.R.N.i. This
figure shows that the GEVD-based DANSE algorithm with
an underestimated rank (R = 1) still delivers a slightly better
MSE2-based performance than the original DANSE algorithm,
which also has a higher communication cost.

So far the nodes update their parameters in a sequential
round-robin fashion, which may yield a slow convergence of
the estimators, especially so when the number of nodes in the
network is large. Note that the convergence time of this case
increases linearly with the number of nodes. In [22], a modifi-
cation of the original DANSE algorithm with simultaneously
updating nodes has been described, where it was observed
that a faster convergence and faster adaptation is obtained.
We can use a similar simultaneous node-updating strategy for
the GEVD-based DANSE algorithm, to investigate how the
dynamics of the GEVD-based DANSE algorithm change in
cases where the nodes are able to update simultaneously in
each iteration. Note that the computational load of the latter
will be higher in comparison with the former. Fig. 7 considers
the convergence of the GEVD-based DANSE algorithm with
R = 3 when nodes update simultaneously. The top part of
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this figure shows the averaged MSE1idk and MSE1iWk
over

K = 10 nodes (200 MC runs). Furthermore, the bottom part
of Fig. 7 compares the convergence speed of the GEVD-
based DANSE algorithm with R = 3 for both cases where
nodes update sequentially and simultaneously. These results
verify that when nodes are able to update simultaneously,
the algorithm converges significantly faster than the case
of sequential updating. Note that this is stated here as an
observation based on extensive simulation on this particular
simulation scenario, but without a formal proof.

B. Finite-window simulations

In this section we evaluate the performance of the GEVD-
based DANSE algorithm when the required statistics are
estimated over finite windows of length N (instead of the full
signal), where the window shifts over time in each iteration.
This will result in larger estimation errors in the correlation
matrices that are used in the algorithm. In this case, the
theoretical convergence analysis only approximately hold as it
does not take estimation errors in the correlation matrices into
account. In practice, the window length N introduces a trade-
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Fig. 8. Convergence of the GEVD-based DANSE algorithm (R = 3) where
the correlation matrices are estimated over a finite-window of N samples.

off between the tracking performance and estimation errors
in the correlation matrices, where the latter leads to a larger
convergence offset. In this section signals with a full length of
100000 samples are generated where the desired source signals
have an ON-OFF behavior with a duty cycle of 50%, with an
active period of 1000 samples. Fig. 8 shows the convergence
of the GEVD-based DANSE algorithm where the correlation
matrices are estimated over different values of finite-window
length N (200 MC runs and R = S = 3). The upper part
shows the averaged MSE1idk over all nodes as a function of
the different iterations of the GEVD-based DANSE algorithm.
The bottom part of Fig. 8 shows the MSE between the signal
estimate of the GEVD-based DANSE and the network-wide
GEVD-based MWF algorithm (both with finite window N ),
with respect to the signal estimate of the network-wide GEVD-
based MWF in batch mode (computed over the full signal of
N = 100000 samples). This figure verifies that, although in
both the network-wide GEVD-based MWF and the GEVD-
based DANSE algorithm the performance drops depending
on the window length N , the discrepancy between them is
negligible when N is chosen sufficiently large.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a distributed algorithm
for the estimation of node-specific desired signals in wireless

sensor networks. The estimation has been based on a GEVD-
based low-rank approximation of a correlation matrix within
the MWF that is locally computed at each node. The resulting
GEVD-based DANSE algorithm significantly compresses the
signals transmitted between the nodes compared to a cen-
tralized approach with a fusion center. We have shown the-
oretically and via simulations that the GEVD-based DANSE
algorithm converges to the network-wide GEVD-based MWF
as if each node would have access to all the sensor signal
observations.

Our future work focuses on the development of a GEVD-
based DANSE algorithm in which nodes are able to converge
to the network-wide GEVD-based MWF, when the topology
changes in between iterations, e.g., because of link failures,
without having to re-converge to a new set of parameters for
the new topology.

APPENDIX A: PROOF OF THEOREM II

In this section we provide the convergence proof for the
VA, which basically estimates the R principal network-wide
GEVCs in a distributed fashion. Table II summarizes the
different steps of this algorithm. Therefore the objective is
to show that in this case the iterative updates of Xi (defined
in (51)) converge to the network-wide GEVCs matrix X̂ (in
(36)). It is noted that, even when the GEVCs are normalized
according to (12), the GEVCs still have a sign ambiguity,
which is ignored here for the sake of an easy exposition,
i.e., we prove convergence up to a sign ambiguity. It is noted
that this sign ambiguity can be easily resolved in practice by
selecting the proper sign for each column of X̃

i

q such that
‖Xi+1

q −Xiq‖ is minimized in (46).
It has been shown in [34] that X̂ is the solution of the

following network-wide constrained optimization problem:

X̂ = argmax
X

f(X) (75)

s.t. XHRnnX = IR (76)

with f(X) = Tr{XHRyyX}.
The algorithm in Table II is derived in [32] by guaranteeing

a monotonic increase of the objective function f(Xi) under
the constraint (76), i.e., the following Lemma follows directly
from the results in [32]:
Lemma A.I. f(Xi) increases monotonically in each iteration
of the VA, i.e., f(Xi+1) ≥ f(Xi),∀i ∈ N0. Furthermore, all
matrices Xi,∀i ∈ N, satisfy XiHRnnX

i = IR.
It is noted that such a monotonic increase implies con-

vergence of f(Xi), but not necessarily convergence of the
argument Xi. In the sequel, we will formally prove the latter.

In general an equilibrium point X∗ of the VA is defined as
a point where if Xi = X∗ at iteration i = i∗, then Xj+1 =
Xj ,∀j ≥ i∗, where the superscript (.∗) denotes an equilibrium
condition. An equilibrium point X∗ is said to be stable if there
exist no infinitesimally small perturbations on X∗ that let the
VA algorithm converge away from this point.

The first theorem addresses the equilibrium point(s) of the
VA and their stability.
Theorem A.II. Let X ∗ denote the set of all equilibrium
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points of the VA and let X∗ ∈ X ∗. Then X∗ can only
contain GEVCs of the ordered matrix pair (Ryy,Rnn) in its
columns. Furthermore, X ∗ always contains X̂, i.e., the matrix
containing the R principal GEVCs, and this is the only stable
equilibrium point under the VA update rules.

Proof : We assume (w.l.o.g.) that node q is the updating node
at iteration i of the VA. Since X̃

i+1

q contains the principal
GEVCs of (Ri

ỹq ỹq
,Ri

ñqñq
), we can write (compare with (20))

Ri
ỹq ỹq
X̃
i+1

q = Ri
ñqñq

X̃
i+1

q L̃
i+1

q . (77)

We define the M × Pq compression matrix Ci
q as

Ci
q =

 0 Bi
<q 0

IMq 0 0
0 0 Bi

>q

 (78)

where 0 is an all-zero matrix of proper dimension, and with

Bi
<q = Blkdiag(Xi1, . . . ,X

i
(q−1)) (79)

Bi
>q = Blkdiag(Xi(q+1), . . . ,X

i
K). (80)

From the definition of ỹi
q

and ñiq , and considering the fact that
Fik = Xik,∀k ∈ K\q (see step 2 in Table II), it can be easily
verified that (77) can be written as

CiH
q RyyC

i
q X̃

i+1

q = CiH
q RnnCi

q X̃
i+1

q L̃
i+1

q (81)

Now, let us assume that the algorithm has reached an equilib-
rium point, i.e., {Xi+1 = Xi} ∈ X ∗. Since Xi+1

k = XikGk

in (48), it follows that Gk = IR,∀k ∈ K and that

X̃
i+1

q =
[
Xi Tq IR . . . IR

]T
. (82)

Note that also in an equilibrium point GELVs do not change
over the iterations, i.e., L̃

i+1

q = L̃
i

q . Hence in this point we
have that

CiH
q RyyX

i = CiH
q RnnX

iL̃
i

q. (83)

Considering (79)-(81), with selecting the first Mq rows of (83)
we have

UqRyyX
i = UqRnnX

iL̃
i

q (84)

where Uq =
[
0(Mq×

∑q−1
j=1 Mj)

| IMq |0(Mq×
∑K

j=q+1Mj)

]
. If an

equilibrium point is reached, then the same reasoning can
be performed for all the other nodes in the WSN as well.
Consequently, by stacking the K matrix equations as defined
in (84), ∀q ∈ K, we have

RyyX
i =


U1RnnX

iL̃
i

1
...

UKRnnX
iL̃
i

K

 . (85)

By left-multiplying (83) with the matrix
[
XiHq IR . . . IR

]
, and

since XiHRnnX
i = IR we obtain

XiHRyyX
i = L̃

i

q. (86)

Since the lefthand side of (86) is independent of q and since
it holds for all q ∈ K, we conclude that L̃

i

k = L̃
i

q , Li, ∀k, q ∈

K, where Li is an R×R diagonal matrix. Based on this, we
can rewrite (85) as

RyyX
i = RnnX

i Li (87)

where XiHRnnX
i = IR (see Lemma A.1). Hence, and since

we have assumed that Xi is an arbitrary equilibrium point in
X ∗, we conclude that any equilibrium point can only contain
GEVCs of the ordered matrix pair (Ryy,Rnn). Note that this
is a necessary condition for Xi to be an equilibrium point, but
not a sufficient condition.

The fact that X̂ ∈ X ∗ follows straightforwardly from the
fact that X̂ maximizes (75)-(76), and the fact that the VA
results in a monotonic increase of f(Xi) (Lemma A.1) under
the constraint (76). Note that the assumption (26) also assures
that (75)-(76) has a unique maximum. Even if this assumption
does not hold, i.e. if X̂ is not unique, the fix in Appendix B
will ensure that X̂ ∈ X ∗, i.e., X̂ does not change under the
VA updates.

Finally we must show that X̂ is the only stable equilibrium
point. Essentially, an equilibrium point X∗ is stable under the
VA update rules if any small perturbation of X∗ does not lead
to an increase of the objective function f(X∗), i.e.,

∃ ζ > 0, ∀∆Υ ∈ �M×R : ‖∆Υ‖F ≤ ζ
⇒ f(X∗ + ∆Υ) ≤ f(X∗) (88)

where �M×R is the set containing all possible perturbations
such that XHRnnX = IR is not violated when X =
X∗ + ∆Υ. Indeed, this condition follows from the fact that
f is monotonically increasing under the VA updates (Lemma
A.1), and hence equilibrium points X∗ that do not satisfy the
condition (88) are unstable under the VA update rules since
a small perturbation may lead to f(X∗ + ∆U) ≥ f(X∗). In
this case, considering that f(Xi+1) ≥ f(Xi), ∀i ∈ N, the
VA cannot return to the original equilibrium point X∗. If X∗

contains GEVCs that are not in the columns of X̂, it does not
satisfy (88). Therefore, X̂ is the only point that both satisfies
the necessary condition for equilibria (87) and the stability
condition (88), and hence it is the only stable equilibrium point
in X ∗.
�

Theorem A.III. For any initialization of the VA, limi→∞X
i

exists, i.e., the VA converges. Furthermore the R principal
local GEVLs converges, i.e., limi→∞ L̃

i

k = L̂, ∀k ∈ K.
Proof: The first step to prove this theorem is to show that,

as i → ∞, the distance between two consecutive updates of
the VA vanishes8, i.e., lim

i→∞
‖Xi+1 − Xi‖F = 0. To show

this, consider the fact that since f(Xi) increases monotonically
(Lemma A.1), and since it has an upper bound, we have that

lim
i→∞

(
f(Xi+1)− f(Xi)

)
= 0. (89)

In the VA, X̃
i+1

q contains the R principal GEVCs of
(Ri

ỹq ỹq
,Ri

ñqñq
) (computed based on a GEVD at the updating

node q at iteration i), and we know that it maximizes f(Xi)

8It is noted that this is again a necessary condition for convergence, but
not sufficient.
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within a constraint set C, which is dictated by the parame-
terization of Xi in the VA (similar to (33) for Wi

k, see [32]
for more details). Due to assumption (26), we know that this
maximum is unique, and together with the continuity of the
objective function f within C, it follows that (assuming the
sign ambiguity is resolved)

∃ ζ > 0,∃ µ > 0,∀X ∈ C : |f(Xi+1)− f(X)| < µ

⇒ ‖Xi+1 −X‖F < ζ. (90)

With (89) and (90) we can conclude that

lim
i→∞
‖Xi+1 −Xi‖F = 0. (91)

The proof of Theorem A.I relied on the fact that {Xi+1 =
Xi} ∈ X ∗, which is used to obtain (83) from (81). However,
if Xi /∈ X ∗, then Xi+1 6= Xi and therefore an error term Θi

q

should be added in (83), i.e.,

CiH
q RyyX

i = CiH
q RnnX

iL̃
i

q + Θi
q. (92)

An error term then also appears in (85) and (86), which are
derived from (83), i.e.,

RyyX
i + Ωi =


U1RnnX

i L̃
i

1
...

UKRnnX
i L̃

i

K

 (93)

XiHRyyX
i + Ωi

q = L̃
i

q (94)

where Ωi and Ωi
q, ∀q ∈ K are error terms. However, from

(91), it follows that the error term Θi
q vanishes in (92) if

i→∞, and therefore also the error terms Ωi and Ωi
q vanish,

i.e., from (94) we have

lim
i→∞

‖XiHRyyX
i − L̃

i

k‖F = 0 ∀k ∈ K. (95)

When defining
Li , XiHRyyX

i (96)

and using (95), we find from (93) that

lim
i→∞

‖RyyX
i −RnnX

iLi‖F = 0. (97)

Since L̃
i

k, ∀k ∈ K, are diagonal matrices (by construction), it
follows from (95) and (96) that lim

i→∞
Li is also diagonal. This

fact together with (97), shows thatXi converges to the GEVCs
of Ryy and Rnn when i→∞. Furthermore, it follows from
(91) that the columns of Xi cannot switch between different
GEVCs when i→∞. This also implies that the corresponding
R principal GEVLs converge, and hence together with (87),
we can conclude that limi→∞ L̃

i

q = L̂, ∀q ∈ K, which proves
the theorem. �

We can safely assume that in practice because of estimation
errors and/or numerical noise, the VA algorithm will diverge
away from other possible equilibrium points. Since X̂ is the
only stable equilibrium point (Theorem A.II), and based on
Theorem A.III, we conclude that the VA algorithm converges
to the matrix X̂ containing the network-wide GEVCs of
(Ryy,Rnn).

APPENDIX B: ALGORITHM FIXES FOR SPECIAL CASES

B.1. Rank deficient Ri
ỹq ỹq

and/or Ri
ñqñq

: In the rare case
where Ri

ỹq ỹq
and/or Ri

ñqñq
is rank deficient9, then the local

GEVD solution at node q in iteration i is ill-defined. Basically,
rank deficiency of these matrices occurs when there is a node
k for which Xik has linearly dependent columns. Assuming
w.l.o.g. that the rank deficiency occurs in Ri

ỹq ỹq
, then there

are two ways to circumvent this problem:
• The linearly dependent column inXik, and its correspond-

ing entries in zik is removed when constructing Ri
ỹq ỹq

at
the updating node q. As the removed signal observations
can be reconstructed from the other signal observations
in zik (Step 2 in Table I), this removal cannot counteract
the monotonic increase of f(Xik) in the VA.

• Node k replaces the linearly dependent column in Xik
by random entries, yielding a new zik in which all chan-
nels are linearly independent. Note that this replacement
provides the other nodes with additional information, and
therefore this is a better option compared to the first one.

B.2. Degenerate principal GEVLs: In the rare case where
the n-th largest GEVL of (Ri

ỹq ỹq
,Ri

ñqñq
) is degenerate, i.e.,

λ̃in = λ̃in+1 (with n ≤ R), X̃
i+1

q is ill-defined in its n-th
and (n + 1)-th column. One possible fix is to skip node q
in the current update round, assuming that the problem will
not occur in the next update round. In case this simple fix
does not solve the problem, we also propose an alternative fix.
For the sake of an easy exposition and w.l.o.g., we consider
the worst case, i.e., we assume that all R columns are ill-
defined, i.e., λ̃i1 = λ̃i2 = . . . = λ̃iR+1. In this case, the GEVCs
corresponding to these GEVLs span an (R + 1)-dimensional
subspace S. A unique X̃

i+1

q can then be defined as

X̃
i+1

q = argmin
X̃

q

‖X̃q − X̌q‖F (98)

s.t. Range
(
X̃q

)
= S and X̃

T

q Ri
ñqñq

X̃q = IR (99)

where X̌q =
[
Xiq IR . . . IR

]
. Note that this fix also ensures

convergence, since X̃
i+1

q = X̌q implies that Xi+1 = Xi (this
can be seen from (46)-(48)).
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ñqñq

in the VA, note
that they are equally applicable for Ri
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